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Several AI techniques are applied in two scientific task domains. Genetic Programming 

(GP) is used to evolve a set of functions to approximate the static dielectric constant of water and 

several different binary classification algorithms are compared in their ability to distinguish 

translation start sites on two different prokaryotic genomes. GP performs very well as compared 

with standard statistical approaches to approximating the dielectric constant, and is a very 

powerful new tool that can be used for regression analysis in this and related domains. 

Translation start site prediction remains an open problem in bioinformatics, and several 

computational models for translation start site prediction have been created before. Support 

vector machines, decision trees, naïve bayes, artificial neural networks, and XCS are all 

compared in their ability to locate translation start sites. XCS has never been used for this task 

and performs as well as the other aforementioned techniques, making the technique a viable new 

candidate for generating predictive models for this and other computational biological problems.    
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

 The current thesis serves three purposes. Firstly, it aims to apply several artificial 

intelligence techniques to two computationally complex scientific modeling problems: 

approximating the static dielectric constant of water and steam and predicting translation start sites 

on prokaryotic genomes. Secondly, the study aims to compare these techniques’ abilities to generate 

accurate, robust models of the phenomena they were developed to predict or approximate. Two of 

the techniques described in this study (genetic programming and learning classifier systems) have 

never been used in either of the scientific domains explored. The models generated with these 

techniques should be of interest to researchers looking for new computational methods to help 

tackle similar scientific problems. The final purpose of this study is to create accurate, useable 

models of the phenomena studied, so that other researchers may incorporate them into their own 

research. 

 This thesis is the culmination of research begun as term projects for two courses offered 

through the Artificial Intelligence Center: Computational Intelligence and Evolutionary 

Computation. These term projects were initiated as a result of my interests in the application of AI 

techniques in novel ways to difficult scientific problems. The first project involved using genetic 

programming to evolve a function to approximate the relative permittivity (or static dielectric 

constant) of water and steam. Briefly, the relative permittivity of a substance is a measure of the 

ability of that substance to permit the existence of an electric field given certain thermodynamic 

conditions (notably the temperature and pressure of the substance). This property of a substance is 
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essential for understanding its electrochemical behavior in a variety of settings. In the case of water, 

approximating the static dielectric constant is essential for understanding its behavior in 

biochemical, geophysical, and industrial processes. As a result, creating a function that accurately 

approximates the static dielectric constant of water across a wide range of temperatures and 

pressures has been an open problem for researchers in physical chemistry for the past five decades. 

This problem has traditionally been approached by wedding statistical regression techniques to a 

variety of theoretical considerations that constrain the overall form that the function for 

approximating the dielectric constant may assume. In the first part of this thesis, comprised of the 

first three papers, a different approach is taken; instead of constraining the form of the function 

through theoretical and statistical means, a function for predicting the dielectric constant is evolved 

using genetic programming, a computationally intensive artificial intelligence algorithm that 

constrains the form of the final function based on how well the function fits the data that the 

algorithm is initially given. This approach to approximating the dielectric constant has never been 

taken, and the following results should show that genetic programming is an incredibly powerful 

and versatile technique that can be used to tackle similar approximation and regression problems. 

 In the latter part of this thesis, initiated as a second term project and comprised of the final 

paper, a slew of different artificial intelligence techniques are applied to the problem of developing 

a model for predicting translation start sites on prokaryotic genomes. Translation is one of several 

stages in gene expression and protein biosynthesis and involves the decoding of a given mRNA 

sequence into a sequence of amino acids (known as a polypeptide). Although translation 

termination is unambiguously coded for in a given mRNA sequence, translation start sites cannot be 

unambiguously identified in a simple manner. Furthermore, manual curation techniques, although 

able to unambiguously pinpoint the translation start site for a specific mRNA strand are time 

consuming and expensive. As a result, a computational model that accurately predicts translation 
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start sites would be a very useful tool for researchers in computational biology. For this part of the 

thesis, an extensive preprocessing phase occurred, where transcription start site data was compiled 

for two different bacterial species. Following this, datasets were ready to be used to construct 

predictive models. However, following the initial phase of compiling useable datasets, the 

dimensionality of the data relative to the number of positive examples in the datasets was 

prohibitively high. As a result, the dimensionality of both datasets was significantly reduced and the 

quality of the models being constructed saw concomitant improvement.   

 The techniques that are compared here (support vector machines, decision trees, naïve 

bayes, artificial neural networks, and XCS) have all been used to predict translation start sites 

before, except for learning classifier systems, which is applied to this domain here for the first time. 

Learning classifier systems is a robust technique that attempts to evolve a collection of rules to 

solve a given problem. The final collection of rules that comprise the model for the task at hand can 

then be used and understood fairly easily by researchers. This approach would be especially useful 

for bioinformatics researchers as creating human-readable rules and models out of data with very 

high dimensionality is proving to be quite a challenge in computational biology.             

 The models generated with these techniques will be shown to be robust, accurate, and 

capable of generalizing well to unseen data. Furthermore, the techniques that are used here for the 

first time will be shown to perform comparably to other techniques typically used in both domains. 

The research that is described in this work will allow future researchers to understand effective and 

appropriate ways in which problems belonging to these and similar task domains may be 

approached, represented, and modeled from an artificial evolutionary and heuristic-driven 

computational perspective. Finally, the models developed in this work may be used on their own. 
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CHAPTER 2 

A GP-EVOLVED FORMULATION FOR THE RELATIVE PERMITTIVITY OF WATER AND 

STEAM1

                                                 
1 S.V. Fogelson and W.D. Potter. 2007. To appear in Proceedings of the International Conference on Genetic and 

Evolutionary Methods, GEM ‘07. Reprinted here with permission of the publisher, 6/18/2007. 
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ABSTRACT 

 The relative permittivity (or static dielectric constant) of water and steam has been 

experimentally calculated at a relatively wide range of temperatures and pressures. Two separate 

functions for predicting the relative permittivity of water and steam in three distinct thermodynamic 

regions are evolved using genetic programming. A data set comprised of all of the most accurate 

relative permittivity values, along with temperature, pressure, and density values from the entire 

experimentally calculated range of these values, found in (Fernandez et al. 1995), is used for this 

task. The accuracy of these two functions is evaluated by comparing the values for the relative 

permittivity calculated using the evolved functions and the values calculated using the latest 

formulation of Fernandez et al., found in (Fernandez et al. 1997) to the aforementioned data set. In 

all three regions, the newly evolved functions outperform the most current formulation in terms of 

difference between calculated and experimentally obtained values for the dielectric constant. This 

work heralds the first successful application of AI techniques to this important scientific application 

area.
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2.1 INTRODUCTION AND BACKGROUND 

The relative permittivity (or static dielectric constant) of water and steam, rε , has been 

experimentally calculated at a relatively wide range of temperatures and pressures. The relative 

permittivity is an important indicator of the solvent behavior of water in a variety of biological (cell 

membrane electrophysiology, intracellular biochemical processes), and industrial (geochemical high 

temperature, high pressure processes in deep sea vents) settings (Fernandez et al. 1997). Thus, 

predicting the behavior of the static dielectric constant of water is crucial for understanding a 

variety of phenomena, from the effects of hydrostatic pressure on protein folding and unfolding 

within the cell (Floriano and Nascimento 2004), to understanding the corrosive behavior of water at 

the high temperatures and pressures found in nuclear power plants. In electrical engineering, the 

relative permittivity of a substance is used in the design of capacitors. There have been many 

attempts at creating a single function that accurately predicts the relative permittivity of water and 

steam, the earliest of which was done by Quist and Marshall in 1965 (Quist and Marshall 1965), but 

these have suffered from a lack of experimental values across the entire temperature and pressure 

range. Recently, Fernandez et al. compiled all of the experimentally available data for the relative 

permittivity of water and steam in a single database (Fernandez et al. 1995). Furthermore, 

Fernandez et al. evaluated the methods used to experimentally derive the relative permittivity and 

chose a subset of the total data set that was the most accurate and that should be used in data 

correlation. Fernandez et al. proposed a new formulation in (Fernandez et al. 1997) that used this 

subset and approximated the relative permittivity very well across the entire temperature and 

pressure range. 

Our proposal is that in order to more accurately model the behavior of the relative 

permittivity of water across all temperature and pressure values, two formulations should be 

created, so that each may be applied in separate thermodynamic regions.  In our approach, two 
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functions are evolved that separately approximate the relative permittivity of water and steam across 

three thermodynamically distinct regions. These two functions collectively approximate the relative 

permittivity of water across the entire range of temperature and pressure values. The accuracy of 

these two functions is evaluated by comparing their values for the relative permittivity with the 

values obtained using the latest formulation of Fernandez et al., against the subset of dielectric 

constant values that Fernandez et al. chose for data correlation mentioned earlier. 

 The static dielectric constant (hereon relative permittivity) of a substance, rε , is roughly 

defined as the ability of a substance to transmit or allow the existence of an electric field. More 

formally, the relative permittivity of a substance, rε , is the ratio of the static permittivity of the 

substance, sε , to the static permittivity of a vacuum, 0ε  (Fernandez et al. 1995). The behavior of the 

relative permittivity of water is related to its physical state (as a liquid or as steam), temperature, 

and pressure. This allows the entire range of temperatures and pressures to be divided into 4 

regions, A, B, C, and D. Region A is the normal liquid water state between the normal freezing and 

boiling points (~273K to ~373K). Region B refers to water along the liquid-vapor phase boundary 

(saturation line). In this region, which extends from 373K to approximately 647.1K (the critical 

point), water may exist in either the liquid or gas state (depending on the pressure value). The 

critical point, which occurs at approximately 647.1K with a corresponding pressure of 

approximately 22.1MPa, denotes the point in the phase space beyond which water ceases to exist in 

the liquid state. Region C is the region above 373.15K, and at lower pressures and temperatures 

within region C, water is in the normal gas (steam) phase. However, at higher pressures and 

temperatures in this region (beyond the critical point), water becomes a supercritical fluid that 

exhibits the properties of both a liquid and gas. Finally, region D refers to super cooled water (water 

below the normal freezing point of 273.15K at the standard pressure of ~.1MPa).  
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The behavior of the relative permittivity exhibits discontinuities along the liquid-vapor 

phase boundary (region B) and in the supercritical part of the region above the normal boiling point 

(region C). In these regions, very small changes in temperature and pressure cause very large 

changes in density and in the value of the relative permittivity (Harvey 2006). As a result, 

theoretical formulations for calculating the relative permittivity of water have mainly focused on a 

broad range of temperatures (~270K to ~600K) within a small range of pressures (~.1MPa to 

200MPa) (Fernandez 1995). The most current formulation for approximating the relative 

permittivity across the entire range of experimental temperatures and pressures may be found in 

(Fernandez 1997). Fernandez et al.’s formulation uses an extensive adaptive regression algorithm to 

create an appropriate function.  The final function uses 5 adjustable parameters and a total of 25 

constants and domain specific non-adjustable parameters and approximates well across the entire 

range of experimentally available values (260K to 800K temperatures, at pressures up to 1200 

MPa). 

2.2 EXPERIMENTAL SET-UP 

 In our approach, a variety of different function and terminal sets were explored in an effort 

to evolve two functions that could model the relative permittivity of water as a function of pressure, 

temperature, and density. Unfortunately, no empirical temperature or pressure data for region B 

(along the phase boundary) is currently available (Fernandez et al. 1995), and thus a function 

approximating the dielectric constant in region B was not evolved. As a result, evolving 2 different 

functions, one specific to regions A and D, the other specific to region C, became the most logical 

next step in function development.  

The functions for regions A, C, and D were evolved using data sets taken from (Fernandez 

et al. 1995) and were then compared to relative permittivity values calculated with the same input 

values (taken from the same data sets) using the newest formulation for dielectric constant 
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prediction, found in (Fernandez et al. 1997). These data sets were compiled from all previous 

experimentally available data, and were then corrected by Fernandez et al. to coincide with the most 

recent internationally accepted temperature scale, ITS-90. In most cases, values were provided for 

the temperature (in degrees Kelvin, or K), pressure (in megapascals, or MPa), and the 

corresponding dielectric constant. However, in some cases, temperature/density/dielectric constant 

values were given instead of temperature/pressure/dielectric constant values. In these 

circumstances, density values were converted into their corresponding pressures, and pressure 

values were converted to their corresponding densities using the IAPWS-95 formulation for the 

equation of state of water found in (Wagner and Pruss 2002). With this completed, the final data set 

uniformly represented the dielectric constant at every temperature, pressure, and density value that 

was experimentally available. 

Both functions were evolved by generating a population of possible functions (represented 

as trees) as with standard genetic programming implementations. Each candidate function’s fitness 

was taken to be the sum of the absolute values of the difference between the calculated and the 

experimentally measured value for the relative permittivity at every input value in the 

corresponding data set. The combination of input values for each function (that is, what 

combination of the three possible adjustable inputs was to be used) was determined by the GP 

module. The population of possible functions was then evolved with a variety of crossover/mutation 

probabilities and function sets. The data set of experimentally calculated relative permittivity values 

used to create a function for regions A and D consisted of 291 data points. The data set used to 

create the function for the one-phase supercritical region (region C) consisted of 353 data points. 

These data sets include all of the data points (644 total data points) that Fernandez et al. recommend 

for data correlations (Fernandez et al. 1995). The two evolved functions with the lowest sum of 
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absolute errors across the data points that were found were used as the final equations for 

approximating the dielectric constant across the three regions.   

During any given GP run, all function and terminal sets used during function evolution 

always included addition, subtraction, multiplication, and division as function operators, and 

temperature, , pressure,kT p , and density, ρ , as terminal values. All runs also used a population of 

10 random floating-point constants in the range between 0 and 1, which were generated at runtime. 

Other function operators (sin(), cos(), ln(), , , and ) and terminal operators (Avogadro’s 

number, , permittivity of free space,

10log 2log yx

AN 0ε , elementary charge, e , Boltzmann’s constant, , molar 

mass of water, , mean molecular polarizability of water,

k

wM α , the dipole moment of water,μ ) were 

also used in certain GP runs. The aforementioned terminal operators are provided in table 1. A 

range of crossover probabilities (between .5 and 1.0, in increments of .05) and mutation 

probabilities (between 0 and .5, in increments of .05) were explored for all combinations of function 

and terminal sets. Each combination of parameter settings was implemented in 10 GP runs, each on 

a population of one million individuals that were evolved for 200 generations.  The function length 

of any individual solution (a tree representing a given candidate function) never exceeded 50 

functional units (where a functional unit is taken to be a single operator from the function set or a 

terminal value from the terminal set), as maintaining the readability of any given evolved function 

was a priority. 

2.3 RESULTS 

Both of the two best functions that were evolved were found during a run that used 

multiplication, division, subtraction, and addition as operators in the function set and temperature, 

pressure, and the molar mass of water as terminal operators (with the 10 additional random 

ephemeral constants described earlier). In addition to the above terminals, the function evolved for 
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region C used density, ρ , Avogadro’s number, , and Boltzmann’s constant, , as terminal 

operators. Both best function runs used a probability of crossover of 0.7 and a probability of 

mutation of 0.05. These functions (simplified with all redundancies eliminated), along with 

Fernandez et. al’s formulation, follow: 

AN k
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Figure 2.1: Evolved Equation for regions A, D 
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The evolved functions shown above are significantly smaller than the formulation developed 

by Fernandez et al. and use at most three adjustable parameters (temperature, pressure, and density), 

three non-adjustable domain specific parameters (Avogadro’s number, Boltzmann’s constant, and 

the molar mass of water), and three of the ten possible random ephemeral constants that were 

available during function evolution. No domain-specific knowledge (aside from the data sets 

themselves) was applied to the formulation of the functions. Furthermore, the evolved functions 

selected different terminal values for both regions, so that the region C function uses density as an 

input value along with temperature and pressure, whereas the region A and D function uses 

temperature and pressure exclusively. This is telling because density is a much more relevant 

predictive parameter (varying discontinuously along with the relative permittivity while temperature 

and pressure monotonically increase) for the relative permittivity in the single phase and super 

critical region (region C) than in regions A and D. The fact that the GP approach was able to 

selectively choose the relevant parameters for each region is notable and significant.   

Both evolved functions outperformed Fernandez et al.’s formulation across all 

thermodynamic regions. For regions A and D the evolved function outperformed Fernandez et al.’s 

formulation strictly because of one data point value (notably, a data point that occurred immediately 

preceding the phase boundary around 373.15K). At this temperature, Fernandez et al.’s formulation 

may have rounded the temperature input parameter (at 373.147K) up, causing a very sharp 

discontinuous drop in the calculated relative permittivity value. In region C, the evolved function 

consistently outperformed Fernandez et al.’s formulation, leading to an improvement in calculation 

accuracy across the entire range of experimentally available relative permittivity values. 

2.4 CONCLUSIONS AND FUTURE WORK 

Two functions that approximate the relative permittivity of water and steam at a variety of 

temperatures and pressures have been proposed. These functions were evolved using the GP 
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technique with a specific function and terminal set, and their accuracy has been compared to that 

achieved by Fernandez et al.’s most recent formulation. The evolved functions approximate the 

relative permittivity of water and steam for a wide range of temperature and pressure values quite 

well, improving on Fernandez et al.’s formulation across the entire experimentally available 

temperature and pressure range while being much simpler computationally. Further refinements to 

create more accurate approximations of the relative permittivity of water and steam will include 

creating an evolved function that can be used across all thermodynamically distinct temperature and 

pressure regions. 

2.5 TABLES AND REFERENCES  

 Tables and references are available in the extended version of this paper. See Appendix A. 
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CHAPTER 3 

A NEW GP-EVOLVED FORMULATION FOR THE RELATIVE PERMITTIVITY OF WATER 

AND STEAM2

                                                 
2 S.V. Fogelson and W.D. Potter. To appear in Proceedings of the International Conference on Artificial Intelligence 

and Pattern Recognition, AIPR-07. Reprinted here with permission of the publisher, 6/19/2007. 
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ABSTRACT 

 The relative permittivity (or static dielectric constant) of water and steam has been 

experimentally calculated at a relatively wide range of temperatures and pressures. A single 

function for predicting the relative permittivity of water and steam in three distinct thermodynamic 

regions is evolved using genetic programming. A data set comprised of all of the most accurate 

relative permittivity values, along with temperature, pressure, and density values from the entire 

experimentally calculated range of these values, found in (Fernandez et al. 1995), is used for this 

task. The accuracy of this function is evaluated by comparing the values for the relative permittivity 

calculated using the evolved function and the values calculated using the latest formulation of 

Fernandez et al., found in (Fernandez et al. 1997) to the aforementioned data set. In all regions, the 

newly evolved function outperforms the most current formulation in terms of difference between 

calculated and experimentally obtained values for the dielectric constant. 
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3.1 INTRODUCTION 

The relative permittivity (or static dielectric constant) of water and steam, rε , has been 

experimentally calculated at a relatively wide range of temperatures and pressures. The relative 

permittivity is an important indicator of the solvent behavior of water in a variety of biological (cell 

membrane electrophysiology, intracellular biochemical processes) and geophysical/industrial 

(geochemical high temperature, high pressure processes in deep sea vents and in industrial 

processing plants) settings (Fernandez et al. 1997). Many prior researchers have attempted to create 

a single function that accurately predicts the relative permittivity of water and steam, the earliest of 

which being Quist and Marshall’s 1965 formulation (Quist and Marshall 1965). However, these 

attempts have suffered from a lack of experimental values across the entire temperature and 

pressure range, and thus have only been able to approximate the relative permittivity of water with 

minimal uncertainty over a small range of temperatures and pressures. Recently, Fernandez et al. 

compiled all of the experimentally available data for the relative permittivity of water and steam in 

a single database (Fernandez et al. 1995). Furthermore, Fernandez et al. evaluated the methods used 

to experimentally derive the relative permittivity and chose a subset of the total data set that was the 

most accurate and that was recommended for use in data correlation. Fernandez et al. proposed a 

new formulation in (Fernandez et al. 1997) that used this subset to generate a statistical regression 

function that approximated the relative permittivity very well across the entire experimentally 

available temperature and pressure range.  

 In an earlier paper (Fogelson and Potter 2007), we proposed two individual functions 

evolved using genetic programming that divided the entire data set recommended for data 

correlation by Fernandez et al. into two distinct thermodynamic regions, with each equation applied 

to the temperature and pressure range specific to the given thermodynamic region. Although that 

proposed formulation outperformed Fernandez et al.’s formulation across the entire range of data 
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values in both thermodynamic regions, a formulation that utilizes a single equation to approximate 

the relative permittivity across the entire range of experimental values would seem both more 

natural and appropriate, and is an important goal for researchers in this area. It was hoped that an 

increase in the size of the evolving population of programs coupled with an increase in the 

maximum size any individual program could be would allow for the discovery of just such an 

equation. In the current approach, such an equation has been evolved and closely approximates the 

relative permittivity of water across the entire range of experimentally verified temperature and 

pressure values. The accuracy of this function is evaluated by comparing its output value for the 

relative permittivity of water at a given temperature and pressure with the output relative 

permittivity value obtained using the latest formulation of Fernandez et al., against the subset of 

dielectric constant values that Fernandez et al. chose for data correlation mentioned earlier. 

3.2 THE STATIC DIELECTRIC CONSTANT 

The static dielectric constant (hereon relative permittivity) of a substance, rε , is roughly 

defined as the ability of a substance to transmit or allow the existence of an electric field. More 

formally, the relative permittivity of a substance, rε , is the ratio of the static permittivity of the 

substance, sε , to the static permittivity of a vacuum, 0ε  (Fernandez et al. 1995). The relative 

permittivity of a substance is used for practical purposes in the design of capacitors. The behavior of 

the relative permittivity of water is related to its physical state or phase (as a liquid or as steam), 

temperature, and pressure. Experimentally verified relative permittivity values for water in its solid 

phase (as ice) at temperatures as low as 190K ( C°− 83 ) exist (Matsuoka, Fujita, and Mae 1996), 

however this data did not include corresponding pressure values for any of the measurements, and 

as a result, could not be used. Water, in its liquid or gas (steam) state can exist within a large range 

of temperatures and pressures, and this range has been traditionally divided into 4 regions, A, B, C, 

and D. Region A is the normal liquid water state between the normal freezing and boiling points 
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(~273K to ~373K) at pressures up to 1000MPa. Region B refers to water along the vapor-liquid 

phase boundary. Region C is the region with a temperature above 373.15K. At lower pressures and 

temperatures within region C, water is in the normal vapor (steam) state. At higher pressures and 

temperatures in this region, water becomes a supercritical fluid, that is, water ceases to behave as if 

it were in either the liquid or gas state, but rather exhibits a combination of the thermodynamic 

properties attributable to both liquids and gases. Finally, region D refers to super cooled water 

(water that exists in the liquid state below the normal freezing point of 273.15K at the standard 

pressure of ~.1MPa).  

The behavior of the relative permittivity exhibits discontinuities along the liquid-vapor 

phase boundary (region B) and in the supercritical part of the region above the normal boiling point 

(region C), with very small changes in the temperature and pressure causing very large changes in 

density and in the value of the relative permittivity (Harvey 2006). As a result, theoretical 

formulations for calculating the relative permittivity of water have mainly focused on a narrow 

range of temperatures (~270K to ~315K) and pressures (~.1MPa to 100MPa) below the phase 

boundary (Fernandez et al. 1995). Furthermore, data points along the phase boundary (region B), 

although numerous, have not had their pressure values recorded, and thus have not figured in any 

data-driven correlations that correct for pressure differences. The most current formulation for 

approximating the relative permittivity across the entire range of experimental temperatures and 

pressures may be found in (Fernandez et al. 1997) and is also reproduced in the results section. 

Fernandez et al.’s formulation uses an extensive adaptive regression algorithm to create an 

appropriate function taking a wide variety of domain specific thermodynamic values (including 

first, second, and third derivatives of the temperature and pressure inputs with respect to each other) 

into account.  
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The final function uses 5 adjustable parameters and a total of 25 constants and domain specific non-

adjustable parameters and approximates well across the entire range of experimentally available 

values. 

3.3 EVOLUTION AND GENETIC PROGRAMMING 

Genetic Programming (GP) may be seen as an abstract algorithmic implementation broadly 

inspired by the main principles of Darwin’s theory of evolution by means of natural selection. 

Roughly, Darwinian evolutionary theory involves populations of interbreeding organisms (species) 

competing for environmental resources over time. Species share genetic material by interbreeding, 

and random mutations occur to members of the species that may either hinder or further their 

reproductive success. As the members of a given species breed with each other over time, 

characteristics beneficial for the species’ survival propagate throughout the population, while those 

characteristics that are detrimental to the survival of the species do not get expressed in the 

population. That is, individuals with characteristics that favor their survival within the given 

environment tend to propagate, whereas individuals not possessing those characteristics in the 

environment (or those that exhibit detrimental characteristics) tend to die out.  

 GP applies the broad tenets of Darwinian evolutionary theory within a heuristic framework 

that attempts to create automatically generated programs that evolve to optimally solve user-defined 

problems (Koza 1992). GP is an extension of the evolutionary computational approach known as 

genetic algorithms (GA) first pioneered by John Holland (Holland 1992). Within the GP 

framework, a population of candidate solutions, each represented as an executable computer 

program of some finite length (an individual of a given population), evolves in response to some 

problem to be solved (the environmental conditions) (Koza 1992). Each GP individual/candidate 

program within the population is given a fitness value that is the output of a function (the fitness 

function) that determines the appropriateness or optimality of the program output (individual 
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behavior) when given the user-defined problem (the environmental conditions). This allows each 

individual within the GP population to be measured against every other individual, whether the 

individual solves the problem (optimally responds to the environment) or not. Once all of the 

individuals within a population have been assigned a fitness value, certain individuals are 

probabilistically chosen to recombine and create offspring based on their fitness values, so that 

individuals with higher fitness values tend to be chosen more frequently for recombination. During 

recombination two unique individuals are chosen to represent the parents, and may stochastically 

recombine to generate two offspring. Occasionally, however, (because recombination is 

probabilistic and does not always occur) they do not recombine and remain unchanged as offspring. 

After every recombination event, an offspring individual may be mutated with some small 

probability. The series of steps from initial population generation, parent selection, recombination, 

and mutation of offspring constitutes a generation of the GP run. At the start of every generation, 

newly created individuals in the population are evaluated by the fitness function and assigned a 

fitness value. The GP run continues in this manner (after the generation of the initial population, 

only fitness value assignment, parent selection, recombination, and mutation of offspring occur) 

until some stopping criteria (such as the creation of an individual with either some given minimum 

or maximum fitness value, or one that adequately solves the problem at hand) has been reached.  

 Each GP individual uses a tree-based representation scheme, where the tree completely 

represents a given program.  Nodes for the GP program tree either come from the terminal set or the 

function set (both predefined by the individual implementing the GP search). The terminal set 

completely defines the kinds of inputs the given program can use to solve the problem. The 

members of the terminal set can only occur as leaf nodes within the program tree (that is, nodes that 

have no children).  The function set defines the kinds of transformations that are permissible given 

any of the elements in the terminal set or any of the other elements within the function set as 
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arguments to each of the elements within the function set. Thus, the members of the function set 

may only occur as the internal nodes of a GP-generated program tree (nodes with at least one child 

node). These restrictions amount to the fact that the union of the function and terminal sets of a GP 

implementation must possess the property of closure (where closure is defined as the ability to have 

any composition of functions and terminals produce an executable computer program)        

(Ghanea-Hercock 2003). The program trees generated using GP do not have to be standard binary 

trees (trees where every node is either a leaf node, or has a maximum of two child nodes), as the 

experimenter may define a function operator within the function set that takes more than two 

arguments. Initially, GP individuals are randomly generated through a stochastic tree-building 

process where each node in the tree is chosen to be a random member of either the function or 

terminal sets. Traditionally, GP candidate programs are initially generated either strictly to some 

maximum initial tree depth limit (where all nodes up to the maximum initial tree depth are chosen 

stochastically exclusively from the function set and all nodes at the maximum initial depth limit are 

chosen exclusively from the terminal set), or until all of the branches of the tree have either gone to 

the maximum initial depth or have ended in terminal nodes before the maximum initial tree depth 

has been reached.  

The genetic operators of crossover and mutation, as well as the way in which individuals are 

ranked according to their fitness level are modified from the GA approach (described in detail in 

Holland 1992) to suit the GP technique. Crossover occurs by selecting two nodes on different parent 

trees and then swapping all of the children of the selected nodes (as well as the selected nodes 

themselves) between the two individuals. Mutation, on the other hand, involves selecting a node at 

which mutation will occur, deleting all of the nodes that are children of the selected node, and then 

generating a random tree with this node as its root. The fitness evaluation and ranking method in GP 

are slightly different from the classic GA approach (where fitness maximization is standard) in the 
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fact that the highest ranking individual programs in GP have the lowest fitness values (in effect, a 

minimization problem). Thus, GP attempts to find a program with the globally minimal fitness 

value in the search space of all possible programs that may be created using the function and 

terminal sets used in the problem, to the tree depth or program length specified in the GP setup.  

 Ultimately, the GP approach involves determining a set of functions and terminals to be 

used in solving the problem, defining a fitness measure by which individual programs may be 

evaluated and assigned a fitness value, setting the specific parameters and operator probabilities that 

are involved in program tree generation (crossover and mutation probabilities, initial tree depth 

limit, maximum tree length, etc.), and developing a set of rules or stopping criteria to determine 

when to end a specific GP run (whether after a certain number of generations have elapsed, or after 

an individual program with a desired fitness threshold has been found). 

3.4 EXPERIMENTAL SET-UP 

In our approach, a variety of different function and terminal sets were explored in an effort 

to evolve a single function that could model the relative permittivity of water as a function of 

pressure, temperature, and density in thermodynamic regions A, C, and D of the temperature-

pressure phase space. Unfortunately, no empirical temperature and pressure data for region B 

(along the phase boundary) is currently available (Fernandez et al. 1995), and thus a function 

approximating the dielectric constant in region B was not evolved.  

The function for regions A, C, and D was evolved using data sets taken from (Fernandez et 

al. 1995) and was then compared to relative permittivity values calculated with the same input 

temperature/pressure/density values (taken from the same data sets) using the newest formulation 

for dielectric constant prediction, found in (Fernandez et al. 1997). These data sets were compiled 

from all previous experimentally available data, and were then corrected by Fernandez et al. to 

coincide with the most recent internationally accepted temperature scale, ITS-90. In most cases, 
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values were provided for the temperature (in degrees Kelvin, or K), pressure (in megapascals, or 

MPa), and the corresponding dielectric constant. However, in some cases, 

temperature/density/dielectric constant values were given instead of temperature/pressure/dielectric 

constant values. In these circumstances, density values were converted into their corresponding 

pressures, and pressure values were converted to their corresponding densities using the IAPWS-95 

formulation for the equation of state of water found in (Wagner and Pruss 2002). With this 

completed, the final data set uniformly represented the dielectric constant at every temperature, 

pressure, and density value that was experimentally available (as of December 2006). 

The function was evolved by generating a population of possible functions (represented as 

trees) as with standard genetic programming implementations. Each candidate function’s fitness 

was taken to be the sum of the absolute errors between the calculated and the experimentally 

measured value for the relative permittivity at every input value in the corresponding data set. The 

combination of input values for each function (that is, what combination of the three possible 

adjustable inputs was to be used) was determined by the GP module. The population of possible 

functions was then evolved with a variety of crossover/mutation probabilities and function sets. The 

data set of experimentally calculated relative permittivity values used to create the function 

consisted of 644 data points, which represent the complete dataset that Fernandez et al. recommend 

for data correlations (Fernandez et al. 1995). The function with the lowest sum of absolute errors 

across the data points that was found after all runs had been completed was chosen as the final 

formulation.   

During any given GP run, all function and terminal sets used during function evolution 

always included addition, subtraction, multiplication, and division as function operators, and 

temperature, , pressure,kT p , and density, ρ , as terminal values. In cases where a generated function 

divided a value by zero, the zero-generating term was replaced by 0.00001. All runs used a 
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population of 100 random floating-point constants in the range between 0 and 1, which were 

generated at runtime. These constants would function as additional terminal values for the genetic 

program to use during function creation. Other function operators (sin(), cos(), ln(), , , 

and ) and terminal operators (Avogadro’s number, , permittivity of free space,

10log 2log

yx AN 0ε , elementary 

charge, , Boltzmann’s constant, k , molar mass of water, , mean molecular polarizability of 

water,

e wM

α , the dipole moment of water,μ ) were also used in certain GP runs. The aforementioned 

terminal operators are provided in table 3.1. The function length of any individual solution (a tree 

representing a given candidate function) never exceeded 100 functional units (where a functional 

unit is taken to be a single operator from the function set or a terminal value from the terminal set). 

The large size of the function and terminal sets causes the size of the search space (representing all 

of the possible unique programs of length 100 or less that can be generated from the function and 

terminal sets) to be enormous (more than a googol). As a result, each GP run was done on a 

population of one and a half million individuals that were evolved for 200 generations. This was 

done to ensure that the GP implementation would sample as much of the search space as possible in 

its effort to find a suitable function within a reasonable time. A range of crossover probabilities 

(between .5 and 1.0, in increments of .05) and mutation probabilities (between 0 and .5, in 

increments of .05) were explored for all combinations of function and terminal sets. Each 

combination of unique parameter settings was implemented in 10 GP runs, after which the function 

with the lowest total absolute error was chosen. 

3.5 RESULTS 

The optimal function that was evolved was found during a run that used multiplication, 

division, subtraction, and addition as operators in the function set and temperature, pressure, and 

density as terminal operators (with the 100 additional random ephemeral constants described 
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earlier). The optimal function run used a probability of crossover of 0.9 and a probability of 

mutation of 0.05. The final evolved function (with all expressions simplified), along with Fernandez 

et. al’s formulation, are listed in figures 3.1 and 3.2. 

 The results of applying the GP-evolved function and Fernandez et al.’s formulation to the 

total data set are found in table 3.3. The evolved (non-simplified) function shown above is 

significantly smaller (31 terms versus 112 terms) than the formulation developed by Fernandez et 

al. and uses only three adjustable parameters (temperature, pressure, and density), zero non-

adjustable domain specific parameters, and only three of the one hundred possible random 

ephemeral constants that were available during function evolution. No domain-specific knowledge 

(aside from the data sets themselves) was applied to the formation of the function. As can be seen 

from table 3.3, the evolved function outperformed Fernandez et al.’s formulation in all collected 

statistical categories except the minimum absolute difference, where both functions had at least one 

data point where very marginal absolute error (<0.01)  existed. 
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Figure 3.1: GP-Evolved Equation, regions A, C, and D 
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Figure 3.2: Fernandez et al.’s Formulation 

3.6 CONCLUSIONS AND FUTURE WORK 

A new function that approximates the relative permittivity of water and steam at a variety of 

temperatures and pressures has been developed. This function was evolved using the GP technique 

with a specific function and terminal set, and its accuracy has been compared to that achieved by 

Fernandez et al.’s most recent formulation. The evolved function approximates the relative 

permittivity of water and steam for a wide range of temperature and pressure values extremely well, 

improving on Fernandez et al.’s formulation across the entire experimentally available temperature 

and pressure range while being simpler computationally. Further refinements to create more 

accurate approximations of the relative permittivity of water and steam will include creating an 

evolved function that can be used across all thermodynamically distinct temperature and pressure 

regions, including regions where water is in the solid phase, or where a phase boundary exists. This 
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can be done when experimental values for the temperature, pressure, and relative permittivity in 

these regions are obtained. A refined fitness function that takes more than the absolute distance 

between expected and calculated values may also prove useful in creating a new, more accurate 

formulation. Introducing a penalty for very large and difficult to read programs may also help in 

finding a function that is both compact and generalizes well across the entire thermodynamic space. 

However, significant improvements to the evolution of an appropriate function will most surely 

come from an increase in experimentally verifiable values for the relative permittivity, and thus any 

new accurate data that may be found should be used to refine the current formulation. 

3.7 TABLES 

Table 3.1: Constants used in the relative permittivity formulation 
 

Parameter Value 
Permittivity of free space, 0ε  112127 ])299792458(104[ −−−−∗ mJCπ

Elementary charge,  e C1910*60217733.1 −  
Boltzmann's constant,  k 12310*380658.1 −− JK  
Avogadro's number,  AN 12310*0221367.6 −mol  

Molar mass of water,  wM 1*018015268.0 −molkg  

Mean molecular polarizability of water,α  2124010*636.1 −−− mJC  
Dipole moment of water, μ  Cm3010*138.6 −  

 
Table 3.2: Coefficients , and exponents , , and q of the equation for g kN ki kj

 
k kN  ki  kj  

1 269782244868.0  1 0.25 
2 759577713793.0−  1 1 
3 482375117941.0  1 2.5 
4 967146922443.0  2 1.5 
5 562982170369.0−  3 1.5 
6 961088634721.0−  3 2.5 
7 110*649493274882.0 −  4 2 
8 210*099804698165.0 −− 5 2 
9 410*701651676349.0 −  6 5 
10 410*729373597957.0 −  7 0.5 
11 910*201231792187.0 −− 10 10 
12 210*261960965044.0 −   q=1.2 
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Table 3.3: Results and numeric comparison 

 
 Evolved GP result Fernandez 

Sum Absolute Difference 103.12 149.73 
Mean Absolute Difference 0.16 0.23 

Standard Deviation Absolute Difference 0.25 2.15 
Sum Squared Difference 55.8 3026.43 
Mean Squared Difference 0.09 4.68 

Standard Deviation Squared Difference 0.54 117.24 
Minimum Absolute Difference 0 0 
Maximum Absolute Difference 3.55 54.61 

# Data Points  Absolute Difference 
formulation < Absolute Difference 

Fernandez 331  
Percentage of Total Data Points better 

than Fernandez 51.08%  
Total Data Points 644  
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CHAPTER 4 

A FORMULATION FOR THE RELATIVE PERMITTIVITY OF WATER AND STEAM TO 

HIGH TEMPERATURES AND PRESSURES EVOLVED USING GENETIC 

PROGRAMMING3

                                                 
3 S.V. Fogelson and W.D. Potter. Submitted to Journal of Physical Chemistry, 7/16/2007. 
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ABSTRACT 

 The relative permittivity (or static dielectric constant) of water and steam has been 

experimentally obtained from a relatively wide range of temperatures and pressures.  A suite of 

functions for predicting the relative permittivity of water and steam in four distinct 

thermodynamic regions is evolved using genetic programming.  A data set comprised of all of 

the most accurate relative permittivity values, along with temperature, pressure, and density 

values from the entire experimentally obtained range of these values, is used for this task.  The 

accuracy of these functions is evaluated by comparing the values for the relative permittivity 

calculated using the evolved function and the values calculated using the latest formulation of 

Fernandez et al. to the aforementioned data set.  In all regions, the newly evolved function 

performs comparably to or better than the most current formulation in terms of difference 

between calculated and experimental values for the dielectric constant. This research heralds the 

first successful application of artificial evolutionary techniques to relative permittivity prediction 

in physical chemistry.  
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4.1 INTRODUCTION 

 The relative permittivity (or static dielectric constant) of water and steam, rε , has been 

experimentally determined for a relatively wide range of temperatures and pressures. The 

relative permittivity is an important indicator of the solvent behavior of water in a variety of 

biological (cell membrane electrophysiology, intracellular biochemical processes) and 

geophysical/industrial (geochemical high temperature, high pressure processes in deep sea vents 

and in industrial processing plants) settings (Fernandez et al. 1997). Over the years, many 

researchers have worked to derive a single function that accurately predicts the relative 

permittivity of water and steam, the earliest of which being Quist and Marshall’s 1965 

formulation (Quist and Marshall 1965).  As research in this area progressed, work was done to 

explore more of the temperature and pressure spectrum, refine experimental results, and propose 

alternate formulations in order to enhance relative permittivity prediction.  Recently, Fernandez 

et al. compiled all of the experimentally available data for the relative permittivity of water and 

steam in a single database (Fernandez et al. 1995). Furthermore, they evaluated the methods used 

to experimentally derive the relative permittivity and chose a subset of the total data available 

that represented the most accurate values and that was recommended for use in data correlation.  

In 1997, Fernandez et al. proposed a new formulation in (Fernandez et al. 1997) based on a 

portion of this subset. Their new formulation, based on a statistical regression function, 

approximated the relative permittivity very well across the entire experimentally available 

temperature and pressure range.  

 In an earlier paper (Fogelson and Potter 2007), we proposed a formulation evolved using 

the genetic programming technique, to approximate the static dielectric constant across three 

(A,C,D) of the four thermodynamic regions (A,B,C,D) characterized by Fernandez et al. in 



 33

(Fernandez et al. 1995). This function was evolved by applying the genetic programming 

technique to a dataset that was recommended for data correlation by Fernandez et al. Although 

the proposed formulation performed comparably to Fernandez et al.’s formulation across the 

entire range of data values in the three thermodynamic regions (A,C,D), a formulation that can 

approximate the relative permittivity across the entire range of experimental values seemed both 

more natural and appropriate, and has been an important goal for researchers in this area. 

Unfortunately, the dataset for region B was incomplete (did not contain pressure values) and thus 

not used in our earlier formulation. In the current approach, we have incorporated the data from 

region B with our earlier formulation by evolving separate additional functions to approximate 

the static dielectric constant in this region. The accuracy of this suite of functions is evaluated by 

comparing each function’s output value for relative permittivity at a given temperature, pressure, 

and density with the output value obtained using the latest formulation of Fernandez et al., 

against the subset of dielectric constant values that Fernandez et al. recommended for data 

correlation mentioned earlier, as well as the smaller subset of values that Fernandez et al. 

actually used to create their formulation.   

4.2 BACKGROUND: THE STATIC DIELECTRIC CONSTANT 

 The static dielectric constant (hereon relative permittivity) of a substance, rε , is roughly 

defined as the ability of a substance to transmit or allow the existence of an electric field. More 

formally, the relative permittivity of a substance, rε , is the ratio of the static permittivity of the 

substance, sε , to the static permittivity of a vacuum, 0ε  (Fernandez et al. 1995). The relative 

permittivity of a substance is used for practical purposes in the design of capacitors. The 

behavior of the relative permittivity of water is related to its physical state or phase (as a liquid or 

as vapor), temperature, and pressure. Experimentally verified relative permittivity values for 
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water in its solid phase (as ice) at temperatures as low as 190K ( C°− 83 ) exist (Matsuoka, Fujita, 

and Mae 1996), however these data do not include corresponding pressure values for any of the 

measurements. Water, in its liquid or vapor (steam) state, exists within a large range of 

temperatures and pressures, and this range has been traditionally divided into 4 regions, A, B, C, 

and D. Region A is the normal liquid water state between the normal freezing and boiling points 

(~273K to ~373K) at pressures up to 1000MPa. Region B refers to water along the liquid-vapor 

phase boundary. For water located in this region of the thermodynamic space, in contrast to all 

other regions, every pair of temperature/pressure values takes on two density values 

(corresponding to the phase, either liquid or vapor/steam, in which the water occurs). Region C is 

the region with a temperature above 373.15K. At lower pressures and temperatures within region 

C, water is in the normal vapor (steam) state. At higher pressures and temperatures in this region, 

water becomes a supercritical fluid, that is, water ceases to behave as if it were in either the 

liquid or vapor state, but rather exhibits a combination of the thermodynamic properties 

attributable to both liquids and gases. Finally, region D refers to super cooled water (water that 

exists in the liquid state below the normal freezing point of 273.15K at the standard pressure of 

~.1MPa).  

 The behavior of the relative permittivity exhibits discontinuities along the liquid-vapor 

phase boundary (region B) and in the supercritical part of the region above the normal boiling 

point (region C), with very small changes in the temperature and pressure causing very large 

changes in density and in the value of the relative permittivity (Harvey 2006). As a result, 

theoretical formulations for calculating the relative permittivity of water have mainly focused on 

a broad range of temperatures (~270K to ~1000K) and a narrow range of pressures (~.1MPa to 

100MPa) (Fernandez et al. 1995). Furthermore, data points along the phase boundary (region B), 
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although numerous, have not had their pressure or density values recorded, and thus have not 

figured in any data-driven correlations that correct for pressure and density differences. The most 

current formulation for approximating the relative permittivity across the entire range of 

experimental temperatures and pressures may be found in (Fernandez et al. 1997) and is also 

reproduced in the results section. Fernandez et al.’s formulation uses an extensive adaptive 

regression algorithm to create an appropriate function taking a wide variety of domain specific 

thermodynamic values into account. Furthermore, they analyze the first, second, and third 

derivatives of the change in the dielectric constant with respect to both temperature and pressure 

inputs in order that their function accords with theoretical considerations of how the static 

dielectric constant is to behave across all thermodynamic regions. The final function uses 5 

adjustable parameters and a total of 25 constants and domain specific non-adjustable parameters 

and approximates well across the entire range of experimentally available values. 

4.3 BACKGROUND: ARTIFICIAL EVOLUTION AND GENETIC PROGRAMMING 

 Genetic Programming (GP) may be seen as an abstract algorithmic implementation 

broadly inspired by the main principles of Darwin’s theory of evolution by means of natural 

selection. Roughly, Darwinian evolutionary theory involves populations of interbreeding 

organisms (species) competing for environmental resources over time. Species share genetic 

material by interbreeding, and random mutations occur to members of the species that may either 

hinder or further their reproductive success. As the members of a given species breed and 

reproduce over time, characteristics beneficial for the species’ survival propagate throughout the 

population, while those characteristics that are detrimental to the survival of the species do not 

get expressed in the population. That is, individuals with characteristics that favor their survival 

within the given environment tend to propagate, whereas individuals not possessing those 
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characteristics in the environment (or those that exhibit detrimental characteristics) tend to die 

out.  

 GP applies the broad tenets of Darwinian evolutionary theory within a heuristic 

framework that attempts to create automatically generated computer programs that evolve to 

optimally solve user-defined problems (Koza 1992). GP is an extension of the evolutionary 

computational approach known as genetic algorithms (GA) first pioneered by John Holland 

(Holland 1992) (see also Forrest 1993). Within the GP framework, a population of candidate 

solutions, with each solution representing an executable computer program of some finite length 

(an individual of a given population), evolves in response to some problem to be solved (the 

environmental conditions) (Koza 1992). Each GP individual/candidate computer program within 

the population is given a fitness value that is the output of a function (the fitness function) that 

determines the appropriateness or optimality of the program output (individual behavior) when 

given the user-defined problem (the environmental conditions). This allows each individual 

within the GP population to be measured against every other individual, whether the individual 

solves the problem (favorably responds to the environment) or not. Once all of the individuals 

within a population have been assigned a fitness value, certain individuals are stochastically 

chosen to recombine and create offspring based on their fitness values, so that individuals with 

higher fitness values tend to be chosen more frequently for recombination. During recombination 

two unique individuals are chosen to represent the parents, and may stochastically recombine to 

generate two offspring. Occasionally, however, (because recombination is probabilistic and does 

not always occur) they do not recombine and remain unchanged as offspring. After every 

recombination event, an offspring individual may be mutated with some small probability. The 

series of steps following initial population generation include parent selection, recombination, 
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and mutation of offspring, and constitutes a generation of the GP run. At the start of every 

generation, newly created individuals in the population are evaluated by the fitness function and 

assigned a fitness value. The GP run continues in this manner (after the generation of the initial 

population, only fitness value assignment, parent selection, recombination, and mutation of 

offspring occur) until some stopping criteria (such as the creation of an individual with either 

some given minimum or maximum fitness value, or one that adequately solves the problem at 

hand) has been reached.  

 Each GP individual uses a tree-based data structure representation scheme, where the tree 

structure completely represents a given program.  A tree structure resembles a company 

organization chart with a root node (president), subtrees (subordinate divisions under the 

president managed by division chiefs), and continuing down the branches until reaching leaf 

nodes (nodes without subordinates).  Nodes for the GP program tree either come from the 

terminal set or the function set (both predefined by the individual implementing the GP search). 

The terminal set completely defines the kinds of inputs (independent variables) the evolving 

computer programs (individuals) can use to solve the problem. The elements of the terminal set 

can only occur as leaf nodes within the program tree (that is, nodes that have no children).  The 

function set defines the kinds of transformations that are permissible given any of the elements in 

the terminal set or any of the other elements within the function set as arguments to each of the 

elements within the function set. Thus, the elements of the function set may only occur as the 

internal nodes of a GP-generated program tree (nodes with at least one child node). These 

restrictions amount to the fact that the union of the function and terminal sets of a GP 

implementation must possess the property of closure (where closure is defined as the ability to 

have any composition of functions and terminals produce a syntactically correct, executable 
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computer program) (Ghanea-Hercock 2003). The program trees generated using GP do not have 

to be standard binary trees (trees where every node is either a leaf node, or has a maximum of 

two child nodes), as the experimenter may define a function operator within the function set that 

takes more than two arguments. Initially, GP individuals are randomly generated through a 

stochastic tree-building process where each node in the tree is chosen to be a random member of 

either the function or terminal sets. Traditionally, GP candidate programs are initially generated 

either strictly to some maximum initial tree depth limit (where all nodes up to the maximum 

initial tree depth are chosen stochastically exclusively from the function set and all nodes at the 

maximum initial depth limit are chosen exclusively from the terminal set), or until all of the 

branches of the tree have either gone to the maximum initial depth or have ended in terminal 

nodes before the maximum initial tree depth has been reached.  

The genetic programming operators of crossover and mutation, as well as the way in 

which individuals are ranked according to their fitness level are modified from the genetic 

algorithm (GA) approach (described in detail in Holland 1992) to suit the GP technique. 

Crossover occurs by selecting two nodes on different parent trees and then swapping the 

corresponding subtrees, that is, all of the descendants of the selected nodes (as well as the 

selected nodes themselves) between the two individuals. 

 

 
 

Figure 4.1: GP Crossover 
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Mutation, on the other hand, involves selecting a node at which mutation will occur, 

deleting all of the nodes that are descendants of the selected node, and then generating a random 

subtree with this node as its root.  

 

 
 

Figure 4.2: GP Mutation 
 

The fitness evaluation and ranking methods in GP are slightly different from the classic 

GA approach (where fitness maximization is standard) in the sense that the highest ranking 

individual programs in GP have the lowest fitness values (in effect, a minimization problem). 

Thus, GP attempts to find a computer program with the globally minimal fitness value in the 

search space of all possible computer programs that may be created using the function and 

terminal sets used in the problem, to the tree depth or program length specified in the GP setup.  

 Ultimately, the GP approach involves determining a set of functions and terminals to be 

used in solving the problem, defining a fitness measure by which individual programs may be 

evaluated and assigned a fitness value, setting the specific parameters and operator probabilities 

that are involved in program tree generation (crossover and mutation probabilities, initial tree 

depth limit, maximum tree length, etc.), and developing a set of rules or stopping criteria to 

determine when to end a specific GP run (whether after a certain number of generations have 

elapsed, or after an individual program with a desired fitness threshold has been found). 
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4.4 EXPERIMENTAL SET-UP 

 In our experiments, a variety of different function and terminal sets were explored in an 

effort to evolve a single function that could model the relative permittivity of water as a function 

of pressure, temperature, and density in thermodynamic regions A, C, and D of the temperature-

pressure phase space. Unfortunately, no temperature and pressure data for region B (along the 

phase boundary) is currently available (Fernandez et al. 1995), and thus two functions 

approximating the dielectric constant in region B (one for vapor saturation and one for liquid 

saturation) taking only temperature into account were evolved separately.   

The suite of functions for regions A, B, C, and D was evolved using experimentally 

verified input data sets taken from (Fernandez et al. 1995) and output results were then compared 

to relative permittivity values experimentally observed from the same input 

temperature/pressure/density values, or only input temperature values, as in the case of region B, 

(taken from the same data sets) using the newest formulation for dielectric constant prediction, 

found in (Fernandez et al. 1997). These data sets were compiled from all previous experimentally 

available data, and were then corrected by Fernandez et al. to coincide with the most recent 

internationally accepted temperature scale, ITS-90. In most cases, values were provided for the 

temperature (in degrees Kelvin, or K), pressure (in megapascals, or MPa), and the corresponding 

dielectric constant. However, in some cases, temperature/density/dielectric constant values were 

given instead of temperature/pressure/dielectric constant values. In these circumstances, density 

values were converted into their corresponding pressures, and pressure values were converted to 

their corresponding densities using the IAPWS-95 formulation for the equation of state of water 

found in (Wagner and Pruss 2002). With this completed, the final data set uniformly represented 
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the dielectric constant at every temperature, pressure, and density value that was both accurate 

and experimentally available (as of December 2006). 

Our functions were evolved by generating a population of possible functions (represented 

as trees) as with standard genetic programming implementations. Each candidate function’s 

fitness was taken to be the sum of the absolute errors between the computed and the 

experimentally measured value for the relative permittivity at every input value in the 

corresponding data set. The combination of input values for each function (that is, what 

combination of the three possible adjustable inputs was to be used) was determined by the GP 

module. The population of possible functions was then evolved with a variety of 

crossover/mutation probabilities and function sets. The data set of experimentally obtained 

relative permittivity values used to create the function consisted of 771 data points, which 

represent the complete dataset that Fernandez et al. recommend for data correlations for regions 

A,C, and D  (644 data points) and region B (127 data points) (Fernandez et al. 1995). The 

function with the lowest sum of absolute errors across the data points that was found after all 

runs had been completed was chosen as the final function for each part of the formulation.   

During any given GP run, all function and terminal sets used during function evolution 

always included addition, subtraction, multiplication, and division as function operators, and 

temperature, , pressure, kT p , and density, ρ , as terminal values. In cases where a generated 

function divided a value by zero, the zero-generating term was replaced by 0.00001. All runs 

used a population of 100 random floating-point constants in the range between 0 and 1, which 

were generated at runtime. These constants would play the role of additional terminal values for 

the genetic program to use during function creation. Other function operators (sin(), cos(), ln(), 

, , and ) and terminal operators (Avogadro’s number, , permittivity of free 10log 2log yx AN
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space, 0ε , elementary charge, , Boltzmann’s constant, , molar mass of water, , mean 

molecular polarizability of water,

e k wM

α , the dipole moment of water,μ ) were also used in various 

GP runs. The aforementioned terminal operators are reproduced from (Fernandez et al. 1997) in 

table 4.1. The function length of any individual solution (a tree representing a given candidate 

function) never exceeded 100 functional units (where a functional unit is taken to be a single 

operator from the function set or a terminal value from the terminal set). The large size of the 

function and terminal sets causes the size of the search space (representing all of the possible 

unique programs of length 100 or less that can be generated from the function and terminal sets) 

to be enormous (more than a googol possible syntactically correct possible functions). As a 

result, each GP run was done on a population of two million individuals that were evolved for 

200 generations. This was done to ensure that the GP implementation would sample as much of 

the search space as possible in its effort to find a suitable function within a reasonable time. A 

range of crossover probabilities (between .5 and 1.0, in increments of .05) and mutation 

probabilities (between 0 and .5, in increments of .05) were explored for all combinations of 

function and terminal sets. Each combination of unique parameter settings was implemented in 

10 GP runs, after which the function with the lowest total absolute error was chosen. 

4.5 RESULTS 

 The optimal functions that were evolved were found during runs that used multiplication, 

division, subtraction, and addition as operators in the function set and temperature, pressure, and 

density as terminal operators (with the 100 additional random ephemeral constants described 

earlier). The best function runs used a crossover probability of 0.9 and a mutation probability of 

0.05. The final evolved functions along with Fernandez, et. al.’s formulation, follow: 



 43

ρ

ρ
ρ

ρ
ρ

ρρρρ

ρ

ρρ

ρρ

ε

+−+

+−+

−
+

+
++++−+

+−+−
+

++−

+

=

pKT

KTpKT

TT

pppKTppKT

KT
KTpKTp

pKTKT

KK

DCA

0486.

617.1617.1617.2
2

2

)(03264.

2

2016.016.076.255.55474.55

)1)(2313.275862.6(

1194.20864.02036.

32

,,

 

Figure 4.3: GP-Evolved Equation, regions A, C, and D 
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Figure 4.4: GP-Evolved Equation, region B, liquid saturation 
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Figure 4.5: GP-Evolved Equation, region B, vapor saturation 
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Figure 4.6: Fernandez’ formulation, reproduced from (Fernandez et al. 1997) 

 The results of applying the GP-evolved functions and Fernandez et al.’s formulation to 

the total data set are found in tables 4.3 through 4.6. The evolved functions shown above are 

significantly smaller than the formulation developed by Fernandez et al. (31 terms for the regions 

A,C, D function, 24 terms for the liquid saturation function, and 17 terms for the vapor saturation 

function versus 112 terms for Fernandez et al.’s formulation) and uses only three adjustable 

parameters (temperature, pressure, and density), zero non-adjustable domain specific parameters, 

and only fifteen of the one hundred possible random ephemeral constants that were available 

during function evolution. No domain-specific knowledge (aside from the data sets themselves) 

was applied to the formulation of the suite of functions.   

 As can be seen from tables 4.3 through 4.5, the evolved function performed comparably 

to Fernandez et al.’s formulation in all collected statistical categories except the minimum 
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absolute difference, where each function had at least one data point where very marginal 

absolute error (<0.01)  existed. However, it must be mentioned that our proposed formulation 

and Fernandez et al.’s formulation differ in the way each was generated. Fernandez et al. did not 

use the entire set of data points that they recommended for data correlation, but rather a 

significantly reduced subset of this total dataset (127 data points out of the total 771 data points 

for all four regions). Table 4.6 compares the accuracy of our formulation to that of Fernandez et 

al. on this reduced dataset. As should be expected, our formulation does not perform as well as 

Fernandez et al.’s on these selected data points, but does have a smaller maximum absolute 

difference across the data set. This dataset does not cover the entire thermodynamic space, and 

thus, Fernandez et al. used a variety of theoretical considerations to buttress the sparseness of 

their dataset. In the case of region B, Fernandez et al. also provide pressure and density values 

for the data points that they used in constructing their formulation, even though no experimental 

pressures and densities for this region exist. Furthermore, Fernandez et al. weighted each data 

point in their dataset differently, based on certain theoretical and experimental factors. Although 

it was our goal to create a formulation following steps as similar to Fernandez et al.’s as possible, 

we could not follow this aspect of their experimental methodology. This approach entailed 

creating copies of each data point in proportion to its weight and then reinserting those copies 

back into the data set or multiplying the error on each data point in proportion to its weight. This 

seems tractable until one realizes that the weights of some data points are very small (<.01, 

where the sum of the weights of all 127 data points is 100). As a result, certain data points with 

much larger weight values (weights between 1 and 3) would skew the evolutionary search to find 

functions that approximate those points well, but approximate the low-weight data points very 

poorly. Furthermore, this would come at the expense of not covering the entire thermodynamic 
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space (even when other experimental points that do cover the thermodynamic space exist). Thus, 

we decided to leave the weights of all data points equal, and to use all of the experimental data 

that was available and recommended for correlation. 

4.6  CONCLUSIONS AND FUTURE WORK 

 A suite of functions that approximate the relative permittivity of water and steam across 

the entire experimentally verified range of temperatures and pressures have been developed. 

These functions were evolved using the GP technique with a specific function and terminal set, 

and their accuracy has been compared to that achieved by Fernandez et al.’s most recent 

formulation. This approach uses no theoretical domain-specific knowledge to obtain a useable 

function. The evolved functions approximate the relative permittivity of water and steam 

extremely well, comparing favorably with Fernandez et al.’s formulation across the entire 

experimentally available temperature and pressure range, while being simpler computationally. 

Further refinements to create more accurate approximations of the relative permittivity of water 

and steam will include creating a single evolved function that can be used across all 

thermodynamically distinct temperature and pressure regions, including regions where water is 

in the solid phase, or where a phase boundary exists. This can be done when experimental values 

for the temperature, pressure, and relative permittivity in these regions (especially region B) are 

obtained. A refined fitness function that takes more than the absolute difference between 

expected and calculated values may also prove useful in creating a new, more accurate 

formulation. Introducing a penalty for very large and difficult to read functions may also help in 

finding a function that is both compact and generalizes well across the entire thermodynamic 

space. However, significant improvements to the evolution of an appropriate function will most 

surely come from an increase in experimentally verifiable values for the relative permittivity, and 

thus any new accurate data that may be found should be used to refine the current formulation. 
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4.7 TABLES 

Table 4.1: Constants used in the relative permittivity formulation, 
reproduced from (Fernandez et al. 1997) 

 
Parameter Value 
Permittivity of free space, 0ε  112127 ])299792458(104[ −−−−∗ mJCπ  

Elementary charge,  e C1910*60217733.1 −  
Boltzmann's constant,  k 12310*380658.1 −− JK  
Avogadro's number,  AN 12310*0221367.6 −mol  
Molar mass of water,  wM 1*018015268.0 −molkg  

Mean molecular polarizability of water,α  2124010*636.1 −−− mJC  
Dipole moment of water, μ  Cm3010*138.6 −  

 
 
 
 

Table 4.2: Coefficients , and exponents , , and q of the equation for g, kN ki kj
reproduced from (Fernandez et al. 1997) 

 
           k                                        kN ki  kj  

1 269782244868.0 1 0.25 
2 759577713793.0− 1 1 
3 482375117941.0 1 2.5 
4 967146922443.0 2 1.5 
5 562982170369.0− 3 1.5 
6 961088634721.0− 3 2.5 
7 110*649493274882.0 − 4 2 
8 210*099804698165.0 −−  5 2 
9 410*701651676349.0 −  6 5 

10 410*729373597957.0 −  7 0.5 
11 910*201231792187.0 −−  10 10 
12 210*261960965044.0 −   q=1.2 
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Table 4.3: Results and numeric comparison, regions A,C,D 
 

REGIONS A,C,D Evolved GP result Fernandez 
Sum Absolute Difference 103.12 95.20 

Mean Absolute Difference 0.16 0.15 
Standard Deviation Absolute Difference 0.25 0.22 

Sum Squared Difference 55.80 44.30 
Mean Squared Difference 0.09 0.07 

Standard Deviation Squared Difference 0.54 0.54 
Minimum Absolute Difference 0.00 0.00 

Maximum Absolute Difference 3.55 3.60 
# Data Points  Absolute Difference 
formulation < Absolute Difference 

Fernandez 330  
% Total Data Points better than 

Fernandez 50.93%  
Total Data Points 644  

 
 

 
 
 
 

Table 4.4: Results and numeric comparison, region B, liquid saturation 
 

REGION B, liquid Evolved GP result Fernandez 
Sum Absolute Difference 27.11 37.49 

Mean Absolute Difference 0.22 0.30 
Standard Deviation Absolute Difference 0.18 0.33 

Sum Squared Difference 9.74 24.64 
Mean Squared Difference 0.08 0.20 

Standard Deviation Squared Difference 0.13 0.65 
Minimum Absolute Difference 0.00 0.00 

Maximum Absolute Difference 0.90 2.56 
# Data Points  Absolute Difference 
formulation < Absolute Difference 

Fernandez 71  
% Total Data Points better than 

Fernandez 56.35%  
Total Data Points 126  
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Table 4.5: Results and numeric comparison, region B, vapor saturation 
 

REGION B, vapor Evolved GP result Fernandez 
Sum Absolute Difference 0.273 0.335 

Mean Absolute Difference 0.007 0.009 
Standard Deviation Absolute Difference 0.016 0.017 

Sum Squared Difference 0.011 0.013 
Mean Squared Difference 0.0003 0.0004 

Standard Deviation Squared Difference 0.001 0.001 
Minimum Absolute Difference 0.00 0.00 

Maximum Absolute Difference 0.075 0.074 
# Data Points  Absolute Difference 
formulation < Absolute Difference 

Fernandez 22  
% Total Data Points better than 

Fernandez 59.46%  
Total Data Points 37  

 
 
Table 4.6: Results and numeric comparison, reduced dataset used by Fern for correlation, 

ALL REGIONS 
 

REGIONS A,B,C,D Evolved GP result Fernandez 
Sum Absolute Difference 26.25 16.18 

Mean Absolute Difference 0.21 0.13 
Standard Deviation Absolute Difference 0.37 0.34 

Sum Squared Difference 22.70 16.38 
Mean Squared Difference 0.18 0.13 

Standard Deviation Squared Difference 1.13 1.15 
Minimum Absolute Difference 0.00 0.00 

Maximum Absolute Difference 3.55 3.60 
# Data Points  Absolute Difference 
formulation < Absolute Difference 

Fernandez 40  
% Total Data Points better than 

Fernandez 31.50%  
Total Data Points 127  
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CHAPTER 5 

COMPARING MACHINE LEARNING TECHNIQUES IN PREDICTING TRANSLATION 

START SITES IN PROKARYOTIC GENOMES4

                                                 
4 S.V. Fogelson, K. Rasheed, X. Guo, and J. Mrázek. To appear in Proceedings of the International Conference on 

Machine Learning: Models, Technologies, and Applications, MLMTA ‘07. Reprinted here with permission of 
the publisher, 6/18/2007.  
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ABSTRACT 

 Accurate discovery of translation start sites in prokaryotic genomes remains an open 

problem. We compare the performance of several different machine learning techniques on a 

database of experimentally verified translation start sites from two different prokaryotic genomes 

(E. coli and Synechocystis PCC6803).  The SVM, ANN, and XCS learning algorithms 

performed well on the database. Furthermore, XCS has never been used in any kind of 

computational biological approach, and we provide evidence that it is an effective new tool to be 

utilized in this field. The reasons for why each of these techniques performed well are explored, 

and possible directions for future work in this area are offered. 
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5.1 INTRODUCTION 

Gene discovery in genomics is a rapidly developing field. With the recent mapping of the 

human genome and the genomes of a significant number of other species within the past decade, 

genetic discovery is only just beginning. However, after the mapping of a given genome has 

been completed, pinpointing exactly where genes begin on the genome becomes a costly, time-

consuming process. Whereas translation stop sites are unambiguously determined by the first in-

frame stop codon (with very few exceptions), translation start sites are generally ambiguous, and 

the most accurate predictions are achieved by combinations of automated predictions and manual 

curation.  Needless to say, this process is time consuming and automating the discovery of the 

actual translation start sites would greatly reduce the amount of time and effort spent on this task. 

In this paper, we compare the performance of several machine learning techniques (XCS, SVM, 

C4.5, Naïve Bayes, and Artificial Neural Network) on a database of prokaryotic gene start 

sequences taken from two distinct prokaryotic genomes (E. coli and Synechocystis PCC6803). 

XCS (an extension of the standard learning classifier system approach), SVM (support vector 

machines), and ANN (artificial neural networks) perform very well on this task, with SVM 

achieving the highest overall percentage of correctly classified instances and correctly classified 

true negative instances (TN), and ANN achieving the highest percentage of correctly classified 

true positive instances (TP). The reasons for this discontinuity and directions for future work are 

offered. 

5.2 RELATED WORK 

Several prior attempts for detecting gene start sequences in the genomes of both 

prokaryotic and eukaryotic organisms have been made, and the effective automation of the task 

still remains an open problem. In eukaryotes, most efforts center on prediction of transcription 
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start sites. Bajic and Seah (Bajic and Seah 2003) describe an attempt to predict transcription start 

sites (or promoter sequences) on human chromosomes 4, 21, and 22. This approach used an 

Artificial Neural Network (ANN) to predict promoter sequences based on the existence of CpG 

islands, or segments of DNA with relatively high (>50%) concentrations of CG dinucleotides. 

CG dinucelotides are generally methylated in human DNA and CpG islands comprise non-

methylated CG dinucleotides associated with promoters of actively transcribed genes. 

Information regarding the presence of these sites along the chromosomes was fed into an ANN, 

which then predicted the most likely areas where the RNA polymerase binds to DNA. The 

system was able to predict close to half of the actual transcription start sites, and limited its rate 

of false positive predictions to less than half that of other algorithms. 

   In prokaryotes, accurate prediction of both transcription and translation start sites are 

unresolved problems. Probably the most efficient algorithm to predict translation start sites was 

developed by Besemer, Lomsadze, and Borodovsky (Besemer, Lomsadze, and Borodovsky 

2001). Theirs was an unsupervised learning approach that combines gene predictions by 

GeneMark.hmm (Lukashin and Borodovsky 1998) with statistical models for ribosome binding 

sites. The method accurately predicted translation start sites for 83.2% and 94.4% on testing 

datasets from B. subtilis ad E. coli, respectively, but it may be lower in genomes where fewer 

genes have recognizable ribosome binding sites. 

5.3 MACHINE LEARNING TECHNIQUES USED 

Support vector machines, XCS (a modified version of traditional learning classifier 

systems), C4.5 (a decision tree algorithm), artificial neural networks, and naïve bayes are all 

compared in this paper on their ability to predict gene start sequences. Support vector machines 

are a kernel-based approach for developing a linear classifier that searches for the maximum-
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margin hyperplane (if one exists) between two disjoint classes. SVMs were originally described 

in (Boser, Guyon, and Vapnik 1992), and a voluminous literature exists on the topic. XCS is an 

extension of the traditional learning classifier system (hereon, LCS) approach first proposed by 

John Holland and described in (Holland 1992). LCS evolves a population of rules based on each 

rule’s ability to predict adequate behavior within some environment. XCS is described in 

(Wilson 1995) and extends LCS by making each rule’s fitness value dependent on the accuracy 

of the rule with respect to the kinds of actions it recommended during earlier training pattern 

presentations. C4.5 is a decision tree algorithm designed by Quinlan and described in (Quinlan 

1993) that improves upon the ID3 decision tree algorithm in order to address overfitting of a data 

set. C4.5 attempts to generate an optimal decision tree for classifying the data set it is trained on, 

and does so with aggressive tree pruning and it may be extended to handle attributes with 

continuous values. Artificial neural networks, described in (Rumelhardt and McClelland 1986), 

are a machine learning technique developed as a universal function approximating method that 

attempts to minimize the squared error between expected output and the actual output of the 

network by modifying the weights between the connections of the artificial neurons within the 

model. Finally, naïve bayes, described in (Rish 2001) is a statistical learning technique that 

calculates the posterior probability of any given possible output class (maximum likelihood) by 

utilizing the prior probability of the class and the features (variables) used to classify each given 

data pattern within a data set. 

5.4  EXPERIMENTAL SET-UP 

In order for the current investigation to be carried out, an extensive data preprocessing 

phase occurred before the data set of gene starts was fed, as appropriately formatted numerical 

data, into the machine learning algorithms. Originally, a set of genes with experimentally 
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verified gene-starts was compiled from the genes’ respective protein (amino acid) sequences. 

This was done by querying the NCBI database of complete prokaryotic genomes of DNA 

sequences for homologous genes with a given protein sequence using the TBLASTX version of 

the BLAST algorithm (Altschul et al. 1990). Once the homologous genes for a given query were 

obtained, DNA sequences spanning 200 base pairs (hereon, bp) upstream and 600bp downstream 

(or to the end of the gene, if less than 600bp long) from the original translation start site were 

extracted from the original query sequence and all homologous sequences. Homologous 

sequences were then aligned with the query sequence using the CLUSTALW algorithm 

(Thompson, Higgins, and Gibson 1994). The alignment was further processed by removing all 

columns corresponding to gaps in the query sequence. Once aligned, the information content at 

each position i in the alignment was calculated using Shannon’s information gain function: 
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Where is the frequency of nucleotide j at position i. The values of range from 0 (when all 
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 At this point, the reading frame was selected to be of length 60 and the reporting 

frequency was set to 1. Thus, for every alignment, two distinct patterns were created where each 

pattern was of length 120, corresponding to 60bp upstream and 60bp downstream from all 

possible translation start sites (initially identified as any ATG or GTG codon in the query 

sequence). 3 additional values, obtained with the same equation, were appended to each 

respective and pattern and corresponded to the level of conservation of the start codon 

itself for every alignment. Positive examples correspond to the experimentally verified 

translation start sites whereas all other ATG and GTG codons in the vicinity represent negative 

examples. In this manner, two total data sets of 1310 patterns of 124 attributes each were 

generated (123bp plus the target attribute, corresponding to the presence or lack of a verified 

translation start site) using the correlated and cumulated schemes previously described, with each 

data set containing 260 positive and 1050 negative examples.  

iR

mR mC

 Following this, because of the high dimensionality of the data set and the sparseness of 

the positive examples (123 attributes excluding the target binary attribute and 260 positive 

examples), the dimensionality of the data set was significantly reduced using the WEKA 

machine learning package, described in (Witten and Frank 2005) and freely available online 

through Waikato University, to prevent overfitting of the data and to automate the relevant 

feature extraction process. WEKA is an incredibly versatile machine learning package that 

implements a large number of different machine learning algorithms as well as having feature 

extraction, data clustering, and meta-learning capabilities. Dimensionality reduction was done by 

running a genetic algorithm (Holland 1992) built into the package that evolved a population of 

support vector machines, each of which used a random subset of the total attribute set. Genetic 

algorithms (GA) are global optimization techniques inspired by Charles Darwin’s theory of 
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natural selection and attempt to evolve an optimal solution to a given problem from a population 

of potential solutions for that problem. The genetic algorithm used one point crossover, roulette 

wheel parent selection, bit flip mutation, a population size of 200, and was evolved for 200 

generations. The SVMs underwent 10-fold cross validation (90% of each data set was used for 

training, 10% was used for testing) during the evolutionary run to make sure that overfitting of 

the data did not occur. The evolutionary procedure was repeated 10 times and the set of attributes 

that consistently ranked in the top 30% of the attribute subsets (those attributes that were chosen 

at least 70% of the time in the trained SVMs with the highest accuracy on the cross-validation 

set) were chosen from each data set to be used in the next stage of model development. 

Preliminary experiments showed that using this percentage was an effective way to reduce the 

dimensionality of the data sets.  

 With the decrease in dimensionality, the next task was discretizing the attributes (which 

were all initially real-valued) so that they may be appropriately incorporated into the XCS 

framework. Recently, XCS has been extended for handling real-valued classification in (Wilson 

2000). However, no implementation of the real-valued approach is currently available, and as a 

result, discretization of the attributes was a necessity. All other machine learning techniques used 

could handle real-valued attributes, and in their case, no further processing was required.  

 Discretization of the attributes was done so that the mean and standard deviation of each 

attribute across all patterns was calculated, and the range of possible values was divided 

according to where a given value fell in relation to the mean and to a certain number of standard 

deviations from the mean. Thus, values that were further than two standard deviations to the left 

of the mean were assigned a value of 0, those that fell between two and one standard deviation to 

the left of the mean were assigned a value of 1, and those that fell between one standard 
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deviation to the left of the mean and the mean itself were assigned a value of 2. The same 

procedure was used to discretize values that were to the right of the mean, and these were placed 

into their appropriate ranges and assigned discrete values between 3 and 5. This, in turn, caused 

different attributes to have different discrete ranges of possible values as certain attributes had no 

values that, for example, fell two standard deviations to the left or the right of the mean value. 

However, this only affected a small number of the attributes.  

 Once the discretization process was completed, each data set was incorporated into a 

modified version of Martin Butz’ Java implementation of XCS (Butz 2000) that could handle 

wider discrete-valued range of condition values than the standard ‘1’, ‘0’, and ‘#’ setup. The data 

sets were treated as the total environment in which the XCS was evolved, and a state of the 

environment corresponded to a given pattern (DNA segment) being presented to the classifier 

system. With all of the necessary preprocessing stages complete, the XCS implementation was 

ready to be run. 

 Initially, the XCS implementation was run given an extensive range of different possible 

parameter settings to determine the optimal size of the population of classifiers, the learning rate 

used to update each individual rule’s accuracy based fitness measure, the probability of assigning 

a ‘#’, or “don’t care” value, during the initial creation of a random classifier, the probabilities of 

crossover and mutation during the GA-mediated rule discovery mechanism, and the number of 

pattern presentations (environmental states) needed until no additional improvement in the 

accuracy of the classifier system occurs. These preliminary explorations were done for both data 

sets and yielded the same parameter settings, with 10-fold cross validation being used to ensure 

that parameter tuning was not being affected by overlearning of the data set. With parameter 

tuning complete, the XCS was run on each data set twenty times and average total percentage 
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correct, true positive, false positive, true negative, and false negative rates were all recorded. 

Finally, these results were compared to three other machine learning algorithms implemented in 

WEKA- support vector machines, naïve bayes, and the WEKA implementation of the C4.5 

decision tree algorithm, and to a separately implemented artificial neural network package 

provided by Brian Smith of the UGA AI Center. This ANN package was used because of its 

modularity and ease of incorporation into the current approach. In the case of the WEKA-

implemented algorithms, the default settings for the algorithms were used because tuning the 

parameter settings for these techniques to locate optimal values would have both taken a 

prohibitively large amount of time (several days for each algorithm tried), and because some 

initial experimentation with parameter settings in these cases showed that the improvement in 

performance was marginal. In the case of the neural network, the only parameter tuned was the 

number of nodes in the hidden layer, with the learning rate set at a default 0.3, and the 

momentum term set to a default 0.2. For the non-XCS machine learning algorithms a single run 

took a much shorter time to execute than the XCS. As a result, a single run where results could 

be accurately compared was taken to be the run that yielded the best of the aforementioned 

values out of a set of back-to-back runs of the given method (with different initial random seed 

values, where appropriate). Furthermore, the time to execute the set of back-to-back runs was 

equal to the time necessary to execute a single XCS run. Again, this was done on each data set, 

with 20 such ‘runs’ being done and the average values across the 20 runs ultimately reported. 

5.5 RESULTS 

The process of dimensionality reduction winnowed the number of attributes in the 

Cumulated and Correlated data sets considerably to 21 and 36 attributes (excluding the target 

binary value), respectively. The standard three layer artificial neural network finally used in the 
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experiment had 10 hidden nodes. The optimal parameter settings that were found during the 

parameter tuning stage for XCS model development are recorded in table 5.1.  

 
Table 5.1: Optimal Parameter Settings for the XCS Model 

 

Learning Rate 0.2 

Probability of '#' (don’t care)  0.6 

Crossover Probability 0.7 

Mutation Probability 0.02 

Number of Pattern Presentations 50000 

Maximum Classifier Population Size 2000 
 
The results of the experiments on both reduced data sets across all machine learning approaches 

used may be found in tables 5.2 and 5.3.  

 
Table 5.2: 10-Fold Cross Validation Results for the 21 Attribute Cumulated Data Set 

 

Algorithm 
Avg. % 
Correct TP TN FP FN 

XCS 91.08% 0.7126 0.9445 0.0555 0.2874 

SVM 92.44% 0.751 0.968 0.0302 0.249 

C4.5 88.35% 0.6552 0.9106 0.0894 0.3448 
Naïve 
Bayes 80.58% 0.5517 0.8709 0.1291 0.4483 

ANN 90.08% 0.7805 0.9434 0.0566 0.2195 
 
 

Table 5.3: 10-Fold Cross Validation Results for the 36 Attribute Correlated Data Set 
 

Algorithm 
Avg. % 
Correct TP TN FP FN 

XCS 92.22% 0.7667 0.955 0.045 0.2333 

SVM 91.05% 0.7005 0.9437 0.0563 0.2995 

C4.5 88.17% 0.6333 0.9268 0.0732 0.3667 
Naïve 
Bayes 83.98% 0.6026 0.900 0.1 0.3974 

ANN 91.22% 0.7222 0.9502 0.0498 0.2778 
  



 62

 The support vector machine algorithm outperformed all other models on the Cumulated 

data set with respect to the overall percent correct (Overall>92%) and achieved a very high 

negative identification rate (TN>96%). The SVM trained on the Cumulated data set achieved the 

highest overall percent correct across both data sets as well. However, the artificial neural 

network model trained and tested on the Cumulated data set achieved the highest positive 

identification rate (TP>78%) across both data sets. XCS was able to outperform all other 

algorithms on the Correlated data set with respect to the average percent correct. XCS has never 

been used to predict gene starts before, and its ability to outperform other standard machine 

learning techniques in predicting gene starts is notable. From the results, it seems that the 

discretization of attributes required for XCS does not hamper the predictive ability of the 

method; in fact, it may be that the discretization is what allowed the technique to perform as well 

as it did. Naïve bayes achieved the poorest performance on both data sets. The C4.5 algorithm 

consistently outperformed naïve bayes, but was unable to compete with the XCS, ANN, or SVM 

approaches. All of the machine learning approaches used would have significantly outperformed 

a random classifier, since a random classifier would have had about a 20% true positive success 

rate (based on the number of positive examples relative to the number of overall examples), 

whereas the classifier with the lowest true positive rate (naïve bayes) was able to correctly 

predict over 50% of the positive examples. It is also interesting to note that although the overall 

predictive capacity of XCS and ANN improved with a significant increase in the dimensionality 

of the attribute space (as evinced by the dimensionality difference between the two data sets), the 

performance of the SVM model worsened as a result of the increase in dimensionality. This may 

be attributed to either a fundamental difference in the way the three approaches selectively 

magnify and minimize aspects of the attribute space (so that an increase in the attribute 
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dimensionality allowed the XCS to better distinguish the appropriate gene start codon from a set 

of all possible start codons, whereas the increase confused the SVM and worsened its general 

performance) or to a fundamental difference in the structure of the numerical data between the 

two data sets (since the numerical attribute values in the two data sets, although culled from the 

same DNA sequence data, represent different mathematical approaches towards modeling this 

genetic data). 

5.6  FINAL REMARKS 

Several distinct machine learning techniques for predicting translation start sites across 

multiple bacterial genomes have been tested. XCS, an accuracy-based classifier system that 

evolves a population of rules to solve some computationally intensive task, has not been used to 

predict start sequences before, and the approach works as well as other, more common 

algorithms typically used in this area of bioinformatics. In the case of XCS, although a 

population of rules has been evolved, the population size of the rules is very large and thus does 

not provide an adequate way of choosing the most salient, representative rules to be used by 

researchers in genetic research. However, certain approaches for extracting general rules from 

the rule set have been offered. Wilson proposed a method for reducing the size of the rule set in 

XCS in (Wilson 2002) and was able to generate a small rule set using a specific data set 

(Wisconsin Breast Cancer dataset), where the final rule set was understandable and represented 

knowledge interpretable to researchers within the field. Kharbat, Odeh, and Bull (Kharbat, Odeh, 

and Bull 2006) also recently described an approach where they were able to cluster the total rule 

set into aggregate regions of rules. Their approach is able to extract an average rule from each 

rule cluster, representing the most common features of the rules within the cluster. Perhaps 

applying these methods to the rule set obtained for the current model will provide useful 
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knowledge to researchers attempting to understand the logic behind gene starts. In any case, 

future work should involve both improving on the accuracy of the current approach through 

further, more sensitive discretizing of the attributes, and the reduction of the total rule set to a 

smaller set of comprehensible and general rules. 

 The SVM and ANN techniques compared in this approach have been used for predicting 

translation and transcription start sites before, but the kind of automatic dimensionality reduction 

used in this approach has not been used. The feature extraction approach described here may 

prove useful to researchers that are attempting to automate the extraction of useful features in 

this and other areas of computational biology. 
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CHAPTER 6 

CONCLUSIONS 

 The models generated with the techniques described in the previous four chapters have 

been shown to be robust, accurate, and to generalize well to unseen data. Two of the techniques 

described have never been used in their respective domains of application before and have been 

shown to perform comparably to other techniques typically used in these domains. The research 

described in these studies will now allow future researchers to understand effective and 

appropriate ways in which problems belonging to these and similar task domains may be 

approached, represented, and modeled from an artificial evolutionary and heuristic-driven 

computational perspective. Some of the models that have been developed in this work, especially 

the final formulation for the static dielectric constant, may be used on their own by a variety of 

researchers needing accurate approximations and predictions in both of these task domains.  

  The research directions presented in this thesis have not been exhausted. For the static 

dielectric constant formulation, cross-validation may be used on the dataset to evaluate the 

interpolative abilities of the GP approach. The traditional handling of constants in the GP 

framework may be modified as well, so that constants are dealt with more dynamically and 

fluidly (generated based on the kinds of functional forms being created by the GP system, for 

example) than in the standard approach. For translation start site prediction, other methods may 

be compared to those described here so that further insight into what kinds of techniques work 

for tackling this problem may occur. The classifiers may also be combined into a single meta-

classifier that may exploit the strengths of each technique. Ultimately, research into these areas 
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may continue as long as the techniques and methods used to solve these problems are refined and 

improvements in the qualities of the models do not become insignificant.  
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APPENDIX 

A GP-EVOLVED FORMULATION FOR THE RELATIVE PERMITTIVITY OF WATER 

AND STEAM (EXTENDED VERSION) 

 

I. INTRODUCTION 

 The relative permittivity (or static dielectric constant) of water and steam, rε , has been 

experimentally calculated at a relatively wide range of temperatures and pressures. The relative 

permittivity is an important indicator of the solvent behavior of water in a variety of biological 

(cell membrane electrophysiology, intracellular biochemical processes), and industrial 

(geochemical high temperature, high pressure processes in deep sea vents) settings (Fernandez et 

al. 1997). Thus, predicting the behavior of the static dielectric constant of water is crucial for 

understanding a variety of phenomena, from the effects of hydrostatic pressure on protein folding 

and unfolding within the cell (Floriano and Nascimento 2004), to understanding the corrosive 

behavior of water at the high temperatures and pressures found in nuclear power plants. In 

electrical engineering, the relative permittivity of a substance is used in the design of capacitors. 

There have been many attempts at creating a single function that accurately predicts the relative 

permittivity of water and steam, the earliest of which was done by Quist and Marshall in 1965 

(Quist and Marshall 1965), but these have suffered from a lack of experimental values across the 

entire temperature and pressure range. Recently, Fernandez et al. compiled all of the 

experimentally available data for the relative permittivity of water and steam in a single database 

(Fernandez et al. 1995). Furthermore, Fernandez et al. evaluated the methods used to 
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experimentally derive the relative permittivity and chose a subset of the total data set that was the 

most accurate and that should be used in data correlation. Fernandez et al. proposed a new 

formulation in (Fernandez et al. 1997) that used this subset and approximated the relative 

permittivity very well across the entire temperature and pressure range. AI techniques have never 

been used to approximate the relative permittivity of water across any range of temperatures and 

pressures.  

Our proposal is that in order to more accurately model the behavior of the relative 

permittivity of water across all temperature and pressure values, two formulations should be 

created, so that each may be applied in separate thermodynamic regions.  In our approach, two 

functions are evolved that separately approximate the relative permittivity of water and steam 

across three thermodynamically distinct regions. These two functions collectively approximate 

the relative permittivity of water across the entire range of temperature and pressure values. The 

accuracy of these two functions is evaluated by comparing their values for the relative 

permittivity with the values obtained using the latest formulation of Fernandez et al., against the 

subset of dielectric constant values that Fernandez et al. chose for data correlation mentioned 

earlier. Any differences between the functional forms of the two evolved functions are explained 

and ideas for future work regarding a more accurate formulation are offered. 

II. BACKGROUND: THE STATIC DIELECTRIC CONSTANT 
 
  The static dielectric constant (hereon relative permittivity) of a substance, rε , is roughly 

defined as the ability of a substance to transmit or allow the existence of an electric field. More 

formally, the relative permittivity of a substance, rε , is the ratio of the static permittivity of the 

substance, sε , to the static permittivity of a vacuum, 0ε  (Fernandez et al. 1995). The behavior of 

the relative permittivity of water is related to its physical state (as a liquid or as steam), 
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temperature, and pressure. This allows the entire range of temperatures and pressures to be 

divided into 4 regions, A, B, C, and D. Region A is the normal liquid water state between the 

normal freezing and boiling points (~273K to ~373K). Region B refers to water along the liquid-

vapor phase boundary (saturation line). In this region, which extends from 373K to 

approximately 647.1K (the critical point), water may exist in either the liquid or gas state 

(depending on the pressure value). The critical point, which occurs at approximately 647.1K with 

a corresponding pressure of approximately 22.1MPa, denotes the point in the phase space 

beyond which water ceases to exist in the liquid state. Region C is the region above 373.15K, 

and at lower pressures and temperatures within region C, water is in the normal gas (steam) 

phase. However, at higher pressures and temperatures in this region (beyond the critical point), 

water becomes a supercritical fluid, that is, water recondenses back into a semi-liquid state, but 

exhibits the properties of both a liquid and gas. Finally, region D refers to super cooled water 

(water below the normal freezing point of 273.15K at the standard pressure of ~.1MPa).  

The behavior of the relative permittivity exhibits discontinuities along the liquid-vapor 

phase boundary (region B) and in the supercritical part of the region above the normal boiling 

point (region C). In these regions, very small changes in temperature and pressure cause very 

large changes in density and in the value of the relative permittivity (Harvey 2006). As a result, 

theoretical formulations for calculating the relative permittivity of water have mainly focused on 

a broad range of temperatures (~270K to ~600K) within a small range of pressures (~.1MPa to 

200MPa) (Fernandez et al. 1995). The most current formulation for approximating the relative 

permittivity across the entire range of experimental temperatures and pressures may be found in 

(Fernandez et al. 1997). Fernandez et al.’s formulation uses an extensive adaptive regression 

algorithm to create an appropriate function taking a wide variety of domain specific 
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thermodynamic values (including first, second, and third derivatives of the temperature and 

pressure inputs with respect to each other) into account. The final function uses 5 adjustable 

parameters and a total of 25 constants and domain specific non-adjustable parameters and 

approximates well across the entire range of experimentally available values (260K to 800K 

temperatures, at pressures up to 1200 MPa).     

III.  BACKGROUND: GENETIC PROGRAMMING 
 
 What follows is a very brief summary of the genetic programming technique, for further 

explanation and clarification see (Koza 1992). Genetic Programming (GP) is the evolutionary 

computing technique that attempts to evolve computer programs using a tree based 

representation scheme and GP-specific modified versions of the traditional evolutionary 

operators of crossover and mutation (Ghanea-Hercock 2003). This technique attempts to evolve 

an executable computer program that solves a specific user-defined problem from a set of 

functions, which are individual processes that manipulate and convert data elements, and 

terminals, which are the data elements themselves. The GP approach involves determining a set 

of functions and terminals to be used in solving the problem, defining a fitness measure by which 

individual programs may be evaluated regarding the extent to which they may solve the specified 

problem, setting the specific parameters and operator probabilities that are involved in program 

tree generation (crossover and mutation probabilities, initial tree depth limit, maximum tree 

length, etc.), and developing a set of rules to determine when to end a specific GP run (whether 

after a certain number of generations have elapsed, or after an individual program with a desired 

fitness threshold has been found). 

 The genetic operators of crossover and mutation, as well as the way in which individuals 

are ranked according to their fitness level are modified from the GA approach (described in 
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detail in Holland 1992) to suit the GP technique. Crossover occurs by selecting two nodes on 

different parent trees and then swapping all of the children of the selected nodes (as well as the 

selected nodes themselves) between the two individuals. Mutation, on the other hand, involves 

selecting a node at which mutation will occur, deleting all of the nodes that are children of the 

selected node, and then generating a random tree with this node as its root. The fitness evaluation 

and ranking method in GP is slightly different from the classic GA approach (where fitness 

maximization is standard) in the fact that the highest ranking individual programs in GP have the 

lowest fitness values (in effect, a minimization problem). Thus, GP attempts to find a program 

with the globally minimal fitness value in the search space of all possible programs that may be 

created using the function and terminal sets used in the problem, to the tree depth or program 

length specified in the GP setup.  

IV.  EXPERIMENTAL SET-UP 
 
 In our approach, a variety of different function and terminal sets were explored in an 

effort to evolve two functions that could model the relative permittivity of water as a function of 

pressure, temperature, and density. Initially, a continuous function was evolved to approximate 

the relative permittivity of water across regions A, C, and D, but the results of this function were 

highly unsatisfactory because the function could not accurately model the behavior of the 

relative permittivity of water in regions where discontinuities in the relative permittivity were 

observed (region C, as described earlier). Unfortunately, no empirical temperature/pressure data 

for region B (along the phase boundary) is currently available (Fernandez et al. 1995), and thus a 

function approximating the dielectric constant in region B was not evolved. As a result, evolving 

2 different functions, one specific to regions A and D (which are contiguous with respect to each 

other and where the relative permittivity does not exhibit discontinuous behavior), the other 
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specific to region C (where the relative permittivity behaves nonlinearly with respect to linear 

changes in the temperature and pressure), became the most logical next step in function 

development.  

The functions for regions A, C, and D were evolved using data sets taken from 

(Fernandez et al. 1995) and were then compared to relative permittivity values calculated with 

the same input values (taken from the same data sets) using the newest formulation for dielectric 

constant prediction, found in (Fernandez et al. 1997). These data sets were compiled from all 

previous experimentally available data, and were then corrected by Fernandez et al. to coincide 

with the most recent internationally accepted temperature scale, ITS-90. In most cases, values 

were provided for the temperature (in degrees Kelvin, or K), pressure (in megapascals, or MPa), 

and the corresponding dielectric constant. However, in some cases, 

temperature/density/dielectric constant values were given instead of 

temperature/pressure/dielectric constant values. In these circumstances, density values were 

converted into their corresponding pressures, and pressure values were converted to their 

corresponding densities using the IAPWS-95 formulation for the equation of state of water found 

in (Wagner and Pruss 2002). With this completed, the final data set uniformly represented the 

dielectric constant at every temperature, pressure, and density value that was experimentally 

available. 

Both functions were evolved by generating a population of possible functions 

(represented as trees) as with standard genetic programming implementations. Each candidate 

function’s fitness was taken to be the sum of the absolute values of the difference between the 

calculated and the experimentally measured value for the relative permittivity at every input 

value in the corresponding data set. The combination of input values for each function (that is, 
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what combination of the three possible adjustable inputs was to be used) was determined by the 

GP module. The population of possible functions was then evolved with a variety of 

crossover/mutation probabilities and function sets. The data set of experimentally calculated 

relative permittivity values used to create a function for regions A and D consisted of 291 data 

points. The data set used to create the function for the one-phase supercritical region (region C) 

consisted of 353 data points. These data sets include all of the data points (644 total data points) 

that Fernandez et al. recommend for data correlations (Fernandez et al. 1995). The two evolved 

functions with the lowest sum of absolute errors across the data points that were found were used 

as the final equations for approximating the dielectric constant across the three regions.   

During any given GP run, all function and terminal sets used during function evolution 

always included addition, subtraction, multiplication, and division as function operators, and 

temperature, , pressure,kT p , and density, ρ , as terminal values. All runs also used a population 

of 10 random floating-point constants in the range between 0 and 1, which were generated at 

runtime. Other function operators (sin(), cos(), ln(), , , and ) and terminal operators 

(Avogadro’s number, , permittivity of free space,

10log 2log yx

AN 0ε , elementary charge, , Boltzmann’s 

constant, k , molar mass of water, , mean molecular polarizability of water,

e

wM α , the dipole 

moment of water,μ ) were also used in certain GP runs. The aforementioned terminal operators 

are provided in table A.1. A range of crossover probabilities (between .5 and 1.0, in increments 

of .05) and mutation probabilities (between 0 and .5, in increments of .05) were explored for all 

combinations of function and terminal sets. Each combination of parameter settings was 

implemented in 10 GP runs, each on a population of one million individuals that were evolved 

for 200 generations.  The function length of any individual solution (a tree representing a given 

candidate function) never exceeded 50 functional units (where a functional unit is taken to be a 
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single operator from the function set or a terminal value from the terminal set), as maintaining 

the readability of any given evolved function was a priority.  

V.  RESULTS  
 
 Both of the two best functions that were evolved were found during a run that used 

multiplication, division, subtraction, and addition as operators in the function set and 

temperature, pressure, and the molar mass of water as terminal operators (with the 10 additional 

random ephemeral constants described earlier). In addition to the above terminals, the function 

evolved for region C used density, ρ , Avogadro’s number, , and Boltzmann’s constant, , as 

terminal operators. Both best function runs used a probability of crossover of 0.7 and a 

probability of mutation of 0.05. These functions (simplified with all redundancies eliminated), 

along with Fernandez et. al’s formulation, follow: 
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Figure A.1: Evolved equation, regions A, D 
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Figure A.2: Evolved equation, region C 
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Figure A.3: Fernandez’ formulation 

 
 The results of applying these functions to their respective partitions of the total data set 

are found in table A.3. The evolved functions shown above are significantly smaller than the 

formulation developed by Fernandez et al. and use at most three adjustable parameters 

(temperature, pressure, and density), three non-adjustable domain specific parameters 

(Avogadro’s number, Boltzmann’s constant, and the molar mass of water), and three of the ten 

possible random ephemeral constants that were available during function evolution. No domain-

specific knowledge (aside from the data sets themselves) was applied to the formulation of the 

functions. Furthermore, the evolved functions selected different terminal values for both regions, 

so that the region C function uses density as an input value along with temperature and pressure, 

whereas the region A and D function uses temperature and pressure exclusively. This is telling 

because density is a much more relevant predictive parameter (varying discontinuously along 

with the relative permittivity while temperature and pressure monotonically increase) for the 
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relative permittivity in the single phase and super critical region (region C) than in regions A and 

D. The fact that the GP approach was able to selectively choose the relevant parameters for each 

region is notable and significant.   

As can be seen from table A.3, both evolved functions outperformed Fernandez et al.’s 

formulation across all thermodynamic regions. For regions A and D the evolved function 

outperformed Fernandez et al.’s formulation strictly because of one data point value (notably, a 

data point that occurred immediately preceding the phase boundary around 373.15K). At this 

temperature, Fernandez et al.’s formulation may have rounded the temperature input parameter 

(at 373.147K) up, causing a very sharp discontinuous drop in the calculated relative permittivity 

value. In region C, the evolved function consistently outperformed Fernandez et al.’s 

formulation, leading to an improvement in calculation accuracy across the entire range of 

experimentally available relative permittivity values. 

VI.  CONCLUSIONS AND FUTURE WORK: 
  

Two functions that approximate the relative permittivity of water and steam at a variety 

of temperatures and pressures have been proposed. These functions were evolved using the GP 

technique with a specific function and terminal set, and their accuracy has been compared to that 

achieved by Fernandez et al.’s most recent formulation. The evolved functions approximate the 

relative permittivity of water and steam for a wide range of temperature and pressure values 

quite well, improving on Fernandez et al.’s formulation across the entire experimentally 

available temperature and pressure range while being much simpler computationally. Further 

refinements to create more accurate approximations of the relative permittivity of water and 

steam will include creating an evolved function that can be used across all thermodynamically 

distinct temperature and pressure regions. This can be done when experimental values for the 
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temperature, pressure, and relative permittivity along the phase boundary and more values in the 

supercritical region are obtained. A refined fitness function that takes more than the absolute 

difference between expected and calculated values may also prove useful in creating a new 

formulation. However, significant improvements to the evolution of an appropriate function will 

most surely come from an increase in experimentally verifiable values for the relative 

permittivity, and thus any new accurate data that may be found should be used to refine the 

current formulation. 

VII.  TABLES 
 

Table A.1: Constants used in the relative permittivity formulation 
 

Parameter Value 
Permittivity of free space, 0ε  112127 ])299792458(104[ −−−−∗ mJCπ
Elementary charge,  e C1910*60217733.1 −  
Boltzmann's constant,  k 12310*380658.1 −− JK  
Avogadro's number,  AN 12310*0221367.6 −mol  
Molar mass of water,  wM 1*018015268.0 −molkg  

Mean molecular polarizability of water,α  2124010*636.1 −−− mJC  
Dipole moment of water, μ  Cm3010*138.6 −  

 
 

Table A.2: Coefficients , and exponents , , and q of the equation for g kN ki kj
 

           k                                        kN ki  kj  

1 269782244868.0 1 0.25 
2 759577713793.0− 1 1 
3 482375117941.0 1 2.5 
4 967146922443.0 2 1.5 
5 562982170369.0− 3 1.5 
6 961088634721.0− 3 2.5 
7 110*649493274882.0 − 4 2 
8 210*099804698165.0 −− 5 2 
9 410*701651676349.0 −  6 5 

10 410*729373597957.0 −  7 0.5 
11 910*201231792187.0 −− 10 10 
12 210*261960965044.0 −   q=1.2 
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Table A.3: Results and numeric comparison 
 

 REGION C   REGION A,D  

 
Evolved GP    

result Fernandez  
Evolved GP 

result Fernandez 
Sum Absolute Difference 57.21 69.15  44.85 80.58 
Mean Absolute Difference 0.16 0.20  0.15 0.27 

Standard Deviation 
Absolute Difference 0.25 0.25  0.26 3.18 

Sum Squared Difference 30.82 35  26.9 2991.42 
Mean Squared Difference 0.09 0.1  0.09 10.18 

Standard Deviation 
Squared Difference 0.75 0.70  0.41 173.92 
Minimum Absolute 

Difference 0 0.00  0.001 0 
Maximum Absolute 

Difference 3.76 3.6  1.97 54.61 
# Data Points  Absolute 
Difference formulation < 

Absolute Difference 
Fernandez 181   142  

Percentage of Total Data 
Points better than 

Fernandez 51.27%   48.80%  
Total Data Points 353 353  291 291 
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