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CHAPTER 1 

INTRODUCTION 

 

In its broad sense, tagging in natural language processing (NLP) refers to any process that 

assigns certain labels to certain linguistic units. In its narrow sense, as it is used in this thesis, it 

denotes the assignment of part-of-speech tags to texts. A computer program for this purpose is 

called a tagger. Both word and part-of-speech are used in their broad senses. The former in effect 

includes everything but white space and the latter is not limited to the categories listed in 

traditional grammar books. For example, Treebank-3 (Marcus, Santorini, Marcinkiewicz, & 

Taylor, 1999) uses 36 tags and the C6 tagset of the CLAWS4 tagger has 138 tags (Leech, Garside, 

& Bryant, 1994). As an example, (1.1) is a tiny excerpt of the tagged Switchboard, which is one 

of the four components of Treebank-3 (See Appendix B for the tag descriptions). 

(1.1) SpeakerB3/SYM ./. 

Well/UH what/WP do/VBP you/PRP think/VB about/IN the/DT idea/NN 

of/IN ,/, uh/UH ,/, kids/NNS having/VBG to/TO do/VB public/JJ 

service/NN work/NN for/IN a/DT year/NN ?/. 

Almost all advanced NLP projects, such as syntactic parsing, information retrieval, text 

mining, speech-to-text conversion, building annotated corpora, etc., rely on tagging as the first 

operation. Their performances can be significantly improved by an excellent tagger. For example, 

one of the syntactic parsers used by the company which I am working for incorrectly parsed 
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sentence (1.2) as (1.4). After manually assigned the correct tags to are, to, and use, the sentence 

was parsed correctly and the parsing time was reduced by about three times. 

(1.2) Bots in Bot Colony are programmed to use spoken language when a human is 

present. 

(1.3) Bots in Bot Colony (Aux = are) programmed (Aux= to) (Verb = use) spoken 

language when humans are present. 

Given the important roles played by tagging in NLP, an efficient, scalable, portable, and 

trainable tagger with high accuracy is needed. However, almost no existing tagger possesses all 

of these features, as shown in Chapter 2. This motivates me to choose as my thesis topic 

developing a first-class tagger and an automatic tagger-maker. The resulted tagger will have the 

following features: a) its accuracy will be above 96% on the testing data, b) its performance will 

not be affected by the size of the text to be tagged, c) it can tag at least 200,000 words per second 

on the testing computer, and d) it can improve itself using the annotated corpus supplied by users. 

The resulted tagger-maker will have the following features: a) given a pre-tagged corpus of 

considerably big size, it will build a fast, completely scalable, and considerably accurate tagger, 

b) there will be no requirements for the corpus’ annotation scheme, its text type, or its language, 

and c) the tagger-making process will be completely automatic. 

The major algorithms to be used include Bayes’ theorem, a hidden Markov model, the 

Viterbi algorithm, a reinforcement machine learning algorithm, the contextual constraint 

algorithm, and the algorithm to deal with unknown words. 

Written in C#, the program will provide end-users with a Windows interface and 

programmers with the well-documented APIs. 
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(1.4) The incorrect syntactic tree of the sentence Bots in Bot Colony are 
programmed to use language when a human is present. 

 
 
       Start 

                S 
                    NP 
                                     NP 
                                        Nominal 
                  Bots                     Noun 
                                 PP 

In           Prep 
                               NP 

Bot_Colony                 Proper 
                      VP 

are               Verb 
                               VP 

programmed           Verb 
                               PP 

to           Prep 
                                  NP 
                                    NP 
                                 Nominal 

use                               Noun 
                               C 
                                      VP 

spoken                          Verb 
                             NP 
                                NP 
                                  NP 
                                      Nominal 

language                      Noun 
                                  AdvP 

when                       Adv 
                          C 
                                S 
                                    NP 
                                       Det 

a                            Art 
                                           Nominal 

human                              Noun 
                                 VP 

is                             Verb 
                                       AdjP 

present                          Adj 
.       Literal 
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(1.5) The correct syntactic tree of the sentence Bots in Bot Colony are 
programmed to use language when a human is present. (After manually 
assigning the correct parts-of-speech to the underlined words) 

 
 
            Start 

         S 
           NP 
              NP 
                 Nominal 
Bots                Noun 
              PP 
in     Prep 

NP 
Bot_Colony    Proper 
          VP 
are   Aux 

VP 
programmed  Verb 
                 C 
to                   Aux 

VP 
use      Verb 

NP 
Nominal 

PartP 
spoken        Verb 
                         Nominal 
language                      Noun 
                    WhC 
                        AdvP 
when                        Adv 

                                S 
                                 NP 
                                     Det 

a                               Art 
                                           Nominal 

human                              Noun 
                               VP 

is                             Verb 
                                       AdjP 

present                          Adj 
.       Literal 
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To avoid redundant description, throughout the thesis, the testing computer refers to the 

desktop computer that is used to test the programs. It has two-gigabyte random access memory 

and two 3.00 GHz Pentium duo processors. 

The rest of the thesis is arranged as this: chapter 2 gives a brief survey of the major existing 

taggers, chapter 3 describes the major algorithms to be used, chapter 4 details the implementation 

of the algorithms, chapter 5 presents the tagging and tagger-making results, and chapter 6 

concludes the thesis, summarizing its achievements.
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CHAPTER 2 

SURVEY OF MAJOR EXISTING TAGGING PROGRAMS 

 

Tagging projects started from the 1950s. According to what they are based on, the existing 

taggers can be classified into three major families: those based on linguistic rules, those based on 

probabilities, and those based on both. 

2.1 RULE-BASED TAGGERS 

This type of taggers rely on contextual rules such as if a word is an article, it cannot be 

followed by a base verb in simple sentences. The rules are either written by linguists using their 

linguistic knowledge of a particular language or automatically generated from pre-tagged 

corpora. An example of the former is Klein and Simmons (1963) and an example of the latter is 

Brill (1995). 

Klein and Simmons (1963) called the linguistic rules that they used the contextual grammar 

coder (CGC). The CGC system was developed empirically through manual analysis of the 

simple text found in a children’s encyclopedia. They used CGC to tag a couple of pages of that 

same encyclopedia and reported that the accuracy was slightly over 90% and the speed was 

about 21 words per second. Of course, neither the accuracy nor the speed can be compared with 

today’s taggers, due to the poor computers and lack of manually annotated corpora. However, 

their project proved that it is completely possible to use a computer to automatically assign 

parts-of-speech to texts. 
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Instead of writing the contextual rules manually, Brill (1995) generated 280 contextual 

rules automatically from the tagged Brown corpus, using a machine learning approach. All of the 

rules are of the form A B contextual condition where A is the tag to be transformed from and B is 

the tag to be transformed to. Only when the contextual condition is satisfied, can the 

transformation take place. For example, a rule like vbn vbd PREVTAG np means changing a past 

participle (vbn) into a past form (vbd) if it is preceded by a proper noun (np). 

The Brill tagger is composed of three parts: 1) the lexical tagger, which, for each word, chooses 

among its possible tags the one with the highest frequency, 2) the unknown word tagger, which 

assigns the guessed tags to unknown words, and 3) the contextual tagger, which applies the 

transformation rules. 

The Brill tagger is significant in that it proved that computer can learn to generate rules 

from data. His tagger’s accuracy is from 95% to 97%. However, as pointed out by Roche & 

Schabes (1995), it is inherently slow for two reasons. First, the tagger applies all rules to each of 

the sentences to be tagged, matching the tags one by one. Since it does not remember which tags 

have already been compared, it performs a tremendous amount of unnecessary string comparison. 

Second, some of the rules may cancel each other, resulting in unnecessary computation. 

In general, writing contextual rules by hand is a tedious process and matching them one by 

one is computationally expensive. This plus the availability of large pre-tagged corpora and the 

affordability of super computers encourages researchers to develop probability-based taggers, 

which, in my view, accounts for the rarity of rule-based taggers. 

2.2 PROBABILITY-BASED TAGGERS 

These taggers can be classified into five subtypes according to their major algorithms: 1) 

those based on various Markov models (Church, 1988; Kim, Rim, & Tsujii, 2003; Lee, Tsujii, & 

Rim, 2000a, 2000b, 2000c; Thede & Harper, 1999), 2) those using genetic algorithms (Araujo, 
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2002; Enrique, Luque, & Araujo, 2006), 3) those based on artificial neural networks (Roth & 

Zelenko, 1998; Schmid, 1994), 4) those employing statistical decision trees (Kim et al., 2003; 

Marquez, Padro, & Rodriguez, 2000), and 5) those relying on the maximum entropy theory 

(Ratnaparkhi, 1996; Toutanova & Christopher, 2000). 

The common feature of the first subtype is that they are based on two types of probabilities: 

the probability of a word being a particular tag and the probability of a tag following or 

preceding a fixed number of other tags. These probabilities are calculated by counting the 

frequencies of the relevant items of the pre-tagged corpora. A typical example is Church (1988), 

which finds the best tag sequence in the following steps. 

1) Calculating the probabilities of all unique words’ being all possible tags and the 

probabilities of all unique tags’ being preceded by unique bigrams. He called the former the 

lexical probability, and the latter the contextual probability. 

2) Treating the text as though it were composed of the last word only and calculating the 

probabilities of all parts-of-speech of that word, each of which is the product of that word’s 

lexical probability and its contextual probability. 

3) Adding one word backward and calculating the probabilities of all possible tag 

combinations of those words.  

4) Repeating step three until all words are processed.  

5) Choosing the tag sequence that has the highest probability. 

Church (1988) is one of the earliest projects that employ dynamic programming to solve 

the tagging problem. He reported that his tagger’s accuracy ranged from 95% to 99%. However, 

he didn’t mention how it dealt with unknown words. Though the author claimed that the 

computation time was linear to the number of the words to be tagged, it may be much longer 
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than that, since adding all tags of each preceding word increases the possible partial tag 

sequences exponentially. 

Araujo (2002) and Enrique et al. (2006) are the first projects to use genetic algorithms to 

solve the tagging problem. These two papers are almost the same so I will review the more 

recent one only. Their basic algorithm is summarized as follows. 

First, it randomly initiates a list of possible tag sequences, called population. Each member 

of the population is a genotype made up of genes. A genotype is actually a sequence of 

part-of-speech tags. Second, it randomly forms a number of genotype couples and exchanges the 

genes (part-of-speech tags) within each couple to produce new genotypes and this process is 

called crossover. Third, it randomly selects one gene of each new genotype and randomly 

changes that gene into another allowable tag and this process is called mutation. Finally, it used 

the fitness function to score each genotype to find n best genotypes to replace 

them for n randomly selected genotypes to update the population and this process is called 

survival selection.  is the fitness score of each gene, which is calculated by [2.1], where 

occ stands for occurrences, LC for left context tags, T for the current tag in question, RC for the 

right context tags, and l is the number of the possible tags of a word. 

∑= i genegenotype i
ff

genef

[2.1]  ∑
−=

=

=
1

0
)),,(/),,(log(

lj

j

j
gene RCTLCoccRCTLCoccf

The entire cycle of crossover, mutation, and survival selection is called an evolutionary 

generation. After the preset number of generations is reached, evolution stops and the genotype 

with the highest fitness is chosen, which is the optimal tag sequence. 

From the algorithms summarized above, we know that there are three problems in using 

evolutionary algorithms to tag texts. First, it is bound to be slow due to the computationally 
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expensive processes of crossover, mutation, and survival selection. Second, the tagging result 

varies from one run to another. Third, the tagger may not be scalable, i.e., the size of the text may 

give the tagger big trouble. The reported best accuracy was 96.41% after 5,656 generations of 

evolution and the reported speed was about 10,000 words per second. 

An example of using statistical decision trees to solve the tagging problem is Marquez, 

Padro, & Rodriguez (2000). Using 96% of WSJ of Penn Treebank as the training data, the 

authors group all multi-tag words into 253 ambiguity classes, such as class JJ-VBG (e.g. amusing, 

exciting, etc.) and class JJ-VBD-VBN (e.g. amused, excited, surprised, etc.). The tagging problem 

thus becomes a classification problem. They selected the following attributes: the third tag to the 

left of the word in question (tag-3), the second tag to the left (tag-2), the first tag to the left 

(tag-1), the first tag to the right (tag+1), and the second tag to the right (tag+2), and the word’s 

spelling features, such as capitalization, containing digits, etc. In other words, the best tag of a 

word is decided by it contextual and spelling characteristics. 

They tested their tagger on the remaining 4% of WSJ and the reported accuracy was 97%. 

However, it was able to tag only about 300 words per second on a computer with an UltraSparc2 

processor. Although, I have no idea of the performance difference between UltraSparc2 

processors and Pentium processors, I believe that even if they had used today’s powerful 

processor, the tagger would still have been very slow. 

A widely used tagger is the Stanford tagger (Toutanova & Christopher, 2000) that uses the 

maximum entropy theory to search for the optimal sequence of tags. It is trained on sections 0-20 

of WSJ of Treebank-3 and tested on sections 23-24. The reported accuracy is 96.86%. No speed 

is reported. The Stanford tagger is trainable in that it can produce a tagger by using a tagged 

corpus provided by users. Using the testing computer and the same testing data, I replicated the 
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tagger’s performance. The accuracy is about the same as that reported but it took more than 42 

minutes to tag the 111,117 tokens at the speed of 44 words per second. I then tested it on the 

1-million-word Brown corpus with the result that the testing computer crashed due to an 

out-of-memory exception after more than 10 hours’ computing. In sum, the Stanford tagger is 

trainable and has reached the state-of-the-art accuracy but it is unbearably slow and is not 

scalable. 

2.3 HYBRID TAGGERS 

Taggers of this family use both linguistic rules and probability-based methods. One of the 

most successful examples is the CLAWS project by Lancaster University (Garside, Leech, & 

Sampson, 1987; Leech et al., 1994; Marshall, 1983). The latest version is the CLAWS4 tagger, 

which is also called the BNC tagger due to the fact that it was used to tag the 100-million-word 

British National Corpus (BNC). Leech et al. (1994) summarized the core algorithms of the 

CLAWS4 tagger as follows: 

(a)  segmentation of text into word and sentence units 

(b)  initial (non-contextual) part-of-speech assignment [using a lexicon, 

word-ending list, and various sets of rules for tagging unknown items] 

(c)  rule-driven contextual part-of-speech assignment 

(d)  probabilistic tag disambiguation [Markov process] 

(e)  output in intermediate form 

(pp. 622-623) 

The probability-based algorithm used by the CLAWS4 tagger is a hidden Markov model. 

The linguistic rules were actually built up over 14 years and they are responsible for tagging 

multi-word expressions, such as according to, as well as, kind of, sort of, etc. Each word of such 
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an expression should be assigned the same tag as that of the expression taken as a whole. For 

example, in (2.1), according and to are both given the tag PRP2, and sort and of are both tagged 

as AV02. An ending number is used to indicate the position of the word in the multi-word 

expression, hence According_PRP21 and to_PRP22. The definitions for the C5 tagset are given 

in Appendix C. 

(2.1) According_PRP21 to_PRP22 that_DT0 news_NN1 ,_, the_AT0 enemy_NN1 

was_VBD sort_AV021 of_AV022 defeated_VVN ._. 

Lancaster university provides a trial tagging service at 

http://ucrel.lancs.ac.uk/claws/trial.html. It accepts up to 10,000 words for tagging every time. 

(2.1) is the online tagging result. To test the tagger’s accuracy and its speed, I tried some files 

from the Brown corpus and manually checked the result. The accuracy is about 96% and the 

speed is about 500 words per second including the time for data transmission through the 

network. 

That the CLAWS4 tagger successfully tagged the 100-million-word BNC indicates that it is 

completely scalable. The linguistic rules make the CLAWS4 tagger outstanding in handling 

multi-word expressions. On the other hand, we should keep in mind that as those rules were 

written just for the English language, they are not portable to other languages. 

Table 2.1 summarizes most of the taggers mentioned in this chapter. The speed is measured 

by the number of words processed per second; portable indicates whether the methods can be 

applied to other text types or other languages, and trainable refers to whether the tagger can 

improve itself or produce a new tagger, given a user-supplied pre-tagged corpus. As shown there, 

almost all of the taggers have achieved very high accuracy. However, it seems that the authors 

had little interest in the tagger’s efficiency, as most of them even didn’t mention it at all. An 
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inefficient tagger has little hope to be scalable. Finally, no tagger except the Stanford tagger is 

trainable. 

Table 2.1 Major existing taggers and their features  

“Portable” indicates whether the methods can be applied to other text types or other 
languages. “Trainable” refers to whether the tagger can improve itself or produce a new tagger 
if given a pre-tagged corpus by users. 

 

Tagger Major algorithms Accuracy Speed 
(wps) Portable? Trainable?

Klein and 
Simmons (1963) 

using manually 
written contextual 
rules 

90% 21 No No 

Brill (1995) using generated 
transformation 
rules 

95%-97% unknown Yes No 

Church (1988) Markov process 95%-99% unknown Yes No 
Enrique et al. 
(2006) 

evolutionary 
algorithm 94.61% 10,000 Yes No 

Marquez et al. 
(2000) 

decision tree 97% 300 on 
Ultrasparc2 Yes No 

The Stanford 
tagger 

maximum entropy 96.68% 44 Yes Yes 

CLAWS Markov process & 
Linguistic rules ≈ 96% 500 via 

internet No No 

Banko & Robert 
(2004) 

contextualized 
hidden Markov 
model 

97.24 unknown Yes No 

Kim et al. 
(2003) 

variable memory 
Markov models 96.9% unknown Yes No 

Thede & Harper 
(1999) 

2nd-order of 
hidden Markov 
model 

98.04% unknown Yes No 

Roth & Zelenko 
(1998) 

winnow-based 
network 98% unknown Yes No 

Schmid (1994) neuron network 97.79% unknown Yes No 
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CHAPTER 3 

MAJOR ALGORITHMS 

 

The major algorithms used for this project are 1) Bayes’ theorem (Mitchel, 1997), 2) a 

Markov assumption (Brill, 2000), 3) the Viterbi algorithm (Forney, 1973), 4) a reinforcement 

machine learning algorithm, 5) the algorithm to deal with unknown words, and 6) the contextual 

transformation algorithm. 

3.1 BAYES’ THEOREM 

In machine learning we are interested in finding from all possible hypotheses the most 

probable one, given the training data D. This can be done by calculating the probability of each 

hypothesis and choosing the one with the highest probability. The most probable hypothesis is 

called the maximum a posteriori hypothesis, notated as hMAP, which is found by [3.1], where h is 

just one hypothesis and H is the set of all possible hypotheses and  is the probability of 

h given the data D. 

)|( DhP

[3.1]  )|(maxarg DhPh
Hh

MAP
∈

≡

Then how do we find ? The answer lies in Bayes’ theorem, which provides a way 

to calculate the probability of a hypothesis based on its prior probability, the probability of 

observing the data given the hypothesis and the probability of observing the data itself. Bayes’ 

theorem is expressed as [3.2], where is the probability of observing data independent of the 

hypothesis h, is the probability that a hypothesis holds independent of the data D, 

)|( DhP

)(DP

)(hP
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and is the probability of observing data D given some world in which the hypothesis h 

holds. 

)|( hDP

[3.2] 
)(

)()|()|(
DP

hPhDPDhP ×
=  

Applied to tagging, a hypothesis h is simply one possible tag sequence t, and D is the word 

sequence W. Therefore, is , the probability that t is the correct sequence of tags 

independent of W; is , the probability of observing W independent of t;  

is , the probability of observing W given t, and finally  is , the 

probability that t is the correct tag sequence given W. Bayes’ theorem is thus expressed as [3.3] 

when applied to tagging. 

)(hP )(tP

)(DP )(WP )|( hDP

)|( tWP )|( DhP )|( WtP

[3.3] 
)(

)()|()|(
WP

tPtWPWtP ×
=  

Since is the same for all possible tag sequences, it can be dropped from the 

expression which simplifies [3.3] into [3.4] and [3.1] into [3.5]. 

)(WP

[3.4]  )()|()|( tPtWPWtP ×=

[3.5]  )|(maxarg WtPh
Tt

MAP
∈

≡

          )()|(maxarg tPtWP
Tt

×=
∈

To get the result of (3.5), we need to calculate for each of the possible tag 

sequences and find the one with the highest probability. That is, we need to know the value 

of and that of for each possible tag sequence. A short sentence Bob can go is used to 

illustrate how to calculate those two values, where Bob has two possible tags: noun and verb, can 

has three: modal, verb, and noun, and go has two: noun and verb. Therefore this sentence can 

)|( WtP

)|( tWP )(tP
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have 2 × 3 × 2 = 12 possible tag sequences, as listed in [3.6] where md stands for modal verb. 

Take the tag sequence t12 for example.  is calculated by [3.7] and  by [3.8].  )|( 12tWP )( 12tP

[3.6]  t1 = noun, noun, noun 
     …                  T∈  

      t12 = noun, md, verb 

[3.7] )|()|()|(),,|,,( verbgoPmdcanPnounBobPverbmdnoungocanBobP ×=   

[3.8] )__()_()(),,( verbmdnounPmdnounPnounPverbmdnounP ××=   

Each term of the right side of [3.7] and [3.8] can be obtained by counting the frequencies of 

certain items of the pre-tagged training data. For example, is the frequency of the 

word can tagged as a modal verb divided by the total occurrences of the modal verb tag in the 

training data while  is the frequency of a noun immediately followed by a modal 

verb in the training data divided by the total frequency of the given tag, i.e. the tag noun in the 

training data. Similarly,  is calculated by dividing the frequency of a noun 

immediately followed by a modal verb immediately followed by a verb in the training data by 

the total frequency of the leading tags, i.e. the frequency of a noun immediately followed by a 

modal verb in the training data. Applied to tagging texts of any number of words, [3.7] and [3.8] 

are generalized into [3.9] and [3.10], respectively. 

)|( mdcanP

)_( mdnounP

)__( verbmdnounP

[3.9] )|(...)|()|()|( 2211 nn twPtwPtwPtWP ×××=  

[3.10] ),...,,(...),,(),()()( 21321211 ntttPtttPttPtPtP ××××=  

Obviously, it is difficult or even impossible to get the reliable values of each of the terms of 

the right side of [3.10] when too many words need to be tagged. To solve this problem, a Markov 

assumption is used, which is explained in the next section. 
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3.2 A HIDDEN MARKOV MODEL 

A hidden Markov model is a finite state machine, in which each state emits a symbol and 

each state also transitions to a new state. Thus for each state, there are two associated 

probabilities: the probability that it emits a particular symbol and the probability that it 

transitions to a particular state. In other words, there is a sequence of visible symbols and a 

sequence of hidden states. Applied to tagging, the sequence of visible symbols is the sequence of 

words to be tagged while the sequence of hidden states is the sequence of tags to be obtained. 

The tagging goal is thus to search for the sequence of tags that has the highest probability, as 

indicated by [3.11], which is the same as [3.5], the simplified Bayes’ theorem. 

[3.11] )()|(maxarg tPtWPh
Tt

MAP ×≡
∈

 

As stated in section 3.1, getting can be computationally intractable when the text 

contains too many words. To make it feasible to calculate for texts of any size, a Markov 

assumption is made, which assumes that a state is dependent only on a small and fixed number of 

previous states. For example, a bigram model assumes that a state is subject to its immediate 

preceding state only, i.e. a tag is dependent only on the one that immediately precedes it. This 

assumption changes [3.8] into [3.12] for our simple sentence when t = noun_md_verb and the 

generalized formula [3.10] into [3.13]. The value of [3.13] can be easily calculated by counting 

the frequencies of certain items in the training data. 

)(tP

)(tP

[3.12] )|()|()|(),,( mdverbPnounmdPStartnounPverbmdnounP ××=  

[3.13] )|(...)|()|()|()( 123121 −××××= nn ttPttPttPStarttPtP  

Obviously, English does not completely follow the Markov assumption in terms of 

part-of-speech distributions. For example, the part-of-speech of go in The person near the 

window of the library of the University of Georgia goes to church every Sunday is not dependent 
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on the tag of its immediate predecessor, i.e., Georgia, but on that of person, the word quite far 

away from go. Despite the falsity of the Markov assumption for English, in most cases, it still 

produces good result. 

Applied to tagging, for a bigram Markov model in which a tag is influenced by its 

immediate preceding tag, the prior probability of a tag sequence is the product of the 

probabilities of each tag transitioned from its preceding tag, as expressed in [3.14]. The 

probability of observing a sequence of words given a sequence of tags is the product of the 

probability of each word emitted by its corresponding tag in that tag sequence, as expressed in 

[3.15]. The posteriori probability of a particular tag sequence t given a sequence of words W is 

the product of [3.14] and [3.15], as expressed by [3.16]. 

[3.14]  ∏
=

+=
w

i
ii tagtagPtP

0
1 )|()(

[3.15]  ∏
=

=
w

i
ii tagwordPtWP

1

)|()|(

[3.16]  )|()()|( tWPtPWtP ×=

The simple Markov assumption has solved the problem of calculating . To get  

of [3.11], a simple solution is to calculate all  where 

)(tP MAPh

)|( WtP Tt∈  and choose the one with 

the highest probability. The machine learning approach using Bayes’ theorem in this fashion is 

called brute-force Bayes’ concept learning (Mitchel, 1997). This learning method is 

computationally intractable when used to tag considerably long text since the run-time of getting 

the value of [3.11]  is  where n is the average number of tags of each of the words and 

W is the number of the words. To get this around, the Viterbi algorithm (Forney, 1973) is used, 

which is explained in the next section. 

)( ||WnO
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3.3 THE VITERBI ALGORITHM 

The main idea of the Viterbi algorithm is that instead of iterating over all possible state 

sequences to choose the best state sequence, we iterate over all possible candidates of each state 

to get the best one for that individual state. The concatenation of the best individual states 

produces the best state sequence. Applied to tagging, this algorithm searches for the best tag for 

each word in order to find the best tag sequence. The best tag of a word is calculated by [3.17] 

where  is one possible tag of the word, the plural form, , is all of the possible tags of 

that word,  is the best tag of that word to be obtained, and are the small fixed 

number of tags preceding that word. 

wtag wtags

wTag ptags

[3.17] )|()|(maxarg pww
tagstag

w tagstagPtagwPTag
ww

×=
∈

 

Using a bigram Markov model, Bayes’ theorem, and the Viterbi algorithm, the procedures 

to find the best tag sequence of the sentence Bob can go are listed below. 

1. Find the best tag of Bob which is 

)|()|(maxarg StarttagPtagBobPTag BobBob
tagstag

Bob
BobBob

×=
∈

 

2. Find the best tag of can which is 

)|()|(maxarg Bobcancan
tagstag

can tagtagPtagcanPTag
cancan

×=
∈

 

3. Find the best tag of go which is 

)|()|(maxarg cangogo
tagstag

go tagtagPtaggoPTag
gogo

×=
∈

 

4.  The best tag sequence of the sentence Bob can go is 

[3.18] gocanBobMAP TagTagTagh ++=  
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If the average number of tags of a word is n and there are W words to be tagged, the 

run-time to calculate the best tag sequence is  which is exponentially shorter than 

the time needed by brute-force Bayes’ concept learning. 

|),|( 2 WnO ×

3.4 CONTEXTUAL ADJUSTMENT ALGORITHM 

Due to the fact that it is very difficult to determine the correct tag of some ambiguous 

words, such as can, may, must, will, might, saw, etc, the above algorithms frequently make 

mistakes. This project uses the contextual information to adjust the tags of these tough words as 

a remedial measure, based on the assumption that a word’s tag is constrained by the tags of its 

surrounding words. Using the phrase a full can of beans as an example, the algorithm is 

illustrated as this: if we know the tags of a, full, of, and beans are determiner, adjective, 

preposition, and noun, respectively, which form a tag sequence of determiner, adjective, ?, 

preposition, noun, we can then search the training data for the word can that is preceded by an 

adjective which in turn is preceded by an determiner and that is followed by a preposition which 

in turn is followed by a noun. If this search succeeds, we can change the tag of can in a full can 

of beans obtained previously into the tag of can given by the training data in this context. 

For this algorithm, there are two points to be considered. First, we know that the bigger the 

context size is, the more accurate the obtained tag will be. However, if the context size is too big, 

we may not find that tag sequence with the word in question in that particular slot in the training 

data. I choose the two tags preceding the word and the two tags following the word as the 

contextual tags. Second, whether this algorithm works depends on the accuracy of the contextual 

tags. For example, only after we get the correct tags of a, full, of, and beans, can it be possible to 

adjust the tag of can. This calls for a training algorithm to get the most accurate probability of a 

tag’s transitioning to its following tag and the most accurate probability of that tag’s emitting a 
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particular word. This is the goal of the reinforcement machine learning algorithm of this project, 

which is detailed in the following section. 

3.5 REINFORCEMENT LEARNING ALGORITHM 

As shown from [3.17], the choice of a word’s tag depends on two probabilities: the 

emission probability, and the transition probability,  Therefore, we 

can design a machine learning algorithm, which gradually adjusts these two values to minimize 

the tagging difference between the tags assigned by a tagger and those by the training data. The 

learning algorithm is stated as follows. 

),|( tagwordP ).|( tagstagP

For a multi-tag word, if it is assigned an incorrect tag in a particular context, then this 

word's probability of being the incorrect tag needs to be reduced and its probability of being the 

correct one needs to be increased. By the same token, this error can also be corrected by reducing 

the probability of the incorrect tag transitioned from its preceding tag(s) and by increasing the 

probability of the correct tag transitioned from its preceding tag(s). After the adjustments of the 

probabilities, tag the entire sequence of words again with the new probabilities. If the accuracy 

drops, cancel the adjustments; if the accuracy increases, save the probability changes 

permanently by writing them to files; if the accuracy has no change, keep the probability changes 

in memory without updating the files. This is because in most cases, there will be no accuracy 

change and updating the files frequently would greatly slow down the training process. 

Let us again use the example Bob can go to illustrate how this learning algorithm works. 

Let us make the following assumptions (where NNP stands for proper noun, NN stands for 

common noun, MD stands for modal verb, and VB for base verb): 

1) This sentence appears in the training data and is pre-tagged as 

(3.1) Bob/NNP can/MD go/VB ./.  
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2) This sentence is tagged by our tagger as 

(3.2) Bob/NNP can/NN go/VB ./.             

3) The probabilities of can emitted by its various tags and the probabilities of those tags 

transitioned from its preceding tag, NNP, are obtained from the pre-tagged data as: 

       02.0)|( =MDcanP 001.0)|( =NNPMDP  

006.0)|( =VBcanP      002.0)|( =NNPVBP  

01.0)|( =NNcanP      003.0)|( =NNPNNP  

The above assumptions show that 1) the word can that is a modal verb in this context is 

incorrectly tagged as a noun by the tagger, 2) given a proper noun, a common noun that follows 

it has the highest probability (0.003) while a modal verb that follows it has the lowest probability 

(0.001), and 3) the word can has the highest probability of being emitted by a modal verb (0.02) 

and the lowest probability of being emitted by verb (0.006). The tag MD is called the weak tag 

because its probability should be increased in order to be assigned to can while the tag NN is 

called the strong tag because its probability should be reduced in order to be removed from this 

word in this context. 

The probabilities of can being emitted by MD, NN, and VB are calculated as follows: 

00002.0001.002.0)|()|()|( =×=×= NNPMDPMDcanPcanMDP  

000012.0002.0006.0)|()|()|( =×=×= NNPVBPVBcanPcanVBP  

00003.0003.001.0)|()|()|( =×=×= NNPNNPNNcanPcanNNP  

Thus the highest probability of the tag, given the word can is NN, which is not correct, 

however, when compared with the training data. We can correct this problem by reducing the 

probability of can emitted by the strong tag NN, and that by the non-strong tag VB by deducting 

different values from their probabilities. These deductions are called taxes in this paper and are 
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given to the emission probability of the weak tag MD. We can do the same thing to adjust the 

transition probabilities. In this example, I will only illustrate how to adjust emission probabilities 

as adjusting the transition probabilities can be done in a similar manner.  

Let  be the tax for the strong tag NN and 002.0=strongtax 001.0=commontax for the tag VB 

that is neither strong nor weak. The processes of tax-collection and subsidiary-granting produce 

the new probabilities of can emitted by MD, VB, and NN as: 

023.001.0002.002.0)|( =++=MDcanP  

005.0001.0006.0)|( =−=VBcanP  

008.0002.001.0)|( =−=NNcanP        

Now we retag the sentence and get the new probabilities of can emitted by MD, VB, and 

NN as: 

000023.0001.0023.0)|()|()|( =×=×= NNPMDPMDcanPcanMDP  

00001.0002.0005.0)|()|()|( =×=×= NNPVBPVBcanPcanVBP  

000024.0003.0008.0)|()|()|( =×=×= NNPNNPNNcanPcanNNP  

The new probability of can being emitted by NN is still higher than that by MD but the 

difference is considerably reduced. We continue adjusting the word-emission probabilities 

until . After that, we save the new probabilities to file. )|()|( canNNPcanMDP >

In this example, I only illustrated how to change the word-emission probabilities of one 

word can. However, in the real learning situation we must keep in mind that after can in this 

particular context is tagged correctly due to the probability adjustments, can in other places of 

the training data may be tagger incorrectly and that the word (for the bigram mode) or the two 

words (for the trigram mode) following can may be tagged incorrectly as well, since their tags 

depend on the new tag of can. Therefore, after every change of probabilities, we need to retag the 
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whole text and let the tagging result decide whether to cancel, to keep in memory only, or to 

permanently save the probability changes. 

3.6 ALGORITHM DEALING WITH UNKNOWN WORDS 

The above algorithms assume that every word of the text to be tagged has appeared in the 

training data. In reality, this is not the case. No matter how big the training corpora are, they 

cannot include the entire vocabulary of a language. Therefore, the tagger should be equipped 

with the intelligence to gauge the possible tag(s) of unknown words. The tagger to be developed 

achieves this by using the words available in the training corpora and the word’s morphological 

compositions. The following steps are used to deal with unknown words: 

First, restore an inflected word to its base form by removing the inflections. For example, 

the word marketability has no plural form in normal situation. However, if for some reason, it 

does appear as marketabilities, the tagger should be able to know that it is the plural form of 

marketability and tag it accordingly. 

Second, if inflection-dropping fails, try removing the prefixes. For instance, most old 

training corpora like Penn Treebank do not have words like epassport or e-saver. But we can 

treat e as a prefix and get the base form passport and saver. If we also know that e as a prefix 

does not change the part-of-speech of the word to which it is attached, we can tag these two 

words as NN. 

Third, if prefix removal fails, try removing the suffixes. For instance, training corpora most 

probably do not have the word girlless (as in A girlless party is boring). Through morphological 

analysis, we know that this word is composed of girl and the adjectival suffix –less, and thus we 

can tag girlless as adjective with confidence. 
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In many cases, all of the above three procedures will all be used, even recursively for that 

matter, to obtain the parts-of-speech of words like demodernizations, anti-internationalization, 

sonlessness, etc. correctly. 

Fourth, if the previous means fail, we resort to the endings of the words to gauge their tags 

if they end with typical suffixes, such as –ia, -hood, -ity, -dom, -age, -some, etc. We need to keep 

in mind the ambiguity of some suffixes. For example, –en can be an adjective (e.g. wooden), a 

verb (e.g. shorten), or a noun (e.g. garden). If this is the case, we have to list all possible tags of 

a word ending with that suffix and let the other algorithms decide its final tag. 

Finally, if all of the above means fail, just tag an unknown word as a proper noun and a 

common noun if it starts with a capital letter and tag it as a common noun only, otherwise. 

But in any case, an unknown word should not be tagged as a closed-class word, such as 

pronoun, conjunction, preposition, etc.
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CHAPTER 4 

DEVELOPING THE TAGGER 

 

Chapter 3 explained the algorithms. This chapter describes how I will implement them. 

4.1 DATA 

The data used for the project are the first three components of the Treebank-3, namely, the 

Brown corpus, Switchboard and Wall Street Journal (WSJ), of which Switchboard is made up of 

telephone interviews. Every sentence of Treebank is given a syntactic tree and every token is 

given a tag or tags. Switchboard tags is as BES and has as HVS while the Brown corpus and 

WSJ tag both as VBZ. For consistency, Michael Covington converted the BES and HVS of 

Switchboard to VBZ. This project uses the converted version of Switchboard. Covington also 

randomly divided the Brown corpus, Switchboard, and WSJ into the training data and the testing 

data at the ratio of about 98% to 2%, which are used in this project as the training data and the 

testing data, respectively. 

4.2  DEVELOPING THE RAW TAGGER 

There are two steps in developing the tagger: developing a raw tagger and training the raw 

tagger into a more accurate one using a reinforcement machine learning algorithm. This section 

describes the implementation of the raw tagger and the next section details the implementation of 

the learning algorithm. 

The tagger to be developed uses the trigram hidden Markov model. According to equation 

[3.17], which is restated as [4.1] below for easy reference, the tag of a word is determined by the 
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probabilities of that word being emitted by each of its possible tags, , and 

the probabilities of each of those tags being transitioned from its two preceding tags, 

,  where tags are all possible tags of a word and is only one 

of them. Therefore, the core values we need are the emission probabilities and the transition 

probabilities. 

)|( tagstagwordP ∈

)|( 12 −−∈ kkkk tagtagtagstagP tag

[4.1] )|()|(maxarg pww
tagstag

w tagstagPtagwPTag
ww

×=
∈

 

4.2.1 Constructing the Tag-word Emission Probability Lookup Table 

To find the tag-word emission probabilities, two lookup tables are constructed out of the 

training data. One lists all unique words, their possible tags, and the frequencies of those words 

being particular tags, as obtained from the training data. Table 4.1 is part of that table. 

Table 4.1 The word-tag-frequency statistical figures 

Word All tag-frequency pairs 

, ,|358007 UH|5 VBP|4 DT|3 RB|2 JJ|1 VBN|1 PRP|1 FW|1 IN|1 NN|1 
… … 

a 
DT|79087 SYM|15 FW|9 VBP|7 NN|6 VB|5 PDT|4 JJ|4 RB|4 NNP|3 
LS|2 VBN|2 IN|1 VBD|1 VBG|1 PRP|1 ,|1 

… …. 
Abandoned VBN|39 VBD|20 JJ|4 
… … 
will MD|7356 NN|137 VBP|1 VB|1 
… … 
Zygmunt NNP|1 

As shown from the table, comma is used as a comma for 358007 times, as an UH 

(exclamation) for five times, as a present verb in plural form for four times, etc. The entries 

revealed the tagging noise of Treebank. There is little reason why the comma in (4.1) was tagged 

as VBP. I regard this kind of noise as tagging errors and removed them from Table 4.1. That is, 

punctuation marks will be tagged as punctuation marks only. 
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(4.1) …if/IN you/PRP solve/VBP ,/VBP help/VB them/PRP to/TO work/VB 

through/IN their/PRP$ problems/NNS… (Switchboard 3134) 

However, (4.2), (4.3), (4.4), (4.5) indicate that the annotators of Treebank were trying to 

guess the actual words in the speakers’ mind when tagging their utterances. The a in (4.2) was 

tagged as VBP probably because it was believed to be the broken form of are. The a in (4.3) was 

tagged as VB because that particular context requires have or the a is the weakened spoken form 

of have in that context. The a in (4.4) was tagged as VBG because it was believed to be the 

stammering form of appealing. Finally, the a in (4.5) was tagged as RB (adverb) because it is 

believed to be the weakened pronunciation of the word of , which together with sort forms the 

multi-word hedging adverb sort of. This kind of noise is not tagging errors, though it is very hard 

for a probability-based tagger, such as this one, to tag words in those particular contexts in these 

peculiar ways. They will be removed from Table (4.1), since keeping them will not increase the 

tagging accuracy but considerably increase the computation time, if we recall that the tagger 

needs to iterate every possible tag of a word to calculate the highest probability. 

(4.2) now/RB ,/, watches/VBZ seven/CD point/NN two/CD hours/NNS of/IN 

television/NN a/DT day/NN ,/, and/CC that/IN school/NN children/NNS ,/, 

a/VBP ,/, a/VBP ,/, are/VBP not/RB far/RB off/IN that/DT mark/NN with/IN 

six/CD point/NN eight/CD ./. (Switchboard 2926) 

(4.3) So/UH ,/, we/PRP could/MD n't/RB a/VB done/VBN much/RB better/RBR 

than/IN that/DT in/IN Buffalo/NNP ./. (Switchboard 2521) 

(4.4) And/CC how/WRB long/JJ had/VBD he/PRP been/VBN a/VBG ,/, 

appealing/VBG ?/. How/WRB long/JJ was/VBD that/DT ?/.  

(Switchboard 4856) 
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(4.5) I/PRP work/VBP and/CC I/PRP live/VBP in/IN the/DT city/NN so/RB ,/, 

that/DT sort/RB a/RB kind/RB of/RB hung/VBD it/PRP up/RP ./. 

(Switchboard 2562) 

The other lookup table contains the unique tags and their frequencies. Table 4.2 is part of 

that table. Using Table 4.1 and Table 4.2, the actual tag-word emission probability lookup table, 

Table 4.3, is built, as illustrated below, using the word will acting as a noun for example. 

From Table 4.1, we know that will appeared as a noun 137 times in the training data. From 

Table 4.2 we know that totally noun occurred 468466 times. Therefore, given a noun, the 

probability that it is will is ,486464330002924438.0468466/137 =  which is exactly the 

corresponding figure listed in Table 4.3. The other values of the emission probability table are 

calculated in the same manner. 

Table 4.2 The tag-count lookup table 

Tag Freq Tag Freq Tag Freq 
NN 468466 POS 18190 RP 11117 
MD 46400 PRP 270609 SYM 1438 
NNP 208019 PRP$ 43916 TO 89991 
NNPS 6441 RB 221072 VB 134624 
NNS 180389 RBR 6099 VBD 128419 
PDT 3503 RBS 1847 VBG 58290 

4.2.2 Constructing the Tags-tag Transition Probability Lookup Table 

To find the tags-tag transition probabilities, two auxiliary lookup tables are needed as well. 

One collects the unique bigrams that appeared in the training data and their frequencies; the other 

lists the unique trigrams and their frequencies. Table 4.4 is part of the first table while Table 4.5 

is part of the second one. 
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Table 4.3 The tag-word emission lookup table 

Tag Word Emission probability 
will 0.000292443848646433 
William 2.13462663245572E-06 
willingess 2.13462663245572E-06 
Willingness 2.13462663245572E-06 
willingness 6.40387989736715E-05 
willow 1.92116396921015E-05 
will-to-power 2.13462663245572E-06 
Wilmington 2.13462663245572E-06 

  NN 
(singular 
common 
noun) 

… .. 
will 0.158196950472053 
willya 2.15058388352438E-05 MD 
… … 

Table 4.4 Unique bigrams and their frequencies 

Bigram Freq Bigram Freq 
NNP|NNP 71739 DT|NN 156733 
… … … … 

Table 4.5 Unique trigrams and their frequencies 

Trigram Freq Trigram Freq 
NNP|NNP|VBD 6669 NNP|NNP|NNP 18171 
DT|NN|IN 46662 DT|NN|RB 4582 
… … … … 

Recall that for the trigram model, the kji tagtagtag −  probability is the probability that 

 is followed by . This can be calculated by dividing the frequency of 

, which is listed in Table 4.5, by the frequency of , which is stored in 

Table 4.4. For example, given two consecutive NNPs, the probability that the third tag is still an 

NNP is 0.253293187805796, which is the total frequency of NNP|NNP|NNP (18171, according 

to Table 4.5) divided by that of NNP|NNP (71739, as shown from Table 4.4). Other transition 

ji tagtag ktag

kji tagtagtag jitagtag
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probabilities are calculated in the same way. Table 4.6 is part of the transition probability lookup 

table built out of Table 4.4 and Table 4.5, using the method just described. 

Table 4.6 The tags-tag transition probability lookup table 

From-tag To-tag Tag-tag transition probability 
NNP 0.253293187805796 
VBD 0.0929619872036131 NNP|NNP 
…  
IN 0.297716498759036 
RB 0.0292344305283508 DT|NN 
…  
… … … … … 

Using equation [4.3], Table 4.3, and Table 4.6, the raw tagger is built. The pseudo code for 

tagging a sequence of words is listed in Table 4.7. 

4.3 TRAINING THE RAW TAGGER 

As said earlier, the determinant values are the emission probabilities and the transition 

probabilities, which we have calculated and stored them in Table 4.3 and Table 4.6. Recall that 

they are obtained by counting the frequencies of each word’s all tags, the frequency of the 

unigrams, bigrams, and trigrams. Most taggers based on Markov models stop at this step. 

However, we can try and test whether the two kinds of probability values are actually the ones 

needed by the program and whether there is any room for modification so that the tagger can 

achieve higher accuracy. This motivates me to try and adjust these probability values.  

4.3.1 Preparing the training data 

To speed up computation, the project first processes all of the training files into two big 

lists, one holding all the words and the other containing their corresponding tags. After that, the 

raw tagger tags the list of words, which gives the tagging accuracy and produces the following 

two sublists.
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Table 4.7 The pseudo code for tagging a sequence of words 

words ← a list of words to be tagged 
best_tag ← the best tag of a word to be obtained 
resulted_tags ← the sequence of the tags to be obtained, initially empty 
emission_prob ← a word’s probability of being emitted by a tag, which is listed in Table 4.3 
transition_prob ← a tag’s probability of being transitioned from two consecutive preceding tags, 

which is listed in Table 4.6 
 
Build a run-time dictionary 

key = a word of words 
value = the possible tags of that word. If a word exists in Table 4.1, it is retrieved from that 

table; otherwise, it is figured out by morphological analysis 
 

for each word of words 
{ 

if word has only one tag 
{ 

best_tag = that only tag 
} 
else 
{ 

highest_prob = 0 
 
for each tag of word’s tags 
{ 

this_prob = emission_prob × transition_prob 
 
if (this_prob > highest_prob) 
{ 

highest_prob = this_prob 
best_tag = tag  

} 
}  

} 
add best_tag to resulted_tags 

} 
return resulted_tags 

The first sublist is called unmatched_emission_items, each member in the form of 

 where  is the tag given by the training data which is treated as 

the correct tag,  is the tag incorrectly assigned by the raw tagger and is different from 

FreqTagTagWord wc ||| cTag

wTag
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cTag , and Freq is the frequency of such wrong tagging. For example, the item 

means that, for 23 times, saw that is supposed to be tagged as a noun is 

tagged as a past tense verb. The other sublist is called unmatched_transition_items, each member 

in the form of  where  are the two consecutive 

leading tags, 

23||| VBDNNsaw

FreqTagTagTagTag wc |||| 21 21 | TagTag

cTag  is the tag following the leading tags given by the training data, wTag  is the 

actual tag assigned by the tagger and is different from , and Freq is the frequency of such 

wrong tagging. For example,  means that, for 23 times, a tag sequence of 

a determiner followed by an adjective that is supposed to be followed by a noun is actually given 

a modal verb by the raw tagger. 

cTag

23|||| MDNNJJDT

The frequency value, Freq, is called the tolerance level, which determines how strict the 

training is going to be. For instance, if we set Freq as 30, then the above two errors will not be 

collected in the two lists, and they will not be treated as tagging errors. 

4.3.2 Adjusting the tag-word emission probabilities 

This section illustrates how the tagger learns to improve itself by adjusting the tag-word 

emission probabilities, using  as an example. The pseudo code is listed in 

Table 4.8. 

23||| VBDNNsaw

We know that saw has four possible tags: NN (noun, e.g., a plastic saw), VB (base verb, 

e.g., to saw it open), VBP (the present verb with a plural subject, e.g. They saw wood in the 

afternoon.), and VBD (the past form of see, e.g., I saw her a moment ago.). The item 

 indicates that , which is the probability that that noun is the 

word saw, should be increased. Therefore, the tag NN of this string is called the weak tag. It also 

tells us that  should be decreased. Therefore VBD is called the strong tag. The 

23||| VBDNNsaw )|( NNsawP

)|( VBDsawP
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other tags of this word, i.e. VB and VBP are called the common tags, which are neither strong 

nor weak. 

There are two ways to adjust the probabilities. One is expressed in [4.2], where tax is the 

value to be deducted from the probability of the strong tag and added to that of the weak tag  P  

is the post-adjustment probability and ε  is the learning rate that ranges from 0 to 1 exclusive. 

Figuratively, it is the tax rate that the strong tag uses to calculate the tax it should pay. 

[4.2] ε×= )|( VBDsawPtax  

taxVBDsawPVBDsawP −= )|()|(  

taxNNsawPNNsawP += )|()|(  

The other way involves changing the probabilities of the common tags as well, as 

expressed in [4.3], where κ  is the tax rate of the common tags relative to that of the strong tag. 

κ  ranges from 0 to 1, inclusive. If κ  = 0, it means no tax whereas if κ = 1, it means it uses 

the same tax rate as that of the strong tag. Through experiments, I found that [4.2] is worse than 

[4.3] as it terminates learning too soon. 

[4.3] ε×=′ )|( VBDsawPxta  

xtaVBDsawPVBDsawP ′−= )|()|(  

κε ××=′′ )|( VBsawPxta  

xtaVBDsawPVBDsawP ′′−= )|()|(  

κε ××=′′′ )|( VBPsawPxta  

xtaVBPsawPVBPsawP ′′′−= )|()|(  

xtaxtaxtaNNsawPNNsawP ′′′+′′+′+= )|()|(  

 34



Table 4.8 The pseudo code for adjusting emission probabilities 

items ← list of strings in the form of “word|weak_tag|strong_tag”, where “weak_tag” is the 
correct tag and “strong_tag” is the wrong tag 

bestAccuracySoFar ← the highest accuracy so far, initially set as 0 
 
for each item of items 
{ 

split item into word, weak-tag and strong-tag 
find all the tags of word 
adjust emission probabilities as described in [4.3] 
thisAccuracy ← retag the text with new probability values  
 
if (thisAccuracy < bestAccuracySoFar) 
{ 

cancel probability adjustments 
} 
else 
{    

if (thisAccuracy > bestAccuracySoFar) 
{ 

write new probabilities to file 
} 
bestAccuracySoFar = thisAccuracy                     

} 
} 
return bestAccuracySoFar 

4.3.3 Adjusting the Tags-tag transition probabilities 

Adjusting the tags-tag transition probabilities is similar to adjusting the tag-word emission 

probabilities. The only difference is that the probabilities of the common tags stay intact. This 

choice is made to reduce the computation complexity since there are too many tags that can 

follow two consecutive tags. The transition adjustment is expressed in [4.4], using the transition 

item  as an example. The pseudo code is listed in Table 4.9. 23|||| MDNNJJDT

[4.4] )1()_|( ε−×= JJDTMDPtax  

taxJJDTMDPJJDTMDP −= )_|()_|(  

taxJJDTNNPJJDTNNP += )_|()_|(  
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Table 4.9 The pseudo code for adjusting tags-tag transition probabilities 
 
items ← list of strings in the form of “tag_tag|weak_tag|strong_tag”, where “tag_tag” is the two 

leading tags, “weak_tag” is the correct tag following tag_tag and “strong_tag” is the wrong 
tag following tag_tag 

bestAccuracySoFar ← the highest accuracy so far 
 
for each item of items 
{ 

split item into tag_tag, weak-tag, strong-tag 
adjust transition probabilities as described in [4.4] 
thisAccuracy ← retag the text with new probability values 
if (thisAccuracy < bestAccuracySoFar) 
{ 

cancel probability adjustments 
} 
else 
{ 

if (thisAccuracy > bestAccuracySoFar) 
{ 

write new probabilities to file 
}   
bestAccuracySoFar = thisAccuracy;                   

} 
} 
return bestAccuracySoFar 

4.3.4 Training the tagger as a whole process 

Using the training parameter values listed in Table 10, Table 4.11 lists the pseudo code for 

the training process as a whole by adjusting the emission probabilities and the transition 

probabilities alternatively. As stated in Table 4.8 and Table 4.9, after each adjustment, the tagger 

retags the whole text, which has two effects. One is to update unmatched_emission_items and 

unmatched_transition_items. The other is to report the new accuracies which may be higher than, 

lower than, or the same as the previous accuracy. For each training generation, the final tagging 

accuracy is the highest among the accuracy of the last generation, the new accuracy obtained 

from adjusting the emission probabilities, and the new accuracy obtained from adjusting the 

transition probabilities. For each generation, if the new accuracy reaches the accuracy goal,  
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Table 4.10 The training parameters and their values 

Parameter Value 
accuracy goal: learning stops if this goal is reached 0.965 
error tolerance: the frequency by which an erroneous pattern is regarded as an error 350 
tolerance reducer: the value by which error tolerance is reduced for each training 
generation 

20 

generations: number of training cycles; learning stops if this number is reached 15 
ε : tax of strong tag = its existing probability ×ε  0.1 
κ : tax of non-strong tag = its existing probability ×ε ×κ  0.2 

Table 4.11 The pseudo code for training the tagger as a whole 
 
errorTolerance = 350; 
bestAccuracy = 0.0; 
newAccuracy = 0.0; 
generations = 0; 
limit: the number of cycles beyond which training stops 
goal: the accuracy goal 
emnItems: the list of “word|correct_tag|wrong_tag” items 
tranItems: the list of “tags|correct_tag|wrong_tag” items 
 
while (generations < stopLimit AND bestAccuracy < goal) 
{ 

increment generations by 1                
decrease errorTolerance by 20 
 
newAccuracy 
emnItems        ← Do Tagging 
tranItems 
 
bestAccuracy = max(bestAccuracy, newAccuracy) 
if (bestAccuracy >= accuracyGoal OR emnItems and tranItems are both empty) 
{ 

stop 
} 
update emission probs 
                         ←  Adjust emissions probs 
accuraqcy1 
 
update transition probs 
                         ← Adjust emissions probs 
accuraqcy2 
 
bestAccuraqcy = Max(bestOfAll, accuracy1, accuracy2) 

} 
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training stops. Training will always stop if the number of training generations has reached the 

number of the preset training cycles, regardless of the training effect to avoid endless loop. The 

initial tolerance value is 350, high enough to ensure to focus on the most serious errors. For each 

training generation, the tolerance value decreases by 20 so that more errors can be corrected. 

4.4  CONTEXTUAL FINAL ADJUSTMENT 

In the last section, I described the implementation of the machine learning algorithm to 

fine-tune the tag-word emission probabilities and the tags-tag transition probabilities into the best 

values by using them to tag the training corpora and comparing the result with the original 

training data. This section illustrates the implementation of the contextual adjustment algorithm. 

This algorithm is actually divided into two procedures. One is to build a context dictionary 

during the development of the tagger and the other is to use this dictionary during the actual 

tagging process. 

The pseudo code for building the context dictionary is listed in Table 4.12. The dictionary 

thus built is a complex dictionary: the mother dictionary key is a multi-tag word and the mother 

dictionary value is a child dictionary. The child dictionary key is a unique context made up of the 

two tags preceding that word and the two tags following that word while the child dictionary 

value is the tag given by the training data for that word in that particular context. 

The pseudo code for performing the actual contextual adjustments is listed in Table 4.13. 

After the tagger produced a tag for each of the words, a word-tag pair list is produced. The 

adjustment process goes by looking up each word in the context dictionary. If a word is in the 

mother dictionary, it proceeds to build the context and looks it up in the child dictionary. If it 

finds the context, the tag of that word will be changed to the new tag. Otherwise, no adjustment 
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is performed. Though it seems complicated, with the preparation of the context dictionary, the 

adjustment process is actually very fast. 

4.5  BUILDING THE TAGGER-MAKER 

This section illustrates the implementation of the tagger-maker, which is a tool that 

automatically builds a tagger out of a pre-tagged corpus. The most important step is building the 

list of token-tag pairs from the corpus. Special care should be taken to ignore the tokens that are 

not tagged. The pseudo code is listed in Table 4.14. 

This completed the implementation of the algorithms. The next chapter will present the 

tagging and the tagger-making results.  

Table 4.12 The pseudo code for building the context dictionary 

words = a list of words whose tags need to be reassigned, according to their contexts 
tts = a list of token-tag pairs extracted from the training data 
 
Build_mother_dictionary(words, tts) 
{ 

index = 0; 
for each word of words 
{ 

increment index 
key = word 
value ← Build_child_dictionary(word, index, tts) 

} 
} 
 
Build_child_dictionary(word, index, tts) 
{ 

left2right2_s ← list of contexts built out of index and tts 
for each left2right2 of left2right2_s 
{ 

key = left2right2 
value = the tag of word retrived from tts 

} 
} 
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Table 4.13 The pseudo code for performing contextual constraint adjustments 
 
tts = the token-tag pairs given by the tagger before contextual adjustments 
tt = a token-tag pair 
 
mDict[word, cDict[context, tag]] = a contextual dictionary built as described in Table 4.12 
 
Context_adjustment(tts, mDict[word, cDict[context, tag]]) 
{ 

for each tt of tts 
{ 

index = the index of tt in tts 
word ← Get_word(tt) 
 
if (word is in dict[word, [context, tag]]) 
{ 

left2right2 ← Build_contexts(index, tts) 
if left2right2 is in cDict[context, tag] 
{ 

newTag = tag 
replace newTag for the tag of tt   

} 
} 

} 
} 
 
Get_word(tt) 
{ 

retrieves and returns the word of tt 
} 
 
Build_contexts(index, tts) 
{ 

constructs and returns the left2right2 contexts, using index as the anchoring point. 
} 
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Table 4.14 The pseudo code for building a tagger out of training data 
 
training_files: the pre-tagged training corpus 
 
• Build a list of token-tag pairs (tts) out of training_files 
 
• Intelligently detect the token-tag delimiter 
 
• Find the list of words that have more than two tags, called tough_words 
 
• Create the token_tags.txt file out of tts.  

- This file contains the allowable tags of each unique word. 
- Each line of the resulted file is in the form of “token tag1 tag2 … tagn” 

 
• Create emissions.txt file out of tts 

- This file contains tag-word emission probabilites. 
- Each line of the resulted file is either a tag or in the form of “word probability”. 

 
• Create transitions.txt file out of tts 

- This file contains tags-tag transition probabilites. 
- Each line of the resulted file is either a 2-tag string or in the form of “tag probability”. 

 
• Create the contexts.txt file out of tough_words and tts 

- This file contains the tough words and their tags given by the training files in particular 
contexts. 

- Each line of the resulted file is either a word or in the form of “context tag”. 
- Modify emsssions.txt and transitions.txt by using algorithms stated in Table 4.11.
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CHAPTER 5 

RESULTS 

 

This chapter reports the results of the project. It presents the tagging results of the built 

tagger at each of the following three stages: 1) before fine-tuning the tag-word emission 

probabilities and the tags-tag transition probabilities through machine learning (referred to as 

learning hereafter) and before applying the contextual adjustments, 2) after learning but before 

applying the contextual adjustments, and 3) after learning and after applying the contextual 

adjustments. For easier reference, the tagger at stage one is called the raw tagger, the tagger at 

stage two is called the trained tagger and that at stage three is referred to as the final tagger. The 

accuracy and the speed of each of the three taggers on the training data and on the testing data 

are listed in Table 5.1, where wps stands for the number of words that were processed by the 

tagger per second. For easier visual comparisons, two figures were built out of this table. Figure 

5.1 compares the tagging accuracy while Figure 5.2 compares the speed. 

5.1 TAGGING ACCURACY 

Reading the table horizontally, we can see that each tagger produced higher accuracy when 

tagging the training data than when tagging the testing data. The differences between tagging 

these two types of data are 1.78%, 1.63%, and 1.56% for the raw tagger, the trained tagger, and 

the final tagger, respectively. This result is not surprising, since, when tagging the testing data, 

the taggers most probably had encountered the words and the tag sequences that they had not 

seen before. The tags of the unknown words that were obtained through morphological analyses 
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may be inaccurate and the new tag sequences may have prevented the application of the 

contextual adjustments. 

Table 5.1 The tagging results 

On training data On testing data Stage 
accuracy wps accuracy wps 

before contextual adjustments (raw tagger) 94.08% 544,000 92.30% 424,000 before  
learning after contextual adjustments 96.89% 400,000 95.26% 276,000 

before contextual adjustments (trained tagger) 96.30% 550,000 94.55% 424,000 after  
learning after contextual adjustments  (final tagger) 98.07% 403,000 96.51% 251,000 
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Figure 5.1 The tagging accuracies on the training data and the testing data 

Reading the table vertically, we can have the following results. When tagging the training 

data, the learning process made the trained tagger 2.22% more accurate than the raw tagger and 

applying the contextual adjustments increased the trained tagger’s accuracy by 1.77%. When 

tagging the testing data, the respective increases are 2.25% and 1.96%. Learning plus the 

contextual adjustments boosted the tagger’s accuracy from 94.08% to 98.07% on the training 
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data, producing a total increase of 3.99%, and from 92.30% to 96.51% on the testing data, 

raising the accuracy by 4.21%. 

0

100000

200000

300000

400000

500000

600000

raw  tagger trained tagger f inal tagger

development phases

w
or

ds
 p

er
 s

ec
on

d

on training data

on testing data

 

Figure 5.2 The tagging speed on the training data and the testing data 

Table 5.1 also lists the accuracy figures of the tagger on the training data and on the testing 

data after applying the contextual constraints but before learning. These figures indicate that 

learning is necessary: the increase obtained by contextual adjustments alone is 2.81% on the 

training data and 2.96% on the testing data, much lower than the corresponding increases 

produced by contextual adjustments plus learning, namely, 3.99% and 4.21%, respectively. 

The 12 hours’ learning progress is presented in Figure 5.3. As shown there, most of the 

improvements were made during the first four hours. After that, the learning progress dropped 

radically. From the eighth hour on, very marginal progress was made. Recall that we excluded 

two types of tags from the words’ part-of-speech lists: all non-punctuation tags were removed 

from the tag lists of punctuation marks and all tags that were given by the Treebank annotators in 
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an attempt to guess the semantic roles of certain words were removed from the tag lists of those 

words (such as the comma was annotated as the past tense of a verb and a was annotated as the 

present participle of a verb, etc.). But the tagging noise was not removed from the training data. 

These discrepancies decreased the tagging accuracy on the training data. For example, suppose a 

comma was annotated as a past tense verb and the word a in certain context was annotated as a 

present participle. Because those tags were removed from the tag list of comma and from the tag 

list of the word a, the tagger will never tag a punctuation mark as a non-punctuation mark or tag 

the word a as a present participle. The learning algorithm is designed to disallow the tagger to 

add new tags to a word’s tag list if the training material is the Treebank corpora to prevent the 

tagger from learning the “bad” tagging habits. Furthermore, for the reasons I don’t know, the 

Treebank annotators sometimes simply made mistakes such as tagging never as the comparative 

form of an adjective (presumably due to the -er ending of this word) but the new tagger refuses 

to tag those words in those incorrect ways. Taking these points into consideration, it is hard for 

the learner to progress further once its accuracy reached about 96.30%. 
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Figure 5.3 The 12 hours’ learning progress 
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5.2 TAGGING SPEED 

Generally speaking, a tagger’s speed is less important than its accuracy. However, in some 

situations, such as real-time speech analysis, tagging speed is extremely important. Table 5.1 and 

Figure 5.2 display the following three results concerning the tagging speed on the testing 

computer. Note that the tagging speed is measured by the number of tokens tagged per second 

(abbreviated as wps), when the input is already a list of tokens. In other words, the time for 

tokenization and the time for displaying them are not included. 

First, in terms of cross-data-type comparison, tagging the testing data is significantly 

slower than tagging the training data. Specifically, the raw tagger’s speed dropped from 544,000 

wps on the training data to 424,000 wps on the testing data, the trained tagger’s speed dropped 

from 550,000 wps to 424,000 wps, and the final tagger’s speed dropped from 403,000 wps to 

251,000 wps. Converted to percentages, the speed of tagging the testing data is 22.1%, 22.9%, 

and 37.7% slower than that of tagging the training data for the raw tagger, the trained tagger, and 

the final tagger, respectively. The main reason is that extra computation time was spent in 

figuring out the tag(s) of the words that have not appeared in the training data. 

Second, applying the contextual adjustments reduced the tagging speed from 550,000 wps 

to 403,000 wps when tagging the training data and from 424,000 wps to 251,000 wps when 

tagging the testing data. In other words, the tagging speed dropped by 26.7% when tagging the 

training data and by 40.8% when tagging the testing data because of applying the contextual 

adjustments. 

Third, the final tagger can process 251,000 words per second on the testing data. This is the 

actual speed of the tagger because the real task of a tagger is to tag new text rather than tagging 
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the training data and tagging is an intermediate process, usually taking a list of words as input 

and producing a list of tagged words as output. 

5.3 PORTABILITY AND TRAINABILITY 

Generally speaking, probability-based taggers are portable to training data of other tagging 

schemes, other text types, or even other languages. A good tagger should be trainable as well. 

That is, given pre-tagged data of considerably big size, that tagger can learn from them to 

improve itself or even produce a new tagger. Building a trainable tagger is another important 

goal of this project. 

I don’t have tagged English texts of another domain or tagged corpora of another language. 

Fortunately, the online CLAWS tagger accepts up to 10,000 words to tag per upload 

(http://ucrel.lancs.ac.uk/claws/trial.html). Through this service, I have about 60% of the Brown 

corpus tagged by CLAWS4, using its C5 tagset. Since the C5 tagset is different from the 

Treebank tagset, the data thus tagged can be used to test the ability of the tagger-maker. I used 

the first 99% of the thus-obtained tagged data as the training data and the remaining 1% as the 

testing data. The whole tagger-making process was smooth and completely automatic. Table 5.2 

lists the time needed to make a new final tagger. As shown there, it took about seven seconds to 

extract the data for the raw tagger, about 17 minutes to extract the contextual rules, and about 

four hours to complete the learning process. 

The tagging speed is about the same as that of the tagger developed out of Treebank-3 

(referred to as the main tagger hereafter). As shown in Table 5.3, the final accuracy on the testing 

data is 95.18%, which is lower than that of the main tagger. Learning and applying the 

contextual rules increased the accuracy by 3.34%, which is also lower than the increase produced 

by the same methods in the case of the main tagger. These are probably due to the much smaller 
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size of the training data. Nevertheless, the tagger-maker is proved working, which also shows 

that the main tagger is trainable. 

Table 5.2 The time needed for building a new tagger 
 
Procedure Time needed 
Producing the raw tagger 7 seconds 
Building the context dictionary 17 minutes and 22 seconds 
Learning 4 hours 

Table 5.3 The new tagger’s accuracy results 

Stage Accuracy 
Before learning and before contextual adjustments (raw tagger) 91.84% 
after learning but before contextual adjustments (trained tagger) 93.21% 
after learning and after contextual adjustments (final tagger) 95.18% 
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CHAPTER 6 

CONCLUSIONS 

 

This project is devoted to the development of an efficient, scalable, and trainable tagger of 

high accuracy and the development of a tool that automatically turns a pre-tagged corpus into a 

tagger, regardless of the tag scheme, the text type or even the language of the corpus. This thesis 

illustrated in plain English the involved algorithms and their implementations to build a raw 

tagger, to train it by modifying the probability values, and to extract the contextual 

transformation rules to make the final adjustment. It also illustrated the procedures to build the 

tagger-maker. 

In terms of the accuracy of the tagger built out of Treebank-3, the following conclusions 

can be arrived at. 

First, the hidden Markov model used in this project and the Viterbi algorithm produced 

moderately acceptable tagging accuracy, namely, 94.08% on the training data and 92.30% on the 

testing data, even though both assumptions do not completely hold for the English language. 

Second, there is still much room for improvement. The raw tagger’s accuracy on the testing 

data is only 92.30%, which is not impressive at all. We must keep in mind that in most cases 

tagging is just an intermediate step. Other follow-up NLP activities may make errors themselves. 

Therefore, it is absolutely necessary that a tagger be as accurate as possible. 

Third, it is completely possible to increase a probability-based tagger’s accuracy by 

applying the contextual transformation rules, since there are always linguistic patterns that 

cannot be captured by probability-based methods. However, to do so, the tagger must know the 
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tags of the contextual words. The more accurate the surrounding words’ tags are, the better result 

will be produced by applying these contextual constraints. One way to give the more accurate 

tags to the contextual words is to fine-tune the tag-word emission probabilities and the tags-tag 

transition probabilities through the trial-and-error machine learning approach, i.e., the 

reinforcement machine learning algorithm used in this project. In so doing, the probability 

values obtained by counting the frequencies of the tags in the training data are changed into the 

values that are tried in the real tagging process, which are naturally more accurate. Applying the 

contextual adjustments after the machine learning process boosted the tagger’s accuracy by 

4.21% on new texts, enabling its final accuracy to be 96.51%. 

The learning algorithm is fruitful and efficient. It increased the raw tagger’s accuracy by a 

little more than 2% during the first four hours. Considering the noise and errors existing in 

Treebank, no big progress can be expected once the accuracy reached about 96.30% and we 

should stop the learning activity to avoid the tagger from overfitting Treebank. 

In terms of the tagging speed, two conclusions are reached. First, tagging the testing data is 

slower than tagging the training data by 22.1% for the raw tagger, 22.9% for the trained tagger, 

and 37.7% for the final tagger. The major reason is that it takes time to compute the tags of 

unknown words. Second, applying the contextual adjustments reduced the tagging speed by 

26.7% on the training data and by 40.8% on the testing data. However, this loss of speed is 

affordable for the tagger, since it is extremely fast. The final tagger can tag about 251,000 words 

per second on the testing data, using the testing computer. 

The tagger’s trainability is proved by the fact that the tagger-maker automatically and 

successfully built a new tagger out of the data pre-tagged with a different tagset with good 
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testing result. This should be understandable if we think of the nature of the algorithms used in 

this project, as summarized below. 

Firstly, Bayes’ theorem is just a way of calculating the probability of a hypothesis, given its 

prior probability and the probability of observing the training data if that hypothesis holds. 

Therefore it is independent of the language to be tagged. Secondly, the hidden Markov model 

used in this project is just a finite-state machine, which is language-independent. Thirdly, the 

reinforcement machine learning approach is just a trial-and-error fine-tuning process, which is 

again independent of the features of the text to be tagged. Finally, that the part-of-speech of a 

word is influenced by those of its surrounding words is not peculiar to any particular language 

but a universal phenomenon and those contextual rules were not written by hand but obtained 

from the training data. These points predict the portability and the trainability of a tagger using 

these algorithms. 

The tagging accuracy of 96.51% on the testing data indicates that the tagger is among the 

most accurate taggers. That it can tag 251,000 words per second on the testing data on the testing 

computer makes it the fastest tagger I have even seen. Finally, that the tagger is portable and 

trainable is proved by the tagger-maker’s success. In sum, this project has achieved its goals.
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APPENDICS 

 

APPENDIX A: SOFTWARE DOCUMENTATION 

This document describes the functionalities and the APIs of this software and illustrates 

how to use them. 

A.1 RUN THE PROGRAM 

To start the program, double click HanTagger\bin\Debug\HanTagger.exe. 

A.2 FUNCTIONALITIES 

The software provides the following nine functionalities. 

A.2.1  Tagging the entered text 

File  Tag input text 

It tags any text in the left text box and the result appears in the right box, one token-tag pair 

per line (Figure A.1). 

A.2.2  Tagging a file 

File  Import file and tag it 

You can choose any kind of text files. For testing purpose, I supplied the untagged 

1-million-word Brown corpus. Its path is HanTagger\data\rawBrown.txt. If the file is not too big, 

the tagged text will appear in the right box; otherwise the tagged text will be saved in a file and 

its name and location will be shown in the right box instead. The time used will be reported as 

well, including the time on tokenization. 
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Figure A.1 The screenshot of tagging the entered text 

A.2.3  Check tagging accuracy 

Tools  Check tagging accuracy 

The tagger will tag the words and compare the assigned tags with the corresponding tags in 

the pre-tagged file. The program reports three things: (1) the accuracy, (2) the actual tagging 

speed, and (3) lines of strings in the right box, each in the form of a token-tag pair given by the 

corpus followed by the token-tag pair produced by the tagger; if they don’t match, the line is 

marked by <<<< unmatched (Figure A.2). Note that item (3) will not be reported if the file is 

too big.  

The chosen file should use the same tagset as that used by the tagger. Currently the 

program supports two tagsets: that used by Treebank and the C5 tagset of CLAWS4. For more 

tagsets, you need to use this program to build a tagger out of them (See section 2.5 below). 

 56



 
 
Figure A.2: The screenshot of checking tagging accuracy 

For your convenience, I supplied the following four sets of files for accuracy checking. 

(1) All Treebank testing files, located in: HanTagger\data\PennTestingFiles\. These are the 

testing files set aside by Michael Covington. 

(2) A big Treebank training file, which is made by merging all Treebank training files into a 

big string of token-tag pairs. Its path is HanTagger\data\TRAINING_penn\tts_training.POS.TXT. 

Note that this file contains more than 4.5-million token-tag pairs and it takes about 25 - 60 

seconds to finish checking the accuracy, depending on your computer’s power and the tagging 

options you are using. As stated in the thesis, applying contextual adjustments slows down the 

speed by about one third. 

(3) A single Treebank testing file, which is made by merging (1) into an 86,000 token-tag 

pairs. Its path is HanTagger\data\PennTestingFiles\ tts_testing.txt. 
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(4) A single file containing 60% of Brown corpus tagged by CLAWS4. Its path is 

\HanTagger\data\TRAINING_nonPenn\tts_training.txt 

A.2.4 Improving the accuracy of the tagger 

Tools  Improve accuracy 

This allows you to use the pre-tagged corpus to improve the tagger’s accuracy. Clicking it 

will pop up the Tagging and Learning Options panel (Figure A.3) where you need to specify (1) 

the corpus source and (2) whether to use the default training parameter values. If you choose 

setting your own parameters instead, the Set Training Parameter Values panel will show up 

(Figure A.4). 

The corpus you specified must (a) use the same tagset as the tagger to be trained and (b) be 

big enough to prevent the tagger from overfitting this small corpus. 

Training parameters and their meanings 

If you tell the program that you want to set the training parameter values by yourself, the 

Set Training Parameter Values panel (Figure 4) will show up. The parameters and their values 

are explained below. 

Error Tolerance: if a tagging error’s frequency is smaller than this value, the error will not 

be corrected. The bigger this value is, the quicker the learning is, of course with less obvious 

improvements. The smaller it is, the stricter the learning it is. This value decreases by 20 for each 

learning generation. 

Accuracy Goal: learning stops if the accuracy has reached this value. 

Generations to stop: learning stops if the number of learning cycles has reached this value. 

Strong Tax Rate: the amount to be deducted from a strong tag’s emission or transition 

probability is calculated by multiplying its old probability by this value, which is 0 to 1, 
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exclusive. If it is too small, learning will be very slow but will ultimately take place. However, if 

it is too big, learning will never happen. The default value is 0.1, which means a strong tag’s 

probability deduction is one tenth of its own probability. 

 

Figure A.3: The screenshot of tagging and Training Options panel 

Common Tax Rate: the amount to be deducted from a common tag’s emission or transition 

probability is calculated by multiplying its old probability by Strong Tax Rate and by this value, 

which is 0 to 1, inclusive. If it is 1, the deduction value is the same as the strong tag’s deduction 

value; if it is 0, the deduction value is zero. The default value is 0.2, which means a common 

tag’s deduction is one fifth of the strong tag’s deduction. 

Training file: the tagger learns from this corpus. It must be big enough (the current 

threshold is half million words) and use the same tagset as the tagger to be trained. 
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A.2.5 Making a new tagger 

Tools  Build a new tagger 

This function turns a pre-tagged corpus of considerably big size into a new tagger. You 

need to tell the program whether the corpora use the same tagging scheme as that used by 

Treebank and tell the program the training corpus’ path. 

 

Figure A.4: The screenshot of setting the training parameters 

After that, it takes about 5 – 60 seconds to build the raw tagger. 

Once the raw tagger is built, the program will ask you whether to allow it to extract the 

contextual rules. These rules are used for contextual adjustments. 

Finally, the program will ask you whether to allow it to train the tagger. Training is 

necessary but it takes up to five hours. 
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A.2.6 Setting Tagging options 

Options  Set tagging options 

This allows you to specify the tagger type you want to test. By clicking different radio 

buttons, you have eight tagger versions (See Figure A.3). The default is the most accurate one 

which was trained on Treebank and which applies the contextual adjustments.  

These options are there only for academic purposes, i.e., for checking the tagging 

differences produced by training and by applying contextual constraints. In the real tagging 

situations, we will use the best one, of course. 

Corpus Source: this determines which tagging scheme to use. Currently I supplied two: the 

Treebank and the C5 of CLAWS4. 

Version option 1: this allows us to see the tagging difference produced by learning. 

Version option 2: this allows us to see the tagging improvements obtained from performing 

the contextual constraints. 

A.2.7 Other functions: 

The other three functions under File are trivial and self-explanatory: Save input text, Save 

output text, and Clear, the last clearing the texts of both text boxes. 

A.3 API’s PROVIDED TO PROGRAMMERS 

This program provides the following nine APIs which can be incorporated into your 

program. In each API, the first is the data type to be returned. 

A.3.1 Parameters and their values 

o  file is the path of the file to be tagged 

o connector is the string used to separate one token-tag pair from another (default = 

“\r\n”) 
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o toLower = true changes the text to lower case while toLower = false does nothing. The 

default value = false. This is used in tokenization. 

o keepPunc = true keeps the punctuation marks while keepPunc = false removes the 

punctuations from the text. The default value = true. This is used in tokenization. 

o keepDigits = true keeps the digits while keepDigit = false removes the digits from the 

text. The default value = true. This is used in tokenization. 

A.3.2 APIs 

o List<string> TagFile_toList(string file, bool toLower, bool keepPuncs, bool keepDigits) 

o List<string> TagFile_toList(string file), which is the same as TagFile_toList (file, false, 

true, true) 

o string TagFile_toStr(string file, bool toLower, bool keepPuncs, bool keepDigits, string 

connector) 

o string TagFile_toStr(string file, string connector) , which is the same as TagFile_toStr 

(file, false, true, true, connector) 

o List<string> TagList_toList(List<string> tokens) 

o List<string> TagStr_toList(string str, bool toLower, bool keepPuncs, bool keepDigits) 

o string TagStr_toList(string str) , which is the same as = TagStr_toList (str, false, true, 

true) 

o string TagStr_toStr(string str, bool toLower, bool keepPuncs, bool keepDigits,  

string connector) 

o string TagStr_toStr(string str, string connector), which is the same as TagStr_toStr str, 

false, true, true, connector) 
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A.4  HOW TO INCORPORATE THIS PROGRAM INTO YOUR OWN 

To use the above APIs, follow these steps: (1) unzip the package APIs and Data.zip, which 

produces HanLibrary.dll and the data folder, (2) add HanLibrary.dll to your references, (3) add 

directive using HanLibrary.PosTagging to your main class, (4) create a HTagger instance, using 

the default constructor (a) or the overloaded constructor (b), and (5) call the methods needed by 

your program that are provided by the HTagger instance. 

(a) HTagger tagger = new HTagger(); 

(b) HTagger tagger = new HTagger(folder_name_and_path); 

If you use the default constructor, you need to copy the data folder with its files and place it 

two levels up to your main C# executable. Suppose your main C# executable is called Tagger.exe, 

located in bin\Debug\, then the directory layout is: 

- data 

- bin 

- Debug 

- Tagger.exe 

If you use the overloaded constructor, folder_name_and_path is the name and path of your 

own folder to host the data files needed by the tagger. You can use any name you like. The path 

of your folder can be specified absolutely such as “C:\\Users\Me\MyData\\” or relatively to the 

location of your main executable, such as HTagger tagger = new HTagger(“...\...\..\MyData\\”). 

If you forgot the ending slashes, the program will supply them. You need to copy the data files 

and place them inside your own data folder. 
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APPENDIX B: PENN TREEBANK TAGSET 

(Source: http://www.mozart-oz.org/mogul/doc/lager/brill-tagger/penn.html) 

POS Tag  Description  Example  
CC  coordinating conjunction  and  
CD  cardinal number  1, third  
DT  determiner  the  
EX  existential there  there 
FW  foreign word  d'hoevre  

IN  preposition/subordinating 
conjunction in, of, like  

JJ  adjective green  
JJR  adjective, comparative  greener  
JJS  adjective, superlative  greenest  
LS  list marker  1)  
MD  modal  could, will  
NN  noun, singular or mass  table  
NNS  noun plural  tables  
NNP  proper noun, singular  John  
NNPS  proper noun, plural  Vikings  
PDT  predeterminer  both the boys  
POS  possessive ending  friend's  
PRP  personal pronoun  I, he, it  
PRP$  possessive pronoun  my, his  

RB  adverb however, usually, naturally, here, 
good  

RBR  adverb, comparative  better 
RBS  adverb, superlative  best  
RP  particle  give up  
TO  to  to go, to him  
UH  interjection  uhhuhhuhh  
VB  verb, base form  take  
VBD  verb, past tense  took  
VBG  verb, gerund/present participle  taking  
VBN  verb, past participle  taken  
VBP  verb, sing. present, non-3d  take  
VBZ  verb, 3rd person sing. present  takes  
WDT  wh-determiner  which  
WP  wh-pronoun  who, what  
WP$  possessive wh-pronoun  whose  
WRB  wh-abverb  where, when  
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APPENDIX C: THE C5 TAGSET OF CLAWS4 

(Source: http://ucrel.lancs.ac.uk/claws5tags.html) 

POS Tag  Description  Example  
AJ0  adjective (unmarked)  good, old 
AJC  comparative adjective better, older 
AJS  superlative adjective best, oldest 
AT0  article the, a, an 
AV0  adverb (unmarked) often, well, longer, furthest 
AVP  adverb particle up, off, out 
AVQ  wh-adverb when, how, why 
CJC  coordinating conjunction and, or 
CJS  subordinating conjunction although, when 
CJT  the conjunction that 
CRD  cardinal numeral 3, fifty-five, 6609 (excl one) 
DPS  possessive determiner form your, their 
DT0  general determiner these, some 
DTQ  wh-determiner whose, which 
EX0  existential there 
ITJ  interjection or other isolate oh, yes, mhm 
NN0  noun (neutral for number) aircraft, data 
NN1  singular noun pencil, goose 
NN2  plural noun pencils, geese 
NP0  proper noun london, michael, mars 

NULL  the null tag (for items not to be 
tagged)  

ORD  ordinal sixth, 77th, last 
PNI  indefinite pronoun none, everything 
PNP  personal pronoun you, them, ours 
PNQ  wh-pronoun who, whoever 
PNX  reflexive pronoun itself, ourselves 

POS  the possessive (or genitive 
morpheme) 'S or '  

PRF  the preposition OF  
PRP  preposition (except for OF) for, above, to 
PUL  punctuation - left bracket  (, [ 
PUN  punctuation - general mark ! , : ; - ? ... 
PUQ  punctuation - quotation mark ` ' " 
PUR  punctuation - right bracket ), ] 
TO0  infinitive marker TO  

UNC  "unclassified" items which are not 
words of the English lexicon  
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APPENDIX C: THE C5 TAGSET OF CLAWS4 (CONTINUED) 

(Source: http://ucrel.lancs.ac.uk/claws5tags.html) 

POS Tag  Description  Example  

VBB  the "base forms" of the verb "BE" 
(except the infinitive) am, are 

VBD  past form of the verb "BE" was, were 
VBG  -ing form of the verb "BE" being 
VBI  infinitive of the verb "BE"  
VBN  past participle of the verb "BE" been 
VBZ  -s form of the verb "BE" is, 's 

VDB  base form of the verb "DO" (except 
the infinitive), i.e.  

VDD  past form of the verb "DO" did 
VDG  -ing form of the verb "DO" doing 
VDI  infinitive of the verb "DO" do 
VDN  past participle of the verb "DO" done 
VDZ  -s form of the verb "DO" does 

VHB  base form of the verb "HAVE" 
(except the infinitive), i.e. HAVE have 

VHD  past tense form of the verb "HAVE" had, 'd 
VHG  -ing form of the verb "HAVE" having 
VHI  infinitive of the verb "HAVE" have 
VHN  past participle of the verb "HAVE" had 
VHZ  -s form of the verb "HAVE" has, 's 
VM0  modal auxiliary verb can, could, will, 'll 

VVB  base form of lexical verb (except the 
infinitive) take, live 

VVD  past tense form of lexical verb took, lived 
VVG  -ing form of lexical verb taking, living 
VVI  infinitive of lexical verb take, live 
VVN  past participle form of lexical verb taken, lived 
VVZ  -s form of lexical verb takes, lives 
XX0  the negative NOT or N'T  
ZZ0  alphabetical symbol a, b, c, d 
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