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ABSTRACT 

This thesis describes the study of Artificial Neural Network (ANN) based techniques 

for the classification of aerial images for various types of land-use. In this study both 

gray-scale and multispectral aerial images were used in land-use classification. Three 

approaches were used for the preparation of the data as inputs to the ANN, including 

histograms of the pixel intensities, textural parameters extracted from the image, and 

matrices of pixels for spatial information. The approach using textural parameters was 

found to be the best for both gray-scale and multispectral image classification. A 

probabilistic neural network was employed. A high level of accuracy was achieved with 

both gray-scale (92%) and multispectral images (89%). 
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CHAPTER 1 

INTRODUCTION 

 

The goal of this thesis was to develop a land-use classification scheme for remotely 

sensed aerial images to aid in agricultural production decision support and policymaking. 

This research explored the use of both gray-scale and multispectral aerial images. The 

specific objectives in each of these efforts included the comparison of different 

approaches for preparing data for classification using artificial neural networks. The three 

approaches used for the preparation of the inputs to the artificial neural network (ANN) 

included histograms of the pixel intensities, textural parameters extracted from the image, 

and matrices of pixels for spatial information. 

The ANN based technique used for the land-use classification of gray-scale aerial 

images is discussed in Chapter 2. Chapter 3 discusses land-use classification using 

multispectral images. Chapter 4 summarizes the results of the tests and discusses the 

overall performance of the ANNs. 

 

1.1 Remote sensing and image classification 
 

In order to gather and interpret geo-spatial data, remote sensing technology that employs 

different radiation spectra is used. This technology is applicable in developing 

information about features, objects, and classes for the earth's land surface, oceans, and
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the atmosphere. With the recent advances in remote sensing high resolution data are 

available at short time intervals.  For instance, the Landsat 7 satellite operated by United 

States Geological Survey (USGS) can provide remote sensing data in a 16-day repeat 

cycle from a panchromatic band with 15-meter spatial resolution (Short, 1999). The 

SPOT 5 satellite has up to a 2.5-meter ground resolution in panchromatic mode with a 

26-day repeat cycle (Short 1999). However, aerial images can achieve even higher 

resolutions, depending on the type of sensor that is being used. The cost of high-

resolution images has become comparatively low and images are more readily available 

due to advances in sensing techniques and commercialization of many of these 

technologies. 

Another major advancement in remote sensing has been in the field of imaging 

spectroscopy. Remote sensors that cover two thermal intervals corresponding to two 

atmospheric windows allow sensing of thermal emissions from land, water, ice and the 

atmosphere. The sensors have been flown on airplanes for several decades. Many of the 

meteorological satellites include at least one thermal channel with other sensors. A 

thermal band has also been included on the Landsat Thematic Mapper. Radar systems are 

another class of satellite remote sensors that are currently operational in space. A radar 

normally provides a very different view of the same landscape compared to a visible 

image because of its ability (for certain wavelengths) to penetrate clouds. Seasat, the 

Spaceborne Imaging Radar (SIR) series, and Radarsat are among the instruments used so 

far. The Multispectral Scanner (MSS) has been the most important sensor that was part of 

the first five Landsats. The Landsat MSS gathers radiation over spectral band widths that 

integrate radiation over relatively broad intervals (0.1 and 0.3 µm). Thus, instead of the 
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spectral signatures that continuously measure spectral response in very narrow intervals, 

the MSS data when plotted produce histogram-like bars that are rough approximations of 

the signature curves. Hyperspectral imaging is a powerful and versatile means for 

continuous sampling of broad intervals of the spectrum. Hyperspectral imaging allows a 

sensor on a moving platform to gather reflected radiation from a ground target such that a 

special detector system can record up to 217 spectral channels (each approximately 10 

nanometers in width) simultaneously over the range from 0.38 to 2.5 mm. With such 

detail, the ability to detect and identify individual materials or classes greatly improves. 

Image classification is a key component of remote sensing (Baraldi and Parmiggiani, 

1990; Biscoff et al., 1992; Carmel and Kadmon 1998). Image classification is the process 

of creating thematic maps from satellite imagery. A thematic map is an informational 

representation of an image, which shows the spatial distribution of a particular theme. An 

example of themes could be vegetation types consisting of trees, crops, grasslands, etc. 

Finer sub-themes can also be defined inside a theme to make the process of classification 

more refined, such as classifying trees as deciduous or evergreen. Image classification 

relies on the spectral distinctness of classes or spectro-temporal variability. It also 

depends on the context of classification. For example, two features with nearly identical 

spectral signatures for vegetation could be assigned to the classes 'forest' and 'crops' 

depending on whether the area in the images has irregular or straight boundaries. Various 

studies reported a very high accuracy in image classification (Ritter and Hepner, 1990; 

Chen, 1995; Du, 1996; Carmel and Kandmon, 1998; Tsai, 2002). However, it is vital to 

extend techniques to further improve remote sensing image classification accuracy for 
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deriving dependable land cover information for vegetation, land-use and other 

applications. 

Gray-scale images are single spectrum images, whereas multispectral images use 

more than one spectrum. In gray-scale pictures, the information that can be retrieved 

from the image is the intensity of the pixels and the relative position of the pixels. Most 

land-use classes have a characteristic value for intensity, which is used in generating 

spectral classes from image classification. The spatial composition of these spectral 

classes within a certain spatial range can be useful information for image classification 

(Fung and Chan, 1994). Images can also be classified based on texture information from 

the image. Several parameters related to the texture recognition of an image were 

proposed by Haralick (1973). These include angular second moment, contrast, 

correlation, inverse difference moment, and entropy. Angular second moment is a 

measure of the homogeneity of the image. Contrast is a measure of the amount of local 

variation present in an image. Correlation is a measure of gray-tone linear-dependencies 

in the image. Inverse difference moment is a measure of the amount of local similarity. 

Entropy is a measure of the average uncertainty of gray tone co-occurrence in the image. 

Contrast, entropy, angular second moment and inverse difference moment have been 

widely used for image classification and image analysis. Jensen (1979) applied these 

Haralick’s measures to Landsat images for land cover classification and achieved up to 

80% accuracy. Marceau et al. (1990) used the same Haralick’s textural parameters for 

land-cover classification of nine land-cover types in SPOT imagery and achieved up to 

100% accuracy for some land-cover types. Kondo et al. (2000) used the Haralick’s 

parameters for evaluating sugar and acid content of Iyokan orange fruit based on a 
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machine vision system. Singh and Singh (2001) compared several texture methods for 

image analysis. The performance evaluation was based on the ability of a classifier to 

recognize unseen samples of the four classes on the basis of training data. The best 

overall result using nearest neighbour methods was obtained with Haralick’s parameters 

based on co-occurrence matrices. 

 

1.2 Artificial neural network and image classification 
 

Artificial neural networks (ANNs) are computational mathematical models that 

emulate some of the observed properties of biological neural systems and draw on the 

analogies of adaptive biological learning. An ANN is composed of a number of 

interconnected processing elements that are similar to neurons. These processing 

elements are joined by weighted connections that are analogous to synapses in the human 

brain. Supervised learning in an ANN typically occurs by example through training or 

exposure to a known set of input and corresponding output data. The training algorithm 

adjusts the connection weights through an iterative procedure in which the error is 

minimized. The superiority of ANNs to some of the classical statistical methods in 

various problems, including classification problems, has been shown in the previous 

studies (Bischof et al., 1990; Paola and Schowengerdt, 1995; Blackard and Dean, 1999; 

Giraudel, 2001). ANNs are commonly used for segmentation and classification purposes 

and are recommended for problems where data diversity is large (Lee et al., 1990; 

Warner and Shank, 1997; Moshou, 2001). 

The viability of land-use classification of remotely sensed image areas with ANNs  

was established by Benediktsson et al. (1990). Subsequent studies that examined the 
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neural network classifier method in more detail also compared it to standard statistical 

classification techniques (Paola and Schowengerdt, 1995; Luo et al., 1997; Zhang and 

Foody, 2001). These studies presented several classification approaches that are based on 

ANNs, such as the pixel-by-pixel or per-pixel method (Salu and Tilton, 1993). The pixel-

by-pixel method deals with classification of pixels. The classification aims at attributing 

each pixel to its correct land cover category. The dimensions of pixels are usually related 

to the field of view of the sensor that obtained the image, and the sampling rate of the 

analogue-to-digital converter used to translate the signal received at the detector. It is 

hypothesized that the statistical characteristics of a group of pixels can be used to define a 

decision rule for discrimination between the cover type of that pixel and all others. 

However, this approach faces several difficulties due to the interaction between light and 

the components of atmosphere and due to the geometry of the imaging system (Mather, 

1990). The per-pixel method is also not appropriate for classification high resolution 

images because the spatial variability of surface features increases with the increase in 

spatial resolution (Marceau et al., 1990). Higher variability diminishes classification 

accuracies (Irons et al., 1985).  

Previously, most of the research for land-use classification has focused on the 

analysis of multispectral images (Bischof et al., 1992; Civco and Waug, 1994; Schultz et 

al., 2000). Only a few applications are based on gray-scale images (Metzler et al., 2000) 

and no comparisons have been made with multispectral data analysis. Accurate 

classification of gray-scale images into various land-uses is challenging because of the 

limited spectral information that is provided in these images, as discussed previously. 

There have been several new approaches, such as the contextual classification scheme 
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and methods based on fuzzy sets or their combinations, which have had better success 

than usual methods. Contextual classifiers increase the dimensionality of data with 

additional bands in which contextual information is present in some way or assume the 

existence of local properties defined on a neighborhood where the spatial dependence is 

relevant. The fuzzy approach, proposed by Wang (1990), allow for multiple and partial 

classification of mixed pixels. This approach gives more information on the relative 

strengths of class membership at the pixel level. Gong and Howarth (1992) found that the 

contextual classification for land-use classification of SPOT HRV data better than the 

conventional maximum likelihood classification method. Cortijo and De la Blanca (1998) 

achieved 91% accuracy with contextual classification. Papin (2002) demonstrated the 

accuracy and efficiency of the contextual approach. Gopal and Woodcock (1994) 

successfully used fuzzy sets for accuracy assessment of thematic maps. Zhang and Foody 

(2001) used fully-fuzzy supervised classification to determine land cover based on 

images obtained from Landsat Thematic Mapper and obtained better results than partially 

fuzzy classification. 
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CHAPTER 2 

LAND-USE CLASSIFICATION OF GRAY-SCALE AERIAL IMAGES USING 

ARTIFICIAL NEURAL NETWORKS1 

 

                                                 
1 Ashish D., G. Hoogenboom, and R. W. McClendon. Submitted to IEEE Transactions 

on Geoscience and Remote Sensing, 5/13/02. 
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Abstract—With the advancement in remote sensing methods that can provide high 

resolution data at shorter intervals, it has become important to develop classification 

methodologies to exploit these technologies. The objective of this study was to develop 

an Artificial Neural Network (ANN) based technique for the classification of gray-scale 

aerial images into various types of land-use, especially for rural areas where agriculture is 

important. We defined specific land-use classes including city, water, forest and various 

types of agricultural field areas. Gray-scale aerial images with a 6.5-meter resolution for 

nine counties were obtained. Three approaches were used for the preparation of the inputs 

to the ANN, including histograms of the pixel intensities, textural parameters extracted 

from the image, and matrices of pixels for spatial information. A probabilistic neural 

network was used in this study. Twelve hundred images were used for model 

development and 300 for model evaluation. The best ANN was based on textural 

parameters and achieved an overall accuracy of 92% for the evaluation data set. Overall 

accuracy for the spatial approach was 66% for the evaluation data set. Combinations of 

all three approaches were also evaluated without an improvement in accuracy. 

 

Index Terms— Aerial remote sensing, artificial neural networks, image classification, 

image processing. 

 

2.1. Introduction 
 

Remote sensing is a technology that uses different radiation spectra to acquire and 

interpret geo-spatial data. This information can then be used to develop information about 

features, objects, and classes for the earth's land surface, oceans, and atmosphere. Remote 

sensing can be classified into either aerial or satellite based techniques, depending on the 

 9



 

platform used for sensors. Image classification is a key component of remote sensing and 

relies on the spectral distinctness of classes and/or spectro-temporal variability and the 

context of classification [1], [2], [24] [27]. None of the previous studies have achieved 

complete accuracy in classification. The development of techniques to improve remote 

sensing image classification accuracy is essential for deriving reliable land cover 

information for vegetation, land-use and other applications.  

High resolution images are now readily available at a relatively low cost. References 

[8] and [25] found high-resolution images more suitable for land-use classification 

compared to low-resolution images, as they contain more information per pixel. Images 

can broadly be grouped into two categories depending on the number of spectra. Gray-

scale images are single spectrum images, whereas multispectral images use more than 

one spectrum. In gray-scale pictures, the information that can be retrieved from the image 

is the intensity of the pixels and the relative position of the pixels. Most land-use classes 

have a characteristic value for intensity, but it is difficult to determine the various classes 

based solely on intensity values because of the absence of spatial information. 

Texture is another important characteristic that is used in classifying gray-scale 

images. Reference [9] proposed several parameters to identify the texture of an image. 

These textural parameters include angular second moment, contrast, correlation, inverse 

difference moment, and variance. Angular second moment is a measure of the 

homogeneity of the image. Contrast is a measure of the amount of local variation present 

in an image. Inverse difference moment is a measure of the amount of local similarity. 

Correlation is a measure of gray-scale linear-dependencies in the image. Contrast, 

angular second moment and inverse difference moment have been widely used for image 

classification [12], [16]. 
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Artificial neural networks (ANNs) are computational mathematical models that 

emulate some of the observed properties of biological neural systems and draw on the 

analogies of adaptive biological learning. An ANN is composed of a number of 

interconnected processing elements that are similar to neurons. These processing 

elements are joined by weighted connections that are analogous to synapses. Supervised 

learning in an ANN typically occurs by example through training or exposure to a known 

set of input and corresponding output data. The training algorithm adjusts the connection 

weights through an iterative procedure in which the error is minimized. The superiority of 

ANNs to some of the classical statistical methods in various problems has been shown in 

the literature [3], [19]. ANNs are commonly used for segmentation and classification 

purposes and are recommended for problems where data diversity is large [4], [11], [17], 

[21], [26]. 

Reference [2] established the feasibility of land-use classification of remotely sensed 

image areas with ANNs. Subsequent studies examined the neural network classifier 

method in more detail and compared it to standard statistical classification techniques 

[13], [19], [30]. Previously, most of the research for land-use classification has focused 

on the analysis of multispectral images [3], [5], [20]. Only a few applications are based 

on gray-scale images [16] and no comparisons have been made with multispectral data 

analysis. Accurate classification of gray-scale images into various land-uses is 

challenging because of the limited spectral information that is provided in these images, 

as discussed previously. 

Several classification approaches that are based on ANNs have been presented, such 

as the pixel-by-pixel or per-pixel method [20]. In the pixel-by-pixel method, each pixel of 

the remotely sensed image is classified. The dimensions of pixels are usually related to 
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the field of view of the instrument that obtained the image, and the sampling rate of the 

analogue-to-digital converter used to translate the signal received at the detector. It is 

assumed that the statistical characteristics of a group of pixels can be used to define a 

decision rule for discrimination between the cover type of that pixel and all others. 

However, this approach faces several difficulties due to the effects of interactions 

between light and the components of atmosphere and due to the effect of the geometry of 

the imaging system  [15]. New approaches such as the contextual classification scheme 

[6] and methods based on fuzzy sets [7] have been used with better success than 

conventional methods.  

The overall goal of our research was to develop a land-use classification scheme for 

remotely sensed images to aid in agricultural production decision support and 

policymaking. The three approaches considered include the use of histograms of the pixel 

intensities, textural parameters extracted from the image and spatial matrices of pixels for 

spatial information. Gray-scale images were used because they are available for the entire 

state of Georgia. Multispectral images are currently available only for limited regions, 

usually metropolitan areas, and our focus was on agricultural land-use. 

 

2.2. Methods and materials 
 

Gray-scale aerial images were obtained from the Georgia GIS Data Clearinghouse 

website for the entire state of Georgia (http://www.ganet.org/gis/chouse). Images from 

Baker, Bibb, Clarke, Colquitt, Fulton, Houston, Macon, Mitchell, and Seminole counties 

were used in this study. These high-resolution gray-scale aerial images are georeferenced 

and geocorrected. Most of this imagery was taken in 1993 and it is generally known as 

Digital Orthophotography Quarter-Quadrangles (DOQQs). The online versions of the 
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DOQQs have been resampled to 6.5-meter resolution in a JPEG image format. The 

Georgia GIS Data Clearinghouse also has multispectral images of the same resolution 

only for several counties in the greater Atlanta Metropolitan area. 

For this study gray-scale aerial pictures were downloaded in JPEG format from the 

Georgia GIS Data Clearinghouse. Small subareas of known classes, called “images”, 

were manually selected using the software Paintshop Pro (version 6.00). Images had 

different sizes due to the selection process (fig. 1.1). These images were visually 

separated into six different classes, including city, forest, water, dark field, medium dark 

field and light field. For the manual selection of images for various field classes, the 

mean pixel intensity of the image was used for a limited number of images in the dark, 

medium dark and light field classes. Each one of the six classes was represented by 250 

images for a total of 1500 images. Of the total, 200 images from each class were used for 

model development, which included 150 images for training and 50 images for testing. 

The remaining 50 images from each class were separated for later use in the evaluation 

data set for final evaluation of the ANN model. The training set consisted of patterns used 

to adjust the weights to minimize the error and the test set was used periodically in feed 

forward mode only to determine when to stop training to avoid overfitting. The 

evaluation set was used to evaluate the accuracy of the model once training was 

completed. 

In the first approach, histograms of pixel intensities (fig. 2.1) were created from the 

pixel values of the image. They were then normalized based on the number of pixels from 

the entire image in order to allow for a comparison of images of different sizes. For the 

second approach, the spatial information of an image was extracted from the central part 

of the image. This spatial information corresponds to the intensity of the pixels in the 
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specific spatial order to preserve their spatial location in the grid. The central portion of 

the image used for extracting preprocessed information is termed a “window” herein. In 

the third approach, textural parameters were calculated from the pixel data of the image 

(or the central portion of the image) according to different methods proposed by [9]. The 

Haralick’s textural parameters used in this study were angular second moment (ASM) 

and inverse difference moment (IDM). These are the most frequently used parameters 

[10], [12], [22] and found to have the best performance among textural parameters [18], 

[22]. In addition, the mean and standard deviation of pixel intensities were also 

calculated. 

∑∑=
i j

jipASM 2)},({                       (1) 
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i j
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where p(i,j) is a value in co-occurrence matrix which represents the number of times 

pixel a has a value i and pixel b has value j when pixel a is a neighbor of pixel b, a and b 

varying over the entire image.  

After preprocessing, the data were presented to an ANN for training using one of the 

approaches previously described. The software Neuroshell 2 (release 3), developed by 

Ward System Group Inc., was used in this study. In the preliminary tests the Probabilistic 

Neural Network (PNN) was found to have a higher accuracy than the standard back 

propagation algorithm and was therefore applied in all subsequent model development. 

The number of hidden layer neurons was equal to the number of patterns in the training 

set. The output layer in a PNN has the same number of neurons as the number of classes. 

The city class consisted of images of buildings and their neighboring areas. The forest 

class consisted of images taken from tree-covered regions. The water class images were 

 14



 

taken from lakes, ponds and rivers. The dark field class consisted of images of lush 

vegetation areas, whereas the medium dark field class consisted of images of relatively 

less dense vegetation areas. The light field class consisted of images of uncropped or 

fallow field areas. 

The best ANN was selected based on the highest overall accuracy for the evaluation 

data set, which is a function of the performance of the ANN for all the individual 

classification classes. The overall accuracy was calculated from the error matrix of the 

classification results [23]. Overall accuracy is the ratio of the sum of correctly classified 

patterns of all the classes over the total number of patterns presented to the ANN. The 

error matrix can also provide information about the producer’s and user’s accuracy. 

Producer’s accuracy is the ratio of the number of correctly classified patterns of a class 

over the total number of patterns of that class presented to the network. User’s accuracy 

is the ratio of number of correctly classified patterns into a class over the total number of 

patterns classified as being in that class. 

Each of the three approaches was considered individually with the same data sets. In 

the textural approach, there were four different parameters used as input for textural 

information. A separate study was performed to determine if any one or more of the 

inputs could be eliminated and still obtain the same level of accuracy. After testing all 

three approaches individually, a study was conducted considering various combinations 

of approaches in order to determine if this could further improve the accuracy. 
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2.3. Results and discussion 
 

Histogram:  

A comparative study was conducted for histograms of 64, 128 and 256 cells as shown 

in Table 2.1. The overall accuracy of the network for the 64-cell histogram was 89% for 

the evaluation data set. The 128-cell network had an overall accuracy of 90% which was 

slightly higher than the other two cases considered. Overall, the histogram based neural 

network performed well, except for the dark field and water classes. From Table 2.2, we 

can see the low producer’s accuracy for dark field and water classes for the ANN with 

histogram approach. Out of 50 dark field images, nine were classified as forest and five 

as water. Six water images were classified as dark field. This misclassification between 

two classes with pixel intensity in same range could be due to lack of spatial or textural 

information. Relatively lower user’s accuracy for forest (81%), dark field (83%) and 

water (85%) classes were observed.  

 

Spatial: 

The effect of various window sizes of the spatial matrix presented to the network was 

examined. The size of the window was limited to a maximum of 15x15 pixels, because 

the smallest images extracted were of the order of 15x15 pixels. The window sizes used 

were 1x1, 3x3, 5x5, 10x10, and 15x15 pixels. The ANN based on the 3x3 pixel window 

resulted in the highest overall accuracy of 66% (Table 2.3). These tests also showed that 

the overall performance of the network was reduced for window sizes larger than 3x3. 

However, the results of the individual classes varied considerably. The highest accuracy 

for forest (58%) and medium dark field (98%) was for a 5x5 pixel window and the 

highest for light field (100%) was for both 10x10 and 15x15 pixel windows. The city, 
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forest and dark field classes showed the worst performance. Fourteen city class images 

were classified as light field class, possibly due to the similar intensities and spatial 

distribution of the pixels for both (Table 2.4). Similarly, the forest and dark field classes 

also have similar intensities and spatial distribution, whereas different texture, which 

likely resulted in confusion. 

 

Textural parameters: 

A comparative study was conducted between various window sizes for the textural 

parameter approach. The two Haralick’s textural parameters (angular second moment and 

inverse difference moment), mean and standard deviation of pixel intensity were used. 

The window sizes that were analyzed included 3x3, 5x5, 10x10, and 15x15 pixels and the 

full image. The entire image had the best performance with an overall accuracy of 92% 

for the evaluation data set (Table 2.5). The dark field (80%) and water class (84%) still 

had a relatively low producer’s accuracy as compared to other classes (Table 2.6). Six 

dark field images were misclassified as forest and five water images were misclassified 

as the dark field class. 

Since the textural approach delivered the highest overall accuracy, another study was 

conducted in which different combinations of textural parameters, such as angular second 

moment and inverse difference moment, and mean and standard deviation of pixel 

intensity, from the entire image were compared. The network based on a combination of 

angular second moment and inverse difference moment yielded an overall accuracy of 

only 58% (Table 2.7). The performance of the network using a combination of angular 

second moment, inverse difference moment and mean of pixel intensities performed the 

best among these networks (89%). The network based on a combination of mean and 
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standard deviation of pixel intensities had an accuracy of 82%, whereas the network 

based on a combination of angular second moment, inverse difference moment and 

standard deviation of pixel intensities had an accuracy of 72%. The better performance 

using a combination of mean and standard deviation of pixel intensities can also be 

attributed to the fact that mean pixel intensity was used as one of the criteria for manually 

classifying some of the images. The network based on all four textural parameters from 

the entire image still provided the highest overall accuracy. 

 

Combinations of Histogram, Textural and Spatial information: 

After analyzing the three approaches individually, they were evaluated in 

combination. Previously it was shown that the best performance was obtained based on 

textural parameters. In the first combination, the textural approach and histogram 

approach were evaluated. The textural information was obtained from a full image and 

the histogram was based on 128 cells, because these showed the best performance 

individually in earlier tests. The ANN based on a combination of textural parameters and 

histogram approaches had an overall accuracy of 88% for the evaluation set (Table 2.8). 

This accuracy was less than the overall accuracy of the ANN using textural parameters 

only (92%). The performance of the combined ANN for the dark field class (54%) was 

lower than for the ANN based on textural parameters only (80%).  

In the second analysis, the performance of textural information in combination with 

spatial information was considered. The ANN was based on textural parameter for the 

entire image in combination with a 3x3 pixel window for spatial information. This ANN 

had an overall accuracy of 88% for the evaluation set, which again was less than the 

overall accuracy of the ANN that was based on textural parameter (92%) only. 

 18



 

In the third analysis, the performance of spatial information was tested in 

combination with histogram information. The ANN was based on a network using a 

combination of 128 cell histogram values and 3x3 window for spatial information. This 

ANN had an overall accuracy of 89% for the evaluation set. This again was less than the 

overall accuracy of the ANN that was based on textural parameters only from entire 

image (92%). 

In the final analysis, an ANN based on a combination of textural, spatial and 

histogram information was evaluated. The textural information was obtained from the full 

image, the spatial information was obtained from the central 3x3 window and the 128-

cells histogram was used. This ANN had an overall accuracy of 89% for the evaluation 

set, which was again less than the overall accuracy of the ANN that was based on textural 

parameters only. The producer’s accuracy for the dark field class was much less (66%) 

than the producer’s accuracy in the case of textural parameters alone, but the performance 

for the water class improved (92%). 

The ANN based solely on textural parameters had the highest overall accuracy of 

92% for the evaluation data set. It also had the smallest standard deviation (8%) for the 

producer’s accuracy. An overall accuracy of 92% for the classification of gray-scale 

images using ANNs for land-use is similar to previous observations by [19] and [29]. The 

better performance of textural approach for gray-scale images compared to other 

approaches also strengthens the results of previous studies based on textural approaches 

on gray-scale and multispectral images [14], [22], [28]. 
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2.4. Summary and conclusions 
 

Good results were obtained for an ANN-based classification methodology of aerial 

gray-scale images for six land-use classes. The highest overall accuracy of 92% was 

achieved based on the textural parameters for classification, compared to approaches 

based on histogram and spatial information. This study further established the importance 

of the use of textural parameters for the classification of remotely sensed images. Low 

producer’s and user’s accuracy of dark field and its misclassification into the forest class 

can be of concern for some users, but further analysis of higher resolution images could 

further improve the results. The misclassification of water into dark field class can 

possibly be solved with the analysis of multispectral images.  Multispectral image 

analysis may also provide better results for other classes. 
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COMPARISON OF THE PRODUCER’S A
NUMBER

 
Class 64 
City 96 
Forest 98 
Dark field 64 
Medium dark field 94 
Light field 98 
Water 84 
Overall accuracy (%) 89 

 
 

ERROR MATRIX FOR THE EVALUATION
HIST

 
Class City Forest 

City 50 0 
Forest 0 48 
Dark field 0 1 
Medium dark 
field 

0 0 

Light field 0 0 
Water 0 1 
Total 50 50 
Producer’s 
Accuracy (%) 

100 96 

User’s 
Accuracy (%) 

98 81 

a – Overall accuracy (%) 
 

 

 

TABLE 2.1  
CCURACY (%) FOR ANALYSIS BASED ON VARIOUS 

 OF HISTOGRAM CELLS 
HISTOGRAM CELL 
128 256 
100 98 
96 98 
70 68 
98 98 
98 96 
78 72 
90 88 
 D
O

D
f

0
9
3
1

0
5
5
7

8

TABLE 2.2 
ATA SET OF THE NEURAL NETWORK BASED ON THE 

GRAM APPROACH 
Reference Data 

ark 
ield 

Medium 
dark field 

Light 
field 

Water Total 

 0 1 0 51 
 0 0 2 59 
5 0 0 6 42 
 49 0 3 53 

 0 49 0 49 
 1 0 39 46 
0 50 50 50 300 
0 98 98 78 90  a

3 92 100 85  
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ERROR MATRIX FOR THE EVALUATION D
SPA

 
Class City Forest D

fie

City 28 0 0 
Forest 0 22 2 
Dark field 0 21 32
Medium dark 
field 

5 1 2 

Light field 14 0 0 
Water 1 6 14
Total 50 50 50
Producer’s 
Accuracy (%) 

56 44 64

User’s 
Accuracy (%) 

90 85 53

a – Overall accuracy (%) 
 

 

COMPARISON OF THE PRODUCER’S A
INFORMAT

 
Class 1x1 3x3 

City 36 56  
Forest 56 44 
Dark field 38 64 
Medium 
dark field 

96 68 

Light field 84 92 
Water 40 72 
Overall 
Accuracy 
(%) 

58 66 

 
 

TABLE 2.3 
CCURACY (%) FOR ANALYSIS BASED ON SPATIAL 

ION OF THE WINDOW 
Window Size 
5x5 10x10 15x15 

40  18 26 
58 44 2 
46 50 56 
98 96 76 

94 100 100 
46 48 72 
64 59 53 
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TABLE 2.4 
ATA SET OF THE NEURAL NETWORK BASED ON THE 

TIAL APPROACH 
Reference Data 

ark 
ld 

Medium 
dark field

Light 
field 

Water Total 

1 2 0 31 
0 0 0 26 

 0 0 7 60 
34 2 7 53 

1 46 0 61 
 14 0 36 71 
 50 50 50 300 
 68 92 72 66a 

 67 75 51  



 

 

TABLE 2.5 
COMPARISON OF THE PRODUCER’S ACCURACY (%) FOR ANALYSIS BASED ON THE 

TEXTURAL PARAMETERS OF THE WINDOW 
 Window Size 
Class 3x3 5x5 10x10 15x15 Entire 

image 
City 68 64 90 90 98 
Forest 88 94 94 88 92 
Dark field 50 42 56 62 80 
Medium dark 
field 

92 96 90 90 98 

Light field 94 96 96 96 98 
Water 60 58 60 78 84 
Overall 
Accuracy (%) 

75 75 81 84 92 

 
 

 

ERROR MATRIX FOR EVALUATION D
TEXT

 
Class City Forest D

fi

City 49 0 0
Forest 0 46 6
Dark field 0 4 4
Medium dark 
field 

0 0 1

Light field 1 0 0
Water 0 0 3
Total 50 50 5
Producer’s 
Accuracy (%) 

98 92 8

User’s 
Accuracy (%) 

96 87 8

a – Overall accuracy (%) 
 

TABLE 2.6 
ATA SET OF THE NEURAL NETWORK BASED ON 

URAL APPROACH 
Reference Data 

ark 
eld 

Medium 
dark field 

Light 
field 

Water Total 

 0 1 1 51 
 0 0 1 53 
0 0 0 5 49 
 49 0 1 51 

 0 49 0 50 
 1 0 42 46 
0 50 50 50 300 
0 98 98 84 92a 

2 96 98 91  
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COMPARISON OF THE PRODUCER’S AC
COMBINATIONS 

 
Class ASMa & IDMb Mean

City 68 94 
Forest 52 84 
Dark field 40 68 
Medium dark 
field 

26 84 

Light field 32 96 
Water 36 64 
Overall 
Accuracy (%) 

58 82 

a – Angular second moment 
b – Inverse difference moment 
c – Standard deviation 

T
COMPARISON OF THE PRODUCER’S ACC

COMBINATIONS OF THE HISTOGR
 
Class Histogram 

& Textural 
Textural 
Spatial 

City 100 98 
Forest 98 88 
Dark field 54 76 
Medium dark 
field 

96 96 

Light field 98 100 
Water 80 70 
Overall 
Accuracy (%) 

88 88 

Std. Dev.  18 12 
 
 

 

TABLE 2.7 
CURACY (%) FOR ANALYSIS BASED ON VARIOUS 

OF TEXTURAL PARAMETERS 
Combination 

 & SDc ASMa & IDMb 
& Mean 

ASMa & 
IDMb & SDc 

All 

90 94 98 
92 86 92 
78 54 80 
94 52 98 

98 72 98 
82 72 84 
89 72 92 
8

ABLE 2.8 
URACY (%) FOR ANALYSIS BASED ON VARIOUS 

AM TEXTURAL AND SPATIAL APPROACHES 
Combination 

& Histogram & 
Spatial 

Histogram, 
Textural & 
Spatial 

Textural 

98 96 98 
94 94 92 
64 66 80 
98 98 98 

98 98 98 
82 92 84 
89 89 92 

14 12 8 
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Fig. 1.1.  Examples of different land-use classes. (a) city, (b) forest, (c) light field, (d)
medium dark field, (e) dark field, (f) water. 
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Fig. 1.2.  Normalized histogram of intensities for each class. 
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CHAPTER 3 

LAND-USE CLASSIFICATION OF MULTISPECTRAL AERIAL IMAGES USING 

ARTIFICIAL NEURAL NETWORKS2 

 

                                                 
2 Ashish D., G. Hoogenboom, and R. W. McClendon. To be submitted to Computers 

and Electronics in Agriculture. 
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Abstract—During the past decade, there have been significant improvements in remote 

sensing technologies, which have provided high-resolution data at shorter time intervals. 

Considerable effort has been directed toward developing new classification strategies for 

analyzing this imagery. The goal of this study was to develop an Artificial Neural 

Network (ANN) based technique for the classification of multispectral aerial images for 

land-use in agricultural and environmental applications. The specific land-use classes 

included water, forest, and several different types of agricultural fields. Three approaches 

were used for the preparation of the inputs to the ANN. These included histograms of the 

pixel intensities, textural parameters extracted from the image, and matrices of the pixels 

for spatial information. A probabilistic neural network was employed. Seven hundred 

images were used for model development and 175 for independent model evaluation. The 

overall accuracy for the evaluation data set was 74% for the histogram approach, 71% for 

the spatial approach and 89% for the textural approach. The evaluation of ANNs based 

on various combinations of all three approaches did not show an improvement in 

accuracy. We also found that some approaches can be used selectively for certain classes. 

For example, the textural approach worked best for forest classes. For future studies, edge 

detection prior to classification with more careful selection of each class should be 

included for land use classification of multispectral images. 

 

Keywords: Aerial images, image classification, image processing, decision support 

systems. 
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3.1. Introduction 

 

Remote sensing and image classification 

Remote sensing technology is currently being used to obtain and interpret geo-spatial 

data employing different radiation spectra. This technology is applicable in developing 

information about features, objects, and classes for the earth's land surfaces, oceans, and 

atmosphere. With the recent advances in remote sensing, high-resolution data are 

available at shorter time intervals. For example, the Landsat 7 satellite operated by the 

United States Geological Survey (USGS) can provide remote sensing data in a 16-day 

repeat cycle from a panchromatic band with 15-meter spatial resolution (Short, 1999). 

The SPOT 5 satellite has up to a 2.5-meter ground resolution in panchromatic mode with 

a 26-day repeat cycle (Short, 1999). However, aerial images can achieve even higher 

resolutions, depending on the type of sensor that is being used. The cost of high-

resolution images has become comparatively low and images are more readily available 

due to advances in sensing techniques and commercialization of many of these 

technologies.  

Another major advancement in remote sensing has been in the field of imaging 

spectroscopy. Remote sensors that cover two thermal intervals corresponding to two 

atmospheric windows allow sensing of thermal emissions from land, water, ice and the 

atmosphere. These sensors have been flown on airplanes for several decades. Many of the 

meteorological satellites include at least one thermal channel along with other sensors. A 

thermal band has also been included on the Landsat Thematic Mapper. Radar systems are 

another class of satellite remote sensors that are currently operational in space. Radar 

normally provides a very different view of the same landscape compared to a visible 
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image because of its ability (for certain wavelengths) to penetrate clouds. Seasat, the 

Spaceborne Imaging Radar (SIR) series, and Radarsat are among the instruments used so 

far. The Multispectral Scanner (MSS) has been the most important sensor and was part of 

the first five Landsats. The Landsat MSS gathers radiation over spectral bandwidths that 

integrate radiation over relatively broad intervals (0.1 and 0.3 µm). Thus, instead of the 

spectral signatures that continuously measure spectral response in very narrow intervals, 

the MSS data when plotted produce histogram-like bars that are rough approximations of 

the signature curves. Hyperspectral imaging is a powerful and versatile means for 

continuous sampling of broad intervals of the spectrum. Hyperspectral imaging allows a 

sensor on a moving platform to gather reflected radiation from a ground target such that a 

special detector system can record up to 217 spectral channels (each approximately 10 

nanometers in width) simultaneously over the range from 0.38 to 2.5 mm. With such 

detail, the ability to detect and identify individual materials or classes greatly improves. 

Image classification is a key component of remote sensing (Baraldi and Parmiggiani, 

1990; Biscoff et al., 1992; Carmel and Kadmon 1998; Mukherjee 2002). Image 

classification is the process of creating thematic maps from satellite imagery. A thematic 

map is an informational representation of an image, which shows the spatial distribution 

of a particular theme. An example of themes could be vegetation types consisting of 

trees, crops, and grasslands. Finer sub-themes can also be defined inside a theme to make 

the process of classification more refined, such as classifying trees as deciduous or 

evergreen. Image classification relies on the spectral distinctness of classes or spectro-

temporal variability. It also depends on the context of classification. For example, two 

features with nearly identical spectral signatures for vegetation could be assigned to the 
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classes 'forest' and 'crops' depending on whether the area in the image has irregular or 

straight boundaries. Various studies reported a high accuracy in image classification 

(Ritter and Hepner, 1990; Chen et al., 1995; Du, 1996; Carmel and Kandmon, 1998; Tsai, 

2002). However, it is vital to extend techniques to further improve remote sensing image 

classification accuracy for deriving dependable land cover information for vegetation, 

land-use and other applications. 

Most land-use classes have a characteristic value for intensity, which is used in 

generating spectral classes from image classification. The spatial composition of these 

spectral classes within a certain spatial range can be useful information for image 

classification (Fung and Chan, 1994). Images can also be classified based on texture 

information from the image. Several parameters related to the texture recognition of an 

image were proposed by Haralick (1973). These include angular second moment, 

contrast, correlation, inverse difference moment, and entropy. Angular second moment is 

a measure of the homogeneity of the image. Contrast is a measure of the amount of local 

variation present in an image. Correlation is a measure of gray-tone linear-dependencies 

in the image. Inverse difference moment is a measure of the amount of local similarity. 

Entropy is a measure of the average uncertainty of gray tone co-occurrence in the image. 

Contrast, entropy, angular second moment and inverse difference moment have been 

widely used for image classification and image analysis. Jensen (1979) applied these 

Haralick’s measures to Landsat images for land cover classification and achieved up to 

80% accuracy. Marceau et al. (1990) used the same Haralick’s textural parameters for 

land-cover classification of nine land-cover types in SPOT imagery and achieved up to 

100% accuracy for some land-cover types. Kondo et al. (2000) used the Haralick’s 
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parameters for evaluating sugar and acid content of Iyokan orange fruit based on a 

machine vision system. Singh and Singh (2001) compared several texture methods for 

image analysis. The performance evaluation was based on the ability of a classifier to 

recognize unseen samples of the four classes on the basis of training data. The best 

overall result using nearest neighbour methods was obtained with Haralick’s parameters 

based on co-occurrence matrices. 

 

Artificial neural networks and image classification 

Artificial neural networks (ANNs) are computational mathematical models that 

emulate some of the observed properties of biological neural systems and draw on the 

analogies of adaptive biological learning. An ANN is composed of a number of 

interconnected processing elements that are similar to neurons. These processing 

elements are joined by weighted connections that are analogous to synapses in the human 

brain. Supervised learning in an ANN typically occurs by example through training or 

exposure to a known set of input and corresponding output data. The training algorithm 

adjusts the connection weights through an iterative procedure in which the error is 

minimized. The superiority of ANNs to some of the classical statistical methods in 

various problems, including classification problems, has been shown in previous studies 

(Bischof et al., 1990; Paola and Schowengerdt, 1995; Blackard and Dean, 1999; 

Giraudel, 2001). ANNs are commonly used for segmentation and classification purposes 

and are recommended for problems where data diversity is large (Lee et al., 1990; 

Warner and Shank, 1997; Moshou, 2001). 
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The viability of land-use classification of remotely sensed image areas with ANNs was 

established by Benediktsson et al. (1990). Subsequent studies that examined the neural 

network classifier method in more detail also compared it to standard statistical 

classification techniques (Paola and Schowengerdt, 1995; Luo et al., 1999; Zhang, 2001). 

These studies presented several classification approaches that are based on ANNs, such 

as the pixel-by-pixel or per-pixel method (Salu and Tilton, 1993). The pixel-by-pixel 

method deals with classification of pixels. The classification aims at attributing each 

pixel to its correct land cover category. The dimensions of pixels are usually related to 

the field of view of the sensor that obtained the image, and the sampling rate of the 

analogue-to-digital converter used to translate the signal received at the detector. It is 

hypothesized that the statistical characteristics of a group of pixels can be used to define a 

decision rule for discrimination between the cover type of that pixel and all others. 

However, this approach faces several difficulties due to the interaction between light and 

the components of atmosphere and due to the geometry of the imaging system (Mather, 

1990). The per pixel method is also not appropriate for classification of high-resolution 

images because the spatial variability of surface features increases with the increase in 

spatial resolution (Marceau et al., 1990). Higher variability diminishes classification 

accuracies (Irons et al., 1985).  

There have been several new approaches to classification, such as the contextual 

classification scheme and methods based on fuzzy sets or their combinations, which have 

had better success than the more common methods. Contextual classifiers increase the 

dimensionality of data with additional bands in which contextual information is present in 

some way or assume the existence of local properties defined on a neighborhood where 
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the spatial dependence is relevant. The fuzzy approach, proposed by Wang (1990), allows 

for multiple and partial classification of mixed pixels. This approach gives more 

information on the relative strengths of class membership at the pixel level. Gong and 

Howarth (1992) found that the contextual classification for land-use classification of 

SPOT HRV data was better than the conventional maximum likelihood classification 

method. Cortijo and De la Blanca (1998) achieved 91% accuracy with contextual 

classification. Papin (2002) demonstrated the accuracy and efficiency of the contextual 

approach. Gopal and Woodcock (1994) successfully used fuzzy sets for accuracy 

assessment of thematic maps. Zhang and Foody (2001) used fully-fuzzy supervised 

classification to determine land cover based on images obtained with Landsat Thematic 

Mapper and obtained better results than partially-fuzzy classification.  

Ashish (2002) developed an ANN based technique for the classification of gray-scale 

aerial images into various types of land-use classes including city, water, forest and 

various types of agricultural field areas. Gray-scale aerial images with a 6.5-meter 

resolution for nine counties were obtained. Three approaches were used for the 

preparation of the inputs to the ANN, including histograms of the pixel intensities, 

textural parameters extracted from the image, and matrices of pixels for spatial 

information. A probabilistic neural network was used in that study. The best ANN was 

based on textural parameters and achieved an overall accuracy of 92% for the evaluation 

data set.  

The goal of this study was to enhance the scope of the technique developed by Ashish 

(2002) and to evaluate it for multispectral aerial images for improving agricultural 

production decision support and policymaking. Specific objectives included the 
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comparison of different preprocessing approaches using artificial neural networks for the 

classification of multispectral image for agricultural and environmental land use.  

 

3.2. Materials and methods 
 

Multispectral aerial images at a 1-meter resolution were obtained from the Georgia 

Geographic Information Systems (GIS) Data Clearinghouse. We used images from the 

Luthersville quadrangle, located in Meriwether County, Georgia, and from the 

Sharpsburg quadrangle, located in Coweta County, Georgia. These high-resolution 

multispectral aerial images were taken in January 1999 and they have been georeferenced 

and geocorrected. They are commonly known as Digital Orthophotography Quarter-

Quadrangles (DOQQs) and the 1999 DOQQs are scanned images of color-infrared aerial 

photographs. The film that was used for the color-infrared aerial photographs detects 

several bands of visible light including green, red and near-infrared radiation reflected by 

healthy vegetation, e.g. chlorophyll in plants. Lush green areas appear red on this 

imagery and are commonly known as a false color composite image. 

We manually selected small subareas of known classes, referred to as “images” herein, 

from the DOQQs using the software Paintshop Pro (version 6.00). Due to the selection 

process, images had different sizes. These images were visually separated into seven 

different classes, including pine forest, hardwood forest, dark agricultural field, medium 

dark agricultural field, light field with no crop, fallow and water. One hundred twenty 

five images were obtained for each class making a total of 875 images. Out of the 125 

images from each class, 100 were used for model development. The remaining 25 images 

were kept separately and used as an independent data set for final model evaluation to 

 39



 

determine the overall accuracy of the ANN model. In the model development dataset 80 

images were used for training and 20 images for testing. The training set consisted of 

patterns used to adjust the weights to minimize the error and the test set was used 

periodically in a feed-forward mode only to determine when to stop training to avoid 

overfitting. Once the training was completed, the evaluation set was used to assess the 

accuracy of the model. 

The pine and hardwood forest classes are easily distinguishable from each other 

because the aerial imagery was obtained in January. Hardwood trees do not have any 

leaves in winter, as all leaves are abscised during the fall, while pine trees keep their 

needles during the winter. Therefore, the image from a pine forest has a higher infrared 

content than an image from a hardwood forest. The fallow field areas consisted of fields 

that contained stubble from the previous crop. The dark field class consisted of images of 

lush vegetation areas, whereas the medium dark field class consisted of images of 

relatively less vegetation areas. The light field class consisted of images of uncropped 

areas. The water class images were obtained from ponds and lakes in the vicinity of 

fields. 

In the first approach for preparing data for input to the ANN, three histograms of pixel 

intensities were created from the collection of red, green and blue pixel values of the 

image. They were then normalized based on the number of pixels from the entire image 

to allow a comparison of images of different sizes. Various cell widths were also 

considered to determine the effect on accuracy. For the second approach, the spatial 

information of an image was extracted from the central part of the image. This spatial 

information corresponded to the intensity of the red, green and blue pixels in the specific 
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spatial order to preserve their relative location in the grid. The central portion of the 

image used for extracting preprocessed information is termed as “window” herein. The 

window sizes used for the spatial approach were 1x1, 3x3, 5x5, 11x11, and 15x15 pixels. 

In the third approach, textural parameters were calculated from pixel data of either the 

entire image or the “window” of the image according to the different techniques proposed 

by Haralick (1973). Three sets of the textural parameters were calculated based on the 

red, green and blue pixels. The textural parameters used in this study were angular second 

moment (ASM), inverse difference moment (IDM), contrast and entropy. 
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where p(i,j) is a value in co-occurrence matrix which represents the number of times 

pixel a has a value i and pixel b has value j when pixel a is a neighbor of pixel b, a and b 

varying over the entire image. These are the most frequently used parameters (Carlson, 

1995; Singh et al., 2000, Franklin, 2001) and found to have the best performance among 

textural parameters (Conners and Harlow, 1980; Du Buf et al. 1990; Singh and Singh, 

2001). In addition, the mean and standard deviation (SD) of pixel intensities were also 

used with Haralick’s textural parameters. The window sizes that were analyzed included 

3x3, 5x5, 7x7, 11x11, 15x15, 17x17, 19x19 and 21x21 pixels and the entire image. The 
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size of the window was limited to a maximum of 21x21 pixels because of the size of the 

images that were extracted. 

After preprocessing, the data were presented to an ANN for training. The software 

Neuroshell 2 (release 3, Ward System Group Inc.) was used in this study. In preliminary 

tests, the Probabilistic Neural Network (PNN) (Specht, 1990) was found to have a higher 

accuracy than the standard back propagation algorithm and was therefore used for all 

subsequent model development. In a PNN, the number of hidden layer neurons is equal to 

the number of patterns in the training set and the output layer has the same number of 

neurons as the number of classes. The PNN output for each node generally corresponds 

to the probability that the pattern should be considered in that class. A Gaussian 

activation function is used for the output nodes.  

The best ANN was selected based on the highest overall accuracy of the evaluation 

data set. Overall accuracy is a function of the performance of the ANN on the combined 

classes, which was calculated from the error matrix of the classification results (Story and 

Congalton, 1986). Overall accuracy is the ratio of the sum of correctly classified patterns 

of all classes over the total number of patterns presented to the ANN. The error matrix 

can also provide information about the producer’s and user’s accuracy. The producer’s 

accuracy is the ratio of the number of correctly classified patterns of a class over the total 

number of patterns of that class presented to the network. The user’s accuracy is the ratio 

of number of correctly classified patterns into a class over the total number of patterns 

classified as being in that class. 

Using the same data sets, each of the three approaches for preparing input data was 

considered individually. In the textural approach, there were four different parameters per 
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spectrum used as input for textural information. A separate study was conducted to 

determine if the same level of accuracy could be attained if one or more of the inputs 

were eliminated. After testing all three approaches individually, a study was conducted 

considering various combinations of approaches in order to determine if the accuracy 

could be further improved. 

 

3.3. Results and discussion 
 

Histogram 

A comparative study was conducted for the ANN development based on inputs of 

histograms of 32, 64, 128 and 256-cells (Table 3.1). The overall accuracy of 32-cells 

histogram was 71%.  The 64-cell network had an overall accuracy of 74%, which was 

highest among all the cases considered. The overall accuracy of 128-cells histogram was 

72% and overall accuracy of 256-cells histogram was 73%. The fallow class had the 

lowest producer’s accuracy (32%) for all histograms. The producer’s accuracy of the dark 

field and the medium dark field classes decreased with an increasing number of 

histogram cells past the 64-cell histogram. For the 64-cell histogram, 17 of the 25 images 

of the fallow class were misclassified into the hardwood forest class (Table 3.2). The 

water class also showed a low producer’s accuracy (48%). This could be attributed to the 

high variation in the color of water images, including light and dark blue, green and even 

images that were somewhat reddish in color. Misclassification of field classes, including 

dark, medium dark and light field, was only among other field classes. The classification 

of the pine and hardwood forest classes was most accurate, with a 100% producer’s 

accuracy. The comparison of the user’s accuracy for the evaluation data set showed that 
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the fallow class had the lowest user’s accuracy (57%) with only eight out of 14 images 

correctly classified as fallow, while six water images were misclassified as fallow. The 

hardwood forest class also had a low user’s accuracy (60%) due to misclassification of 17 

fallow images as hardwood forest image. The dark field and medium dark field classes 

had low user’s accuracy (60% and 64%, respectively) mainly due to misclassification of 

images of one field class into other field classes. The pine forest and the water classes 

had the highest user’s accuracies (100%), followed by the light field class (96%) (Table 

3.2). 

 

Spatial 

The effect of various window sizes of the spatial matrix presented to the network was 

examined. The ANNs based on the 5x5, 7x7 and 11x11 pixel window resulted in the 

highest overall accuracy of 71% (Table 3.3). The ANNs classified 124 patterns out of a 

total of 175 patterns correctly. The 5x5 and 7x7 window size performed the best (76%) 

for the dark field class. The 7x7 and 11x11 window sizes performed the best (100%) for 

the medium dark field class and the 5x5 and 11x11 window sizes performed the best for 

light field (76%) and water (72%) classes. Overall, based on the individual classification 

categories, the 5x5 window size had the best performance, as the producer’s accuracy for 

five, i.e. dark field, light field, pine forest, hardwood forest and water, out of seven 

classes was the best among the three window sizes (5x5, 7x7, and 11x11). The two 

classes for which the 5x5 window size performed less than the best window size (11x11 

window) were the medium dark field and the fallow classes. In case of the 7x7 window 

network, the producer’s accuracy for two, i.e. dark field and medium dark field, out of 
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seven classes was the best. In case of the 11x11 window network the producer’s accuracy 

for four, i.e. medium dark field, light field, fallow and water, out of seven classes was the 

best. The standard deviation of the producer’s accuracies for different classes for the 5x5 

window network ANN was the smallest (18%), which further shows the consistently 

good performance of the 5x5 window size ANN. The images of fallow and hardwood 

forest classes were misclassified among each other. Eleven fallow images were 

misclassified as hardwood forest and 11 hardwood forest images were misclassified as 

fallow (Table 3.4). This was one of the reasons that fallow and hardwood forest classes 

had the smallest producer’s accuracies, i.e. 48% and 44%, respectively, and the smallest 

user’s accuracies, i.e. 40% and 50%, respectively. Seven of the water images were also 

misclassified as fallow. Similar to the histogram approach, the misclassification of field 

classes, including dark, medium dark and light field, was only into other field classes. 

Three of the pine forest images were also misclassified as field images: two as dark field 

and one as medium dark field. Two hardwood forest images were misclassified as light 

field. The cause for misclassification of forest areas, including pine and hardwood forests 

into field areas, could be due to less spatial variation in the central window of these 

images compared to other classes. 

 

Textural 

The overall accuracy of the ANNs based on the six textural parameters for the window 

sizes 3x3 to 21x21 ranged from 72% to 89% (Table 3.5). The six textural parameters for 

the 21x21 window performed best among all window sizes for the textural approach. The 

overall accuracy for the six textural parameters of the 21x21 window ANN was 89%. The 
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overall accuracy for the entire image was 79%. The performance of the 21x21 window 

network for classes with more evident texture, including fallow, pine forest and 

hardwood forest was good, with producer’s accuracies of 80%, 100% and 100%, 

respectively. The ANNs based on textural parameters for field classes, including dark, 

medium dark, and light field performed slightly lower with producer’s accuracies of 88%, 

84%, and 88%, respectively (Table 3.6). This lower performance may be attributed to the 

lack of significant texture in these images. For example, the average value of inverse 

difference moment of red pixels for dark field class was 0.09, whereas that for pine forest 

was 0.03 (Table 3.7). Inverse difference moment is the measure of local similarity. The 

higher value of inverse difference moment shows more similarity of pixels and less 

significant texture. 

When one or more of the textural parameters were eliminated, the overall accuracy of 

the 21x21 window ANN was reduced (Table 3.8). This indicated that all textural 

parameters were important as input parameters for the classification process. The ANN 

based on the combination of five parameters, excluding standard deviation of pixel 

intensities, had an overall accuracy of 86%. The ANN based on the combination of five 

parameters, excluding the mean of pixel intensities, had an overall accuracy of 79%. The 

overall accuracy of the ANN based on the combinations of five parameters was 76% 

when contrast was excluded and 79% when entropy was excluded. The ANN based on a 

combination of four Haralick’s parameters, by excluding the mean and standard deviation 

of pixel intensities, had an overall accuracy of 80%. The combination of four parameters, 

including ASM, IDM, mean and standard deviation of pixel intensities, had overall 
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accuracy of 83%. Therefore, the best overall accuracy was for the ANN including all six 

textural parameters for each of the three spectra.  

 

Combinations of Histogram, Spatial and Textural information 

The overall accuracy of the ANN based on the textural approach did not improve by 

using ANNs based on combinations of histogram, spatial and textural information (Table 

3.9). In these tests, the ANN with the combination of histogram, textural and spatial data 

had an overall accuracy of 71% and the standard deviation of the producer's accuracies 

was 21%. The ANN based on the combination of histogram and spatial approach had an 

overall accuracy of 69% and the standard deviation of the producer's accuracies was 25%. 

The ANN based on the combination of histogram and textural approach had an accuracy 

of 74% and the standard deviation of the producer's accuracies was 26%. The ANN based 

on the combination of textural and spatial approach performed the best when considering 

the various combinations of ANNs (79%). The standard deviation of the producer's 

accuracies was also the smallest for the ANN based on textural and spatial approach 

(9%), which indicated that the results were more consistent. 

The ANN based solely on textural parameters had the highest overall accuracy of 89% 

for the evaluation data set. It also had the smallest standard deviation (8%) for the 

producer’s accuracy. An overall accuracy of 89% for the classification of multispectral 

images using ANNs for land-use was similar to previous observations (Yoshida and 

Omatu, 1994; Paola and Schowengerdt, 1995). The improved performance of the textural 

approach compared to other approaches in our study on multispectral images is also 

consistent with the results of previous studies based on textural approaches on gray-scale 
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and multispectral images. (Weszka et al., 1976; Marceau et al., 1990; Singh and Singh, 

2001). 

The output of each of the seven nodes of the PNN was averaged over the 25 patterns in 

the evaluation dataset. These values are shown in Table 3.10. When the average value for 

another node was 0.02 or greater, it is also shown under misclassification. This gives an 

indication when the PNN is uncertain of the correct classification. A plot of producer’s 

accuracy versus average network output for the 25 patterns in the evaluation dataset is 

shown in Figure 3.1. The coordinate values of each data point are shown in parenthesis 

by each plotted point.  The PNN output thus provides an indication of the certainty of the 

classification of an image. 

 

3.4. Summary and conclusions 
 

In this study, three different approaches to preparing inputs to ANNs for image 

classification based on ANNs were evaluated. All three approaches were tested useing a 

range of window sizes. Good results were obtained using textural parameters for an 

ANN-based classification methodology of aerial multispectral images for seven land-use 

classes, including water, forest, and several different types of agricultural fields. The best 

ANN from each approach was also used in combination to test the performance for image 

classification. The results showed that the textural approach using Haralick’s parameters 

based on co-occurrence matrix and mean and standard deviation of pixel intensities had 

the highest accuracy. The overall accuracy did not improve by using ANNs based on 

combinations of histogram, spatial and textural information. It was also found that larger 

window sizes for textural parameters helped in improving the results. The best results 
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were obtained using 21x21 window size for textural parameters. The highest overall 

accuracy of 89% was achieved for an ANN based on the textural parameters for 

classification, compared to approaches based on histogram and spatial information. This 

study further established the importance of the use of textural parameters for the 

classification of remotely sensed images. The misclassification of field areas and water 

into one another can possibly be solved with the help of a histogram analysis, as the 

histogram approach showed good results for these three classes.  Edge detection prior to 

classification can help automate the process of image selection. 
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COMPARISON OF THE PRODUCER’S ACCU
OF HI

 
 32 
Class  
Dark field 40 
Medium dark field 84 
Light field 80 
Fallow 32 
Pine forest 100 
Hardwood forest 100 
Water 60 
Overall accuracy 71 
Standard Deviation 28 

 
 

ERROR MATRIX FOR THE EVALUATION D
64-CELLS H

 
 Dark 

field 
Medium 
dark 
field 

Ligh
field 

Dark field 15 4 0 
Medium dark 
field 

10 21 2 

Light field  0 0 23 
Fallow 0 0 0 
Pine forest 0 0 0 
Hardwood 
forest 

0 0 0 

Water 0 0 0 
Total 25 25 25 
Producer’s 
accuracy (%) 

60 84 92 

User’s 
accuracy (%) 

60 64 96 

a – Overall accuracy (%) 
 

 

TABLE 3.2 
ATA SET OF THE NEURAL NETWORK BASED ON THE 
ISTOGRAM APPROACH 

Reference Data 
t Fallow Pine 

forest 
Hardwood 
forest 

Water Total

0 0 0 6 25 
0 0 0 0 33 

0 0 0 1 24 
8 0 0 6 14 
0 25 0 0 25 
17 0 25 0 42 

0 0 0 12 12 
25 25 25 25 175 
32 100 100 48 74a 

57 100 60 100  
TABLE 3.1 
RACY (%) FOR ANALYSIS BASED ON THE NUMBER 

STOGRAM CELLS 

Histogram cells 
64 128 256 
   
60 52 48 
84 80 76 
92 96 96 
32 32 32 
100 100 100 
100 100 100 
48 44 60 
74 72 73 
27 29 27 
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TABLE 3.4 
ERROR MATRIX FOR THE EVALUATION DATA SET OF THE NEURAL NETWORK BASED ON THE 

5X5 WINDOW SIZE SPATIAL APPROACH 

 Reference Data 
 Dark 

field 
Medium 
dark 
field 

Light 
field 

Fallow Pine 
forest 

Hardwood 
forest 

Water Total

Dark field 19 2 0 0 2 0 0 23 
Medium dark 
field 

5 23 6 0 1 0 0 35 

Light field 1 0 19 1 0 2 0 23 
Fallow 0 0 0 12 0 11 7 30 
Pine forest 0 0 0 0 22 0 0 22 
Hardwood 
forest 

0 0 0 11 0 11 0 22 

Water 0 0 0 1 0 1 18 20 
Total 25 25 25 25 25 25 25 175 
Producer’s 
Accuracy (%) 

76 92 76 48 88 44 72 71a 

User’s 
Accuracy (%) 

83 66 83 40 100 50 90  

a – Overall accuracy (%) 
 

TABLE 3.3 
COMPARISON OF THE PRODUCER’S ACCURACY (%) FOR ANALYSIS BASED ON SPATIAL 

INFORMATION OF DIFFERENT WINDOW SIZES 

 Window Size 
Class 1x1 3x3 5x5 7x7 11x11 15x15 
Dark field 72 80 76 76 68 76 
Medium dark field 84 63 92 100 100 100 
Light field  80 83 76 64 76 88 
Fallow 48 47 48 76 84 76 
Pine forest 92 92 88 84 76 40 
Hardwood forest 60 45 44 28 20 4 
Water 40 100 72 68 72 72 
Overall accuracy 68 70 71 71 71 65 
Standard Deviation 19 22 18 22 25 33 

 
 



TABLE 3.5 
COMPARISON OF THE PRODUCER’S ACCURACY (%) FOR ANALYSIS BASED ON TEXTURAL 

PARAMETERS OF DIFFERENT WINDOW SIZES 

 Window Size 
Class 3x3 5x5 7x7 11x11 15x15 17x17 19x19 21x21 Entire 

image
Dark field 72 64 48 52 76 84 80 88 56 
Medium 
dark field 

96 96 96 96 84 84 76 84 72 

Light field 64 64 76 60 96 92 92 88 36 
Fallow 52 44 76 52 64 64 64 80 88 
Pine forest 100 100 100 100 100 100 100 100 100 
Hardwood 
forest 

60 76 76 88 92 100 96 100 100 

Water 60 68 92 100 88 84 80 80 100 
Overall 
accuracy 

72 73 81 78 86 87 84 89 79 

Standard 
Deviation 

19 20 18 23 12 12 13 8 25 

 

TABLE 3.6 
ERROR MATRIX FOR THE EVALUATION DATA SET OF THE NEURAL NETWORK BASED ON THE 

21X21 WINDOW TEXTURAL APPROACH 

 Reference Data 
 Dark 

field 
Medium 
dark 
field 

Light 
field 

Fallow Pine 
forest 

Hardwood 
forest 

Water Total

Dark field 22 4 0 0 0 0 0 26 
Medium dark 
field 

3 21 3 0 0 0 0 27 

Light field 0 0 22 0 0 0 5 27 
Fallow 0 0 0 20 0 0 0 20 
Pine forest 0 0 0 0 25 0 0 25 
Hardwood 
forest 

0 0 0 5 0 25 0 30 

Water 0 0 0 0 0 0 20 20 
Total 25 25 25 25 25 25 25 175 
Producer’s 
Accuracy (%) 

88 84 88 80 100 100 80 89a 

User’s 
Accuracy (%) 

85 78 82 100 100 83 100  

a – Overall accuracy (%) 
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TABLE 3.8 
COMPARISON OF THE PRODUCER’S ACCURACY (%) FOR ANALYSIS BASED ON VARIOUS 

COMBINATIONS OF TEXTURAL PARAMETERS 

 Combination 
Class ASMa, 

IDMb, 
Contrc, 
Entrd, 

Mean & 
SDe 

ASM, 
IDM, 
Contr, 
Entr & 

SD 

ASM, 
IDM, 
Contr, 
Entr & 
Mean  

ASM, 
IDM, 

Contr & 
Entr 

ASM, 
IDM, 
Contr, 

Mean & 
SD 

ASM, 
IDM, 
Entr, 

Mean & 
SD 

ASM,
IDM, 
 Mean 

& 
SD 

Dark field 88 80 88 80 64 72 76 
Medium 
dark field 

84 80 76 80 76 80 88 

Light field  88 88 84 92 88 80 88 
Fallow 80 28 80 28 52 36 60 
Pine forest 100 100 100 100 100 100 100 
Hardwood 
forest 

100 100 100 100 100 92 100 

Water 80 80 76 84 72 72 72 
Overall 
accuracy 

89 79 86 80 79 76 83 

a – Angular second moment 
b – Inverse difference moment 
c – Contrast 
d – Entropy 
e – Standard deviation 
 
 

TABLE 3.7 
COMPARISON OF THE AVERAGE VALUES OF INVERSE DIFFERENCE MOMENT FOR RED, GREED 

AND BLUE PIXELS FOR VARIOUS CLASSES 

 Combination 
Class Red Green Blue 

Dark field 0.09 0.10 0.08 
Medium dark field 0.06 0.07 0.05 
Light field  0.06 0.06 0.05 
Fallow 0.04 0.03 0.02 
Pine forest 0.03 0.04 0.02 
Hardwood forest 0.03 0.03 0.02 
Water 0.24 0.12 0.08 

 
 



 

TABLE 3.9 
COMPARISON OF THE PRODUCER’S ACCURACY (%) FOR ANALYSIS BASED ON VARIOUS 

COMBINATIONS OF THE HISTOGRAM, TEXTURAL AND SPATIAL APPROACHES 

 Combination 
Class Histogram & 

Textural 
Textural & 
Spatial 

Histogram & 
Spatial 

Histogram, 
Textural & 
Spatial 

Dark field 52 48 76 52 
Medium dark 
field 

80 76 80 84 

Light field  80 92 60 80 
Fallow 40 32 84 36 
Pine forest 96 100 88 100 
Hardwood forest 92 100 84 88 
Water 60 68 80 40 
Overall accuracy 71 74 79 69 

Standard 
Deviation 

21 26 9 25 

TABLE 3.10 
AVERAGE NETWORK OUTPUT FROM A PNN FOR THE 25 PATTERNS FROM EACH CLASS IN 

THE EVALUATION DATASET FOR TEXTURAL PARAMETER APPROACH 

Class Average network 
output 

Misclassification Average network 
output * 

Dark field 0.86 Medium dark field 0.14 
Medium dark field 0.79 Dark field 0.19 
Light field  0.81 Medium dark field 0.18 
Fallow 0.71 Hardwood forest 0.29 
Pine forest 1.00 - - 
Hardwood forest 0.99 - - 
Water 0.82 Light field 0.18 

 
* average network outputs less than 0.02 were neglected 
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Fig. 3.1.  Average network output for the seven classes on the evaluation data set versus
Producer's accuracy for textural approach (coordinates of each point are in paranthesis). 
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CHAPTER 4 

SUMMARY AND FUTURE WORK 

 

In this study, three different approaches to preparing inputs to ANNs for image 

classification based on ANNs were evaluated on gray-scale and multispectral aerial 

images. These included histograms of the pixel intensities, textural parameters extracted 

from the image, and matrices of the pixels for spatial information. All three approaches 

were tested based on window sizes. Good results were obtained using the ANN based 

solely on textural parameters. Textural parameters had the highest overall accuracy of the 

three approaches for the evaluation data set of gray-scale (92%) and multispectral (89%) 

images, compared to approaches based on histogram and spatial information. The overall 

accuracy did not improve by using ANNs based on combinations of histogram, spatial 

and textural information. Textural parameters also had the smallest standard deviation for 

the producer’s accuracy in both gray-scale and multispectral imagery, which further 

shows consistently good performance by the textural approach. The accuracy for the 

classification of multispectral images using ANNs for land-use was comparable to 

previous observations (Yoshida and Omatu, 1994; Paola and Schowengerdt, 1995). The 

better performance of the textural approach for multispectral images compared to other 

approaches is consistent with the results of previous studies based using gray-scale and 

multispectral images (Weszka et al., 1976; Marceau et al., 1990; Singh and Singh, 2001).   
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The most frequent misclassification in multispectral images was of field areas and 

water into one another. This can possibly be solved by selectively using histogram 

approach for them, as the histogram approach showed high accuracy for these classes.  

Certain classes perform better by using some approach selectively, for example, the 

textural approach worked the best for forest classes. Edge detection prior to classification 

can help automate the process of image selection and GUI can facilitate the system’s use. 
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