

BUILDING AN EFFICIENT, SCALABLE, AND TRAINABLE PROBABILITY-AND-RULE-

BASED PART-OF-SPEECH TAGGER OF HIGH ACCURACY

by

JIAYUN HAN

(Under the Direction of Michael Covington)

ABSTRACT

This project is aimed to build an efficient, scalable, portable, and trainable part-of-speech

tagger. Using 98% of Penn Treebank-3 as the training data, it builds a raw tagger, using Bayes’

theorem, a hidden Markov model, and the Viterbi algorithm. After that, a reinforcement machine

learning algorithm and contextual transformation rules were applied to increase the tagger’s

accuracy. The tagger’s final accuracy on the testing data is 96.51% and its speed is about 26,000

words per second on a computer with two-gigabyte random access memory and two 3.00 GHz

Pentium duo processors. The tagger’s portability and trainability are proved by the tagger-

maker’s success in building a new tagger out of a corpus that is annotated with the tagset

different from that of Penn Treebank.

INDEX WORDS: Part-of-Speech, Tagging, Markov Model, The Viterbi Algorithm, The
Baysian Theorem, Machine Learning, Contextual rules, Natural Language
Processing

BUILDING AN EFFICIENT, SCALABLE, AND TRAINABLE PROBABILITY-AND-RULE-

BASED PART-OF-SPEECH TAGGER OF HIGH ACCURACY

by

JIAYUN HAN

MA, Sichuan International Studies University, China, 1999

PHD, The University of Georgia, The United States, 2007

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2009

© 2009

Jiayun Han

All Rights Reserved

BUILDING AN EFFICIENT, SCALABLE, AND TRAINABLE PROBABILITY-AND-RULE-

BASED PART-OF-SPEECH TAGGER OF HIGH ACCURACY

by

JIAYUN HAN

Major Professor: Michael Covington

Committee: Paula Schwanenflugel
Alexander Williams

Electronic Version Approved:

Maureen Grasso
Dean of the Graduate School
The University of Georgia
May 2009

DEDICATION

To my lovely wife, Xianchun Huang, and my dear son, Jing Han, for their endless

support

 iv

ACKNOWLEDGEMENTS

I sincerely thank Dr. Covington for his longitudinal guidance, great patience and kind

encouragement, without which this thesis could not have been done. My sincere gratitude also

goes to Dr. Schwanenflugel and Dr. Williams for their insightful revision suggestions. I also

deeply thank my wife and my son, who pardoned me for not being able to spare more time to

enjoy life with them.

 v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ..v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

1 INTRODUCTION..1

2 SURVEY OF MAJOR EXISTING TAGGING PROGRAMS................................6

2.1 RULE-BASED TAGGERS.. 6

2.2 PROBABILITY-BASED TAGGERS .. 7

2.3 HYBRID TAGGERS ... 11

3 MAJOR ALGORITHMS..14

3.1 BAYES’ THEOREM ... 14

3.2 A HIDDEN MARKOV MODEL.. 17

3.3 THE VITERBI ALGORITHM .. 19

3.4 CONTEXTUAL ADJUSTMENT ALGORITHM... 20

3.5 REINFORCEMENT MACHINE LEARNING ALGORITHM .. 21

3.6 ALGORITHM DEALING WITH UNKNOWN WORDS .. 24

4 DEVELOPING THE TAGGER...26

4.1 DATA... 26

4.2 DEVELOPING THE RAW TAGGER ... 26

4.3 TRAINING THE RAW TAGGER ... 31

4.4 CONTEXTUAL FINAL ADJUSTMENT.. 38

 vi

4.5 BUILDING THE TAGGER-MAKER .. 39

5 RESULTS ...42

5.1 TAGGING ACCURACY... 42

5.2 TAGGING SPEED... 46

5.3 PORTABILITY AND TRAINABILITY.. 47

6 CONCLUSIONS ..49

BIBLIOGRAPHY ..52

APPENDICES ..55

A SOFTWARE DOCUMENTATION... 55

B PENN TREEBANK TAGSET ... 64

C THE C5 TAGSET OF CLAWS4.. 65

 vii

LIST OF TABLES

Page

Table 2.1 Major existing taggers and their features ...13

Table 4.1 The word-tag-frequency statistical figures ..27

Table 4.2 The tag-count lookup table ..29

Table 4.3 The tag-word emission lookup table ..30

Table 4.4 Unique bigrams and their frequencies..30

Table 4.5 Unique trigrams and their frequencies ..30

Table 4.6 The tags-tag transition probability lookup table ..31

Table 4.7 The pseudo code for tagging a sequence of words ..32

Table 4.8 The pseudo code for adjusting emission probabilities ..35

Table 4.9 The pseudo code for adjusting tags-tag transition probabilities...................................36

Table 4.10 The training parameters and their values..37

Table 4.11 The pseudo code for training the tagger as a whole ...37

Table 4.12 The pseudo code for building the context dictionary...39

Table 4.13 The pseudo code for contextual constraint adjustments..40

Table 4.14 The pseudo code for building a tagger out of training data ..41

Table 5.1 The tagging results ..43

Table 5.2 The time needed for building a new tagger ...48

Table 5.3 The new tagger’s accuracy results ..48

 viii

LIST OF FIGURES

Page

Figure 5.1 The tagging accuracies on the training data and the testing data...............................43

Figure 5.2 The tagging speed on the training data and the testing data.......................................44

Figure 5.3 The 12 hours’ learning progress..45

Figure A.1 The screenshot of tagging the entered text ..56

Figure A.2 The screenshot of checking tagging accuracy ...57

Figure A.3 The screenshot of tagging and Training Options panel ..59

Figure A.4 The screenshot of setting the training parameters ..60

 ix

CHAPTER 1

INTRODUCTION

In its broad sense, tagging in natural language processing (NLP) refers to any process that

assigns certain labels to certain linguistic units. In its narrow sense, as it is used in this thesis, it

denotes the assignment of part-of-speech tags to texts. A computer program for this purpose is

called a tagger. Both word and part-of-speech are used in their broad senses. The former in effect

includes everything but white space and the latter is not limited to the categories listed in

traditional grammar books. For example, Treebank-3 (Marcus, Santorini, Marcinkiewicz, &

Taylor, 1999) uses 36 tags and the C6 tagset of the CLAWS4 tagger has 138 tags (Leech, Garside,

& Bryant, 1994). As an example, (1.1) is a tiny excerpt of the tagged Switchboard, which is one

of the four components of Treebank-3 (See Appendix B for the tag descriptions).

(1.1) SpeakerB3/SYM ./.

Well/UH what/WP do/VBP you/PRP think/VB about/IN the/DT idea/NN

of/IN ,/, uh/UH ,/, kids/NNS having/VBG to/TO do/VB public/JJ

service/NN work/NN for/IN a/DT year/NN ?/.

Almost all advanced NLP projects, such as syntactic parsing, information retrieval, text

mining, speech-to-text conversion, building annotated corpora, etc., rely on tagging as the first

operation. Their performances can be significantly improved by an excellent tagger. For example,

one of the syntactic parsers used by the company which I am working for incorrectly parsed

 1

sentence (1.2) as (1.4). After manually assigned the correct tags to are, to, and use, the sentence

was parsed correctly and the parsing time was reduced by about three times.

(1.2) Bots in Bot Colony are programmed to use spoken language when a human is

present.

(1.3) Bots in Bot Colony (Aux = are) programmed (Aux= to) (Verb = use) spoken

language when humans are present.

Given the important roles played by tagging in NLP, an efficient, scalable, portable, and

trainable tagger with high accuracy is needed. However, almost no existing tagger possesses all

of these features, as shown in Chapter 2. This motivates me to choose as my thesis topic

developing a first-class tagger and an automatic tagger-maker. The resulted tagger will have the

following features: a) its accuracy will be above 96% on the testing data, b) its performance will

not be affected by the size of the text to be tagged, c) it can tag at least 200,000 words per second

on the testing computer, and d) it can improve itself using the annotated corpus supplied by users.

The resulted tagger-maker will have the following features: a) given a pre-tagged corpus of

considerably big size, it will build a fast, completely scalable, and considerably accurate tagger,

b) there will be no requirements for the corpus’ annotation scheme, its text type, or its language,

and c) the tagger-making process will be completely automatic.

The major algorithms to be used include Bayes’ theorem, a hidden Markov model, the

Viterbi algorithm, a reinforcement machine learning algorithm, the contextual constraint

algorithm, and the algorithm to deal with unknown words.

Written in C#, the program will provide end-users with a Windows interface and

programmers with the well-documented APIs.

 2

(1.4) The incorrect syntactic tree of the sentence Bots in Bot Colony are
programmed to use language when a human is present.

 Start

 S
 NP
 NP
 Nominal
 Bots Noun
 PP

In Prep
 NP

Bot_Colony Proper
 VP

are Verb
 VP

programmed Verb
 PP

to Prep
 NP
 NP
 Nominal

use Noun
 C
 VP

spoken Verb
 NP
 NP
 NP
 Nominal

language Noun
 AdvP

when Adv
 C
 S
 NP
 Det

a Art
 Nominal

human Noun
 VP

is Verb
 AdjP

present Adj
. Literal

 3

(1.5) The correct syntactic tree of the sentence Bots in Bot Colony are
programmed to use language when a human is present. (After manually
assigning the correct parts-of-speech to the underlined words)

 Start

 S
 NP
 NP
 Nominal
Bots Noun
 PP
in Prep

NP
Bot_Colony Proper
 VP
are Aux

VP
programmed Verb
 C
to Aux

VP
use Verb

NP
Nominal

PartP
spoken Verb
 Nominal
language Noun
 WhC
 AdvP
when Adv

 S
 NP
 Det

a Art
 Nominal

human Noun
 VP

is Verb
 AdjP

present Adj
. Literal

 4

To avoid redundant description, throughout the thesis, the testing computer refers to the

desktop computer that is used to test the programs. It has two-gigabyte random access memory

and two 3.00 GHz Pentium duo processors.

The rest of the thesis is arranged as this: chapter 2 gives a brief survey of the major existing

taggers, chapter 3 describes the major algorithms to be used, chapter 4 details the implementation

of the algorithms, chapter 5 presents the tagging and tagger-making results, and chapter 6

concludes the thesis, summarizing its achievements.

 5

CHAPTER 2

SURVEY OF MAJOR EXISTING TAGGING PROGRAMS

Tagging projects started from the 1950s. According to what they are based on, the existing

taggers can be classified into three major families: those based on linguistic rules, those based on

probabilities, and those based on both.

2.1 RULE-BASED TAGGERS

This type of taggers rely on contextual rules such as if a word is an article, it cannot be

followed by a base verb in simple sentences. The rules are either written by linguists using their

linguistic knowledge of a particular language or automatically generated from pre-tagged

corpora. An example of the former is Klein and Simmons (1963) and an example of the latter is

Brill (1995).

Klein and Simmons (1963) called the linguistic rules that they used the contextual grammar

coder (CGC). The CGC system was developed empirically through manual analysis of the

simple text found in a children’s encyclopedia. They used CGC to tag a couple of pages of that

same encyclopedia and reported that the accuracy was slightly over 90% and the speed was

about 21 words per second. Of course, neither the accuracy nor the speed can be compared with

today’s taggers, due to the poor computers and lack of manually annotated corpora. However,

their project proved that it is completely possible to use a computer to automatically assign

parts-of-speech to texts.

 6

Instead of writing the contextual rules manually, Brill (1995) generated 280 contextual

rules automatically from the tagged Brown corpus, using a machine learning approach. All of the

rules are of the form A B contextual condition where A is the tag to be transformed from and B is

the tag to be transformed to. Only when the contextual condition is satisfied, can the

transformation take place. For example, a rule like vbn vbd PREVTAG np means changing a past

participle (vbn) into a past form (vbd) if it is preceded by a proper noun (np).

The Brill tagger is composed of three parts: 1) the lexical tagger, which, for each word, chooses

among its possible tags the one with the highest frequency, 2) the unknown word tagger, which

assigns the guessed tags to unknown words, and 3) the contextual tagger, which applies the

transformation rules.

The Brill tagger is significant in that it proved that computer can learn to generate rules

from data. His tagger’s accuracy is from 95% to 97%. However, as pointed out by Roche &

Schabes (1995), it is inherently slow for two reasons. First, the tagger applies all rules to each of

the sentences to be tagged, matching the tags one by one. Since it does not remember which tags

have already been compared, it performs a tremendous amount of unnecessary string comparison.

Second, some of the rules may cancel each other, resulting in unnecessary computation.

In general, writing contextual rules by hand is a tedious process and matching them one by

one is computationally expensive. This plus the availability of large pre-tagged corpora and the

affordability of super computers encourages researchers to develop probability-based taggers,

which, in my view, accounts for the rarity of rule-based taggers.

2.2 PROBABILITY-BASED TAGGERS

These taggers can be classified into five subtypes according to their major algorithms: 1)

those based on various Markov models (Church, 1988; Kim, Rim, & Tsujii, 2003; Lee, Tsujii, &

Rim, 2000a, 2000b, 2000c; Thede & Harper, 1999), 2) those using genetic algorithms (Araujo,

 7

2002; Enrique, Luque, & Araujo, 2006), 3) those based on artificial neural networks (Roth &

Zelenko, 1998; Schmid, 1994), 4) those employing statistical decision trees (Kim et al., 2003;

Marquez, Padro, & Rodriguez, 2000), and 5) those relying on the maximum entropy theory

(Ratnaparkhi, 1996; Toutanova & Christopher, 2000).

The common feature of the first subtype is that they are based on two types of probabilities:

the probability of a word being a particular tag and the probability of a tag following or

preceding a fixed number of other tags. These probabilities are calculated by counting the

frequencies of the relevant items of the pre-tagged corpora. A typical example is Church (1988),

which finds the best tag sequence in the following steps.

1) Calculating the probabilities of all unique words’ being all possible tags and the

probabilities of all unique tags’ being preceded by unique bigrams. He called the former the

lexical probability, and the latter the contextual probability.

2) Treating the text as though it were composed of the last word only and calculating the

probabilities of all parts-of-speech of that word, each of which is the product of that word’s

lexical probability and its contextual probability.

3) Adding one word backward and calculating the probabilities of all possible tag

combinations of those words.

4) Repeating step three until all words are processed.

5) Choosing the tag sequence that has the highest probability.

Church (1988) is one of the earliest projects that employ dynamic programming to solve

the tagging problem. He reported that his tagger’s accuracy ranged from 95% to 99%. However,

he didn’t mention how it dealt with unknown words. Though the author claimed that the

computation time was linear to the number of the words to be tagged, it may be much longer

 8

than that, since adding all tags of each preceding word increases the possible partial tag

sequences exponentially.

Araujo (2002) and Enrique et al. (2006) are the first projects to use genetic algorithms to

solve the tagging problem. These two papers are almost the same so I will review the more

recent one only. Their basic algorithm is summarized as follows.

First, it randomly initiates a list of possible tag sequences, called population. Each member

of the population is a genotype made up of genes. A genotype is actually a sequence of

part-of-speech tags. Second, it randomly forms a number of genotype couples and exchanges the

genes (part-of-speech tags) within each couple to produce new genotypes and this process is

called crossover. Third, it randomly selects one gene of each new genotype and randomly

changes that gene into another allowable tag and this process is called mutation. Finally, it used

the fitness function to score each genotype to find n best genotypes to replace

them for n randomly selected genotypes to update the population and this process is called

survival selection. is the fitness score of each gene, which is calculated by [2.1], where

occ stands for occurrences, LC for left context tags, T for the current tag in question, RC for the

right context tags, and l is the number of the possible tags of a word.

∑= i genegenotype i
ff

genef

[2.1] ∑
−=

=

=
1

0
)),,(/),,(log(

lj

j

j
gene RCTLCoccRCTLCoccf

The entire cycle of crossover, mutation, and survival selection is called an evolutionary

generation. After the preset number of generations is reached, evolution stops and the genotype

with the highest fitness is chosen, which is the optimal tag sequence.

From the algorithms summarized above, we know that there are three problems in using

evolutionary algorithms to tag texts. First, it is bound to be slow due to the computationally

 9

expensive processes of crossover, mutation, and survival selection. Second, the tagging result

varies from one run to another. Third, the tagger may not be scalable, i.e., the size of the text may

give the tagger big trouble. The reported best accuracy was 96.41% after 5,656 generations of

evolution and the reported speed was about 10,000 words per second.

An example of using statistical decision trees to solve the tagging problem is Marquez,

Padro, & Rodriguez (2000). Using 96% of WSJ of Penn Treebank as the training data, the

authors group all multi-tag words into 253 ambiguity classes, such as class JJ-VBG (e.g. amusing,

exciting, etc.) and class JJ-VBD-VBN (e.g. amused, excited, surprised, etc.). The tagging problem

thus becomes a classification problem. They selected the following attributes: the third tag to the

left of the word in question (tag-3), the second tag to the left (tag-2), the first tag to the left

(tag-1), the first tag to the right (tag+1), and the second tag to the right (tag+2), and the word’s

spelling features, such as capitalization, containing digits, etc. In other words, the best tag of a

word is decided by it contextual and spelling characteristics.

They tested their tagger on the remaining 4% of WSJ and the reported accuracy was 97%.

However, it was able to tag only about 300 words per second on a computer with an UltraSparc2

processor. Although, I have no idea of the performance difference between UltraSparc2

processors and Pentium processors, I believe that even if they had used today’s powerful

processor, the tagger would still have been very slow.

A widely used tagger is the Stanford tagger (Toutanova & Christopher, 2000) that uses the

maximum entropy theory to search for the optimal sequence of tags. It is trained on sections 0-20

of WSJ of Treebank-3 and tested on sections 23-24. The reported accuracy is 96.86%. No speed

is reported. The Stanford tagger is trainable in that it can produce a tagger by using a tagged

corpus provided by users. Using the testing computer and the same testing data, I replicated the

 10

tagger’s performance. The accuracy is about the same as that reported but it took more than 42

minutes to tag the 111,117 tokens at the speed of 44 words per second. I then tested it on the

1-million-word Brown corpus with the result that the testing computer crashed due to an

out-of-memory exception after more than 10 hours’ computing. In sum, the Stanford tagger is

trainable and has reached the state-of-the-art accuracy but it is unbearably slow and is not

scalable.

2.3 HYBRID TAGGERS

Taggers of this family use both linguistic rules and probability-based methods. One of the

most successful examples is the CLAWS project by Lancaster University (Garside, Leech, &

Sampson, 1987; Leech et al., 1994; Marshall, 1983). The latest version is the CLAWS4 tagger,

which is also called the BNC tagger due to the fact that it was used to tag the 100-million-word

British National Corpus (BNC). Leech et al. (1994) summarized the core algorithms of the

CLAWS4 tagger as follows:

(a) segmentation of text into word and sentence units

(b) initial (non-contextual) part-of-speech assignment [using a lexicon,

word-ending list, and various sets of rules for tagging unknown items]

(c) rule-driven contextual part-of-speech assignment

(d) probabilistic tag disambiguation [Markov process]

(e) output in intermediate form

(pp. 622-623)

The probability-based algorithm used by the CLAWS4 tagger is a hidden Markov model.

The linguistic rules were actually built up over 14 years and they are responsible for tagging

multi-word expressions, such as according to, as well as, kind of, sort of, etc. Each word of such

 11

an expression should be assigned the same tag as that of the expression taken as a whole. For

example, in (2.1), according and to are both given the tag PRP2, and sort and of are both tagged

as AV02. An ending number is used to indicate the position of the word in the multi-word

expression, hence According_PRP21 and to_PRP22. The definitions for the C5 tagset are given

in Appendix C.

(2.1) According_PRP21 to_PRP22 that_DT0 news_NN1 ,_, the_AT0 enemy_NN1

was_VBD sort_AV021 of_AV022 defeated_VVN ._.

Lancaster university provides a trial tagging service at

http://ucrel.lancs.ac.uk/claws/trial.html. It accepts up to 10,000 words for tagging every time.

(2.1) is the online tagging result. To test the tagger’s accuracy and its speed, I tried some files

from the Brown corpus and manually checked the result. The accuracy is about 96% and the

speed is about 500 words per second including the time for data transmission through the

network.

That the CLAWS4 tagger successfully tagged the 100-million-word BNC indicates that it is

completely scalable. The linguistic rules make the CLAWS4 tagger outstanding in handling

multi-word expressions. On the other hand, we should keep in mind that as those rules were

written just for the English language, they are not portable to other languages.

Table 2.1 summarizes most of the taggers mentioned in this chapter. The speed is measured

by the number of words processed per second; portable indicates whether the methods can be

applied to other text types or other languages, and trainable refers to whether the tagger can

improve itself or produce a new tagger, given a user-supplied pre-tagged corpus. As shown there,

almost all of the taggers have achieved very high accuracy. However, it seems that the authors

had little interest in the tagger’s efficiency, as most of them even didn’t mention it at all. An

 12

inefficient tagger has little hope to be scalable. Finally, no tagger except the Stanford tagger is

trainable.

Table 2.1 Major existing taggers and their features

“Portable” indicates whether the methods can be applied to other text types or other
languages. “Trainable” refers to whether the tagger can improve itself or produce a new tagger
if given a pre-tagged corpus by users.

Tagger Major algorithms Accuracy Speed
(wps) Portable? Trainable?

Klein and
Simmons (1963)

using manually
written contextual
rules

90% 21 No No

Brill (1995) using generated
transformation
rules

95%-97% unknown Yes No

Church (1988) Markov process 95%-99% unknown Yes No
Enrique et al.
(2006)

evolutionary
algorithm 94.61% 10,000 Yes No

Marquez et al.
(2000)

decision tree 97% 300 on
Ultrasparc2 Yes No

The Stanford
tagger

maximum entropy 96.68% 44 Yes Yes

CLAWS Markov process &
Linguistic rules ≈ 96% 500 via

internet No No

Banko & Robert
(2004)

contextualized
hidden Markov
model

97.24 unknown Yes No

Kim et al.
(2003)

variable memory
Markov models 96.9% unknown Yes No

Thede & Harper
(1999)

2nd-order of
hidden Markov
model

98.04% unknown Yes No

Roth & Zelenko
(1998)

winnow-based
network 98% unknown Yes No

Schmid (1994) neuron network 97.79% unknown Yes No

 13

CHAPTER 3

MAJOR ALGORITHMS

The major algorithms used for this project are 1) Bayes’ theorem (Mitchel, 1997), 2) a

Markov assumption (Brill, 2000), 3) the Viterbi algorithm (Forney, 1973), 4) a reinforcement

machine learning algorithm, 5) the algorithm to deal with unknown words, and 6) the contextual

transformation algorithm.

3.1 BAYES’ THEOREM

In machine learning we are interested in finding from all possible hypotheses the most

probable one, given the training data D. This can be done by calculating the probability of each

hypothesis and choosing the one with the highest probability. The most probable hypothesis is

called the maximum a posteriori hypothesis, notated as hMAP, which is found by [3.1], where h is

just one hypothesis and H is the set of all possible hypotheses and is the probability of

h given the data D.

)|(DhP

[3.1])|(maxarg DhPh
Hh

MAP
∈

≡

Then how do we find ? The answer lies in Bayes’ theorem, which provides a way

to calculate the probability of a hypothesis based on its prior probability, the probability of

observing the data given the hypothesis and the probability of observing the data itself. Bayes’

theorem is expressed as [3.2], where is the probability of observing data independent of the

hypothesis h, is the probability that a hypothesis holds independent of the data D,

)|(DhP

)(DP

)(hP

 14

and is the probability of observing data D given some world in which the hypothesis h

holds.

)|(hDP

[3.2]
)(

)()|()|(
DP

hPhDPDhP ×
=

Applied to tagging, a hypothesis h is simply one possible tag sequence t, and D is the word

sequence W. Therefore, is , the probability that t is the correct sequence of tags

independent of W; is , the probability of observing W independent of t;

is , the probability of observing W given t, and finally is , the

probability that t is the correct tag sequence given W. Bayes’ theorem is thus expressed as [3.3]

when applied to tagging.

)(hP)(tP

)(DP)(WP)|(hDP

)|(tWP)|(DhP)|(WtP

[3.3]
)(

)()|()|(
WP

tPtWPWtP ×
=

Since is the same for all possible tag sequences, it can be dropped from the

expression which simplifies [3.3] into [3.4] and [3.1] into [3.5].

)(WP

[3.4])()|()|(tPtWPWtP ×=

[3.5])|(maxarg WtPh
Tt

MAP
∈

≡

)()|(maxarg tPtWP
Tt

×=
∈

To get the result of (3.5), we need to calculate for each of the possible tag

sequences and find the one with the highest probability. That is, we need to know the value

of and that of for each possible tag sequence. A short sentence Bob can go is used to

illustrate how to calculate those two values, where Bob has two possible tags: noun and verb, can

has three: modal, verb, and noun, and go has two: noun and verb. Therefore this sentence can

)|(WtP

)|(tWP)(tP

 15

have 2 × 3 × 2 = 12 possible tag sequences, as listed in [3.6] where md stands for modal verb.

Take the tag sequence t12 for example. is calculated by [3.7] and by [3.8].)|(12tWP)(12tP

[3.6] t1 = noun, noun, noun
 … T∈

 t12 = noun, md, verb

[3.7])|()|()|(),,|,,(verbgoPmdcanPnounBobPverbmdnoungocanBobP ×=

[3.8])__()_()(),,(verbmdnounPmdnounPnounPverbmdnounP ××=

Each term of the right side of [3.7] and [3.8] can be obtained by counting the frequencies of

certain items of the pre-tagged training data. For example, is the frequency of the

word can tagged as a modal verb divided by the total occurrences of the modal verb tag in the

training data while is the frequency of a noun immediately followed by a modal

verb in the training data divided by the total frequency of the given tag, i.e. the tag noun in the

training data. Similarly, is calculated by dividing the frequency of a noun

immediately followed by a modal verb immediately followed by a verb in the training data by

the total frequency of the leading tags, i.e. the frequency of a noun immediately followed by a

modal verb in the training data. Applied to tagging texts of any number of words, [3.7] and [3.8]

are generalized into [3.9] and [3.10], respectively.

)|(mdcanP

)_(mdnounP

)__(verbmdnounP

[3.9])|(...)|()|()|(2211 nn twPtwPtwPtWP ×××=

[3.10]),...,,(...),,(),()()(21321211 ntttPtttPttPtPtP ××××=

Obviously, it is difficult or even impossible to get the reliable values of each of the terms of

the right side of [3.10] when too many words need to be tagged. To solve this problem, a Markov

assumption is used, which is explained in the next section.

 16

3.2 A HIDDEN MARKOV MODEL

A hidden Markov model is a finite state machine, in which each state emits a symbol and

each state also transitions to a new state. Thus for each state, there are two associated

probabilities: the probability that it emits a particular symbol and the probability that it

transitions to a particular state. In other words, there is a sequence of visible symbols and a

sequence of hidden states. Applied to tagging, the sequence of visible symbols is the sequence of

words to be tagged while the sequence of hidden states is the sequence of tags to be obtained.

The tagging goal is thus to search for the sequence of tags that has the highest probability, as

indicated by [3.11], which is the same as [3.5], the simplified Bayes’ theorem.

[3.11])()|(maxarg tPtWPh
Tt

MAP ×≡
∈

As stated in section 3.1, getting can be computationally intractable when the text

contains too many words. To make it feasible to calculate for texts of any size, a Markov

assumption is made, which assumes that a state is dependent only on a small and fixed number of

previous states. For example, a bigram model assumes that a state is subject to its immediate

preceding state only, i.e. a tag is dependent only on the one that immediately precedes it. This

assumption changes [3.8] into [3.12] for our simple sentence when t = noun_md_verb and the

generalized formula [3.10] into [3.13]. The value of [3.13] can be easily calculated by counting

the frequencies of certain items in the training data.

)(tP

)(tP

[3.12])|()|()|(),,(mdverbPnounmdPStartnounPverbmdnounP ××=

[3.13])|(...)|()|()|()(123121 −××××= nn ttPttPttPStarttPtP

Obviously, English does not completely follow the Markov assumption in terms of

part-of-speech distributions. For example, the part-of-speech of go in The person near the

window of the library of the University of Georgia goes to church every Sunday is not dependent

 17

on the tag of its immediate predecessor, i.e., Georgia, but on that of person, the word quite far

away from go. Despite the falsity of the Markov assumption for English, in most cases, it still

produces good result.

Applied to tagging, for a bigram Markov model in which a tag is influenced by its

immediate preceding tag, the prior probability of a tag sequence is the product of the

probabilities of each tag transitioned from its preceding tag, as expressed in [3.14]. The

probability of observing a sequence of words given a sequence of tags is the product of the

probability of each word emitted by its corresponding tag in that tag sequence, as expressed in

[3.15]. The posteriori probability of a particular tag sequence t given a sequence of words W is

the product of [3.14] and [3.15], as expressed by [3.16].

[3.14] ∏
=

+=
w

i
ii tagtagPtP

0
1)|()(

[3.15] ∏
=

=
w

i
ii tagwordPtWP

1

)|()|(

[3.16])|()()|(tWPtPWtP ×=

The simple Markov assumption has solved the problem of calculating . To get

of [3.11], a simple solution is to calculate all where

)(tP MAPh

)|(WtP Tt∈ and choose the one with

the highest probability. The machine learning approach using Bayes’ theorem in this fashion is

called brute-force Bayes’ concept learning (Mitchel, 1997). This learning method is

computationally intractable when used to tag considerably long text since the run-time of getting

the value of [3.11] is where n is the average number of tags of each of the words and

W is the number of the words. To get this around, the Viterbi algorithm (Forney, 1973) is used,

which is explained in the next section.

)(||WnO

 18

3.3 THE VITERBI ALGORITHM

The main idea of the Viterbi algorithm is that instead of iterating over all possible state

sequences to choose the best state sequence, we iterate over all possible candidates of each state

to get the best one for that individual state. The concatenation of the best individual states

produces the best state sequence. Applied to tagging, this algorithm searches for the best tag for

each word in order to find the best tag sequence. The best tag of a word is calculated by [3.17]

where is one possible tag of the word, the plural form, , is all of the possible tags of

that word, is the best tag of that word to be obtained, and are the small fixed

number of tags preceding that word.

wtag wtags

wTag ptags

[3.17])|()|(maxarg pww
tagstag

w tagstagPtagwPTag
ww

×=
∈

Using a bigram Markov model, Bayes’ theorem, and the Viterbi algorithm, the procedures

to find the best tag sequence of the sentence Bob can go are listed below.

1. Find the best tag of Bob which is

)|()|(maxarg StarttagPtagBobPTag BobBob
tagstag

Bob
BobBob

×=
∈

2. Find the best tag of can which is

)|()|(maxarg Bobcancan
tagstag

can tagtagPtagcanPTag
cancan

×=
∈

3. Find the best tag of go which is

)|()|(maxarg cangogo
tagstag

go tagtagPtaggoPTag
gogo

×=
∈

4. The best tag sequence of the sentence Bob can go is

[3.18] gocanBobMAP TagTagTagh ++=

 19

If the average number of tags of a word is n and there are W words to be tagged, the

run-time to calculate the best tag sequence is which is exponentially shorter than

the time needed by brute-force Bayes’ concept learning.

|),|(2 WnO ×

3.4 CONTEXTUAL ADJUSTMENT ALGORITHM

Due to the fact that it is very difficult to determine the correct tag of some ambiguous

words, such as can, may, must, will, might, saw, etc, the above algorithms frequently make

mistakes. This project uses the contextual information to adjust the tags of these tough words as

a remedial measure, based on the assumption that a word’s tag is constrained by the tags of its

surrounding words. Using the phrase a full can of beans as an example, the algorithm is

illustrated as this: if we know the tags of a, full, of, and beans are determiner, adjective,

preposition, and noun, respectively, which form a tag sequence of determiner, adjective, ?,

preposition, noun, we can then search the training data for the word can that is preceded by an

adjective which in turn is preceded by an determiner and that is followed by a preposition which

in turn is followed by a noun. If this search succeeds, we can change the tag of can in a full can

of beans obtained previously into the tag of can given by the training data in this context.

For this algorithm, there are two points to be considered. First, we know that the bigger the

context size is, the more accurate the obtained tag will be. However, if the context size is too big,

we may not find that tag sequence with the word in question in that particular slot in the training

data. I choose the two tags preceding the word and the two tags following the word as the

contextual tags. Second, whether this algorithm works depends on the accuracy of the contextual

tags. For example, only after we get the correct tags of a, full, of, and beans, can it be possible to

adjust the tag of can. This calls for a training algorithm to get the most accurate probability of a

tag’s transitioning to its following tag and the most accurate probability of that tag’s emitting a

 20

particular word. This is the goal of the reinforcement machine learning algorithm of this project,

which is detailed in the following section.

3.5 REINFORCEMENT LEARNING ALGORITHM

As shown from [3.17], the choice of a word’s tag depends on two probabilities: the

emission probability, and the transition probability, Therefore, we

can design a machine learning algorithm, which gradually adjusts these two values to minimize

the tagging difference between the tags assigned by a tagger and those by the training data. The

learning algorithm is stated as follows.

),|(tagwordP).|(tagstagP

For a multi-tag word, if it is assigned an incorrect tag in a particular context, then this

word's probability of being the incorrect tag needs to be reduced and its probability of being the

correct one needs to be increased. By the same token, this error can also be corrected by reducing

the probability of the incorrect tag transitioned from its preceding tag(s) and by increasing the

probability of the correct tag transitioned from its preceding tag(s). After the adjustments of the

probabilities, tag the entire sequence of words again with the new probabilities. If the accuracy

drops, cancel the adjustments; if the accuracy increases, save the probability changes

permanently by writing them to files; if the accuracy has no change, keep the probability changes

in memory without updating the files. This is because in most cases, there will be no accuracy

change and updating the files frequently would greatly slow down the training process.

Let us again use the example Bob can go to illustrate how this learning algorithm works.

Let us make the following assumptions (where NNP stands for proper noun, NN stands for

common noun, MD stands for modal verb, and VB for base verb):

1) This sentence appears in the training data and is pre-tagged as

(3.1) Bob/NNP can/MD go/VB ./.

 21

2) This sentence is tagged by our tagger as

(3.2) Bob/NNP can/NN go/VB ./.

3) The probabilities of can emitted by its various tags and the probabilities of those tags

transitioned from its preceding tag, NNP, are obtained from the pre-tagged data as:

 02.0)|(=MDcanP 001.0)|(=NNPMDP

006.0)|(=VBcanP 002.0)|(=NNPVBP

01.0)|(=NNcanP 003.0)|(=NNPNNP

The above assumptions show that 1) the word can that is a modal verb in this context is

incorrectly tagged as a noun by the tagger, 2) given a proper noun, a common noun that follows

it has the highest probability (0.003) while a modal verb that follows it has the lowest probability

(0.001), and 3) the word can has the highest probability of being emitted by a modal verb (0.02)

and the lowest probability of being emitted by verb (0.006). The tag MD is called the weak tag

because its probability should be increased in order to be assigned to can while the tag NN is

called the strong tag because its probability should be reduced in order to be removed from this

word in this context.

The probabilities of can being emitted by MD, NN, and VB are calculated as follows:

00002.0001.002.0)|()|()|(=×=×= NNPMDPMDcanPcanMDP

000012.0002.0006.0)|()|()|(=×=×= NNPVBPVBcanPcanVBP

00003.0003.001.0)|()|()|(=×=×= NNPNNPNNcanPcanNNP

Thus the highest probability of the tag, given the word can is NN, which is not correct,

however, when compared with the training data. We can correct this problem by reducing the

probability of can emitted by the strong tag NN, and that by the non-strong tag VB by deducting

different values from their probabilities. These deductions are called taxes in this paper and are

 22

given to the emission probability of the weak tag MD. We can do the same thing to adjust the

transition probabilities. In this example, I will only illustrate how to adjust emission probabilities

as adjusting the transition probabilities can be done in a similar manner.

Let be the tax for the strong tag NN and 002.0=strongtax 001.0=commontax for the tag VB

that is neither strong nor weak. The processes of tax-collection and subsidiary-granting produce

the new probabilities of can emitted by MD, VB, and NN as:

023.001.0002.002.0)|(=++=MDcanP

005.0001.0006.0)|(=−=VBcanP

008.0002.001.0)|(=−=NNcanP

Now we retag the sentence and get the new probabilities of can emitted by MD, VB, and

NN as:

000023.0001.0023.0)|()|()|(=×=×= NNPMDPMDcanPcanMDP

00001.0002.0005.0)|()|()|(=×=×= NNPVBPVBcanPcanVBP

000024.0003.0008.0)|()|()|(=×=×= NNPNNPNNcanPcanNNP

The new probability of can being emitted by NN is still higher than that by MD but the

difference is considerably reduced. We continue adjusting the word-emission probabilities

until . After that, we save the new probabilities to file.)|()|(canNNPcanMDP >

In this example, I only illustrated how to change the word-emission probabilities of one

word can. However, in the real learning situation we must keep in mind that after can in this

particular context is tagged correctly due to the probability adjustments, can in other places of

the training data may be tagger incorrectly and that the word (for the bigram mode) or the two

words (for the trigram mode) following can may be tagged incorrectly as well, since their tags

depend on the new tag of can. Therefore, after every change of probabilities, we need to retag the

 23

whole text and let the tagging result decide whether to cancel, to keep in memory only, or to

permanently save the probability changes.

3.6 ALGORITHM DEALING WITH UNKNOWN WORDS

The above algorithms assume that every word of the text to be tagged has appeared in the

training data. In reality, this is not the case. No matter how big the training corpora are, they

cannot include the entire vocabulary of a language. Therefore, the tagger should be equipped

with the intelligence to gauge the possible tag(s) of unknown words. The tagger to be developed

achieves this by using the words available in the training corpora and the word’s morphological

compositions. The following steps are used to deal with unknown words:

First, restore an inflected word to its base form by removing the inflections. For example,

the word marketability has no plural form in normal situation. However, if for some reason, it

does appear as marketabilities, the tagger should be able to know that it is the plural form of

marketability and tag it accordingly.

Second, if inflection-dropping fails, try removing the prefixes. For instance, most old

training corpora like Penn Treebank do not have words like epassport or e-saver. But we can

treat e as a prefix and get the base form passport and saver. If we also know that e as a prefix

does not change the part-of-speech of the word to which it is attached, we can tag these two

words as NN.

Third, if prefix removal fails, try removing the suffixes. For instance, training corpora most

probably do not have the word girlless (as in A girlless party is boring). Through morphological

analysis, we know that this word is composed of girl and the adjectival suffix –less, and thus we

can tag girlless as adjective with confidence.

 24

In many cases, all of the above three procedures will all be used, even recursively for that

matter, to obtain the parts-of-speech of words like demodernizations, anti-internationalization,

sonlessness, etc. correctly.

Fourth, if the previous means fail, we resort to the endings of the words to gauge their tags

if they end with typical suffixes, such as –ia, -hood, -ity, -dom, -age, -some, etc. We need to keep

in mind the ambiguity of some suffixes. For example, –en can be an adjective (e.g. wooden), a

verb (e.g. shorten), or a noun (e.g. garden). If this is the case, we have to list all possible tags of

a word ending with that suffix and let the other algorithms decide its final tag.

Finally, if all of the above means fail, just tag an unknown word as a proper noun and a

common noun if it starts with a capital letter and tag it as a common noun only, otherwise.

But in any case, an unknown word should not be tagged as a closed-class word, such as

pronoun, conjunction, preposition, etc.

 25

CHAPTER 4

DEVELOPING THE TAGGER

Chapter 3 explained the algorithms. This chapter describes how I will implement them.

4.1 DATA

The data used for the project are the first three components of the Treebank-3, namely, the

Brown corpus, Switchboard and Wall Street Journal (WSJ), of which Switchboard is made up of

telephone interviews. Every sentence of Treebank is given a syntactic tree and every token is

given a tag or tags. Switchboard tags is as BES and has as HVS while the Brown corpus and

WSJ tag both as VBZ. For consistency, Michael Covington converted the BES and HVS of

Switchboard to VBZ. This project uses the converted version of Switchboard. Covington also

randomly divided the Brown corpus, Switchboard, and WSJ into the training data and the testing

data at the ratio of about 98% to 2%, which are used in this project as the training data and the

testing data, respectively.

4.2 DEVELOPING THE RAW TAGGER

There are two steps in developing the tagger: developing a raw tagger and training the raw

tagger into a more accurate one using a reinforcement machine learning algorithm. This section

describes the implementation of the raw tagger and the next section details the implementation of

the learning algorithm.

The tagger to be developed uses the trigram hidden Markov model. According to equation

[3.17], which is restated as [4.1] below for easy reference, the tag of a word is determined by the

 26

probabilities of that word being emitted by each of its possible tags, , and

the probabilities of each of those tags being transitioned from its two preceding tags,

, where tags are all possible tags of a word and is only one

of them. Therefore, the core values we need are the emission probabilities and the transition

probabilities.

)|(tagstagwordP ∈

)|(12 −−∈ kkkk tagtagtagstagP tag

[4.1])|()|(maxarg pww
tagstag

w tagstagPtagwPTag
ww

×=
∈

4.2.1 Constructing the Tag-word Emission Probability Lookup Table

To find the tag-word emission probabilities, two lookup tables are constructed out of the

training data. One lists all unique words, their possible tags, and the frequencies of those words

being particular tags, as obtained from the training data. Table 4.1 is part of that table.

Table 4.1 The word-tag-frequency statistical figures

Word All tag-frequency pairs

, ,|358007 UH|5 VBP|4 DT|3 RB|2 JJ|1 VBN|1 PRP|1 FW|1 IN|1 NN|1
… …

a
DT|79087 SYM|15 FW|9 VBP|7 NN|6 VB|5 PDT|4 JJ|4 RB|4 NNP|3
LS|2 VBN|2 IN|1 VBD|1 VBG|1 PRP|1 ,|1

… ….
Abandoned VBN|39 VBD|20 JJ|4
… …
will MD|7356 NN|137 VBP|1 VB|1
… …
Zygmunt NNP|1

As shown from the table, comma is used as a comma for 358007 times, as an UH

(exclamation) for five times, as a present verb in plural form for four times, etc. The entries

revealed the tagging noise of Treebank. There is little reason why the comma in (4.1) was tagged

as VBP. I regard this kind of noise as tagging errors and removed them from Table 4.1. That is,

punctuation marks will be tagged as punctuation marks only.

 27

(4.1) …if/IN you/PRP solve/VBP ,/VBP help/VB them/PRP to/TO work/VB

through/IN their/PRP$ problems/NNS… (Switchboard 3134)

However, (4.2), (4.3), (4.4), (4.5) indicate that the annotators of Treebank were trying to

guess the actual words in the speakers’ mind when tagging their utterances. The a in (4.2) was

tagged as VBP probably because it was believed to be the broken form of are. The a in (4.3) was

tagged as VB because that particular context requires have or the a is the weakened spoken form

of have in that context. The a in (4.4) was tagged as VBG because it was believed to be the

stammering form of appealing. Finally, the a in (4.5) was tagged as RB (adverb) because it is

believed to be the weakened pronunciation of the word of , which together with sort forms the

multi-word hedging adverb sort of. This kind of noise is not tagging errors, though it is very hard

for a probability-based tagger, such as this one, to tag words in those particular contexts in these

peculiar ways. They will be removed from Table (4.1), since keeping them will not increase the

tagging accuracy but considerably increase the computation time, if we recall that the tagger

needs to iterate every possible tag of a word to calculate the highest probability.

(4.2) now/RB ,/, watches/VBZ seven/CD point/NN two/CD hours/NNS of/IN

television/NN a/DT day/NN ,/, and/CC that/IN school/NN children/NNS ,/,

a/VBP ,/, a/VBP ,/, are/VBP not/RB far/RB off/IN that/DT mark/NN with/IN

six/CD point/NN eight/CD ./. (Switchboard 2926)

(4.3) So/UH ,/, we/PRP could/MD n't/RB a/VB done/VBN much/RB better/RBR

than/IN that/DT in/IN Buffalo/NNP ./. (Switchboard 2521)

(4.4) And/CC how/WRB long/JJ had/VBD he/PRP been/VBN a/VBG ,/,

appealing/VBG ?/. How/WRB long/JJ was/VBD that/DT ?/.

(Switchboard 4856)

 28

(4.5) I/PRP work/VBP and/CC I/PRP live/VBP in/IN the/DT city/NN so/RB ,/,

that/DT sort/RB a/RB kind/RB of/RB hung/VBD it/PRP up/RP ./.

(Switchboard 2562)

The other lookup table contains the unique tags and their frequencies. Table 4.2 is part of

that table. Using Table 4.1 and Table 4.2, the actual tag-word emission probability lookup table,

Table 4.3, is built, as illustrated below, using the word will acting as a noun for example.

From Table 4.1, we know that will appeared as a noun 137 times in the training data. From

Table 4.2 we know that totally noun occurred 468466 times. Therefore, given a noun, the

probability that it is will is ,486464330002924438.0468466/137 = which is exactly the

corresponding figure listed in Table 4.3. The other values of the emission probability table are

calculated in the same manner.

Table 4.2 The tag-count lookup table

Tag Freq Tag Freq Tag Freq
NN 468466 POS 18190 RP 11117
MD 46400 PRP 270609 SYM 1438
NNP 208019 PRP$ 43916 TO 89991
NNPS 6441 RB 221072 VB 134624
NNS 180389 RBR 6099 VBD 128419
PDT 3503 RBS 1847 VBG 58290

4.2.2 Constructing the Tags-tag Transition Probability Lookup Table

To find the tags-tag transition probabilities, two auxiliary lookup tables are needed as well.

One collects the unique bigrams that appeared in the training data and their frequencies; the other

lists the unique trigrams and their frequencies. Table 4.4 is part of the first table while Table 4.5

is part of the second one.

 29

Table 4.3 The tag-word emission lookup table

Tag Word Emission probability
will 0.000292443848646433
William 2.13462663245572E-06
willingess 2.13462663245572E-06
Willingness 2.13462663245572E-06
willingness 6.40387989736715E-05
willow 1.92116396921015E-05
will-to-power 2.13462663245572E-06
Wilmington 2.13462663245572E-06

 NN
(singular
common
noun)

… ..
will 0.158196950472053
willya 2.15058388352438E-05 MD
… …

Table 4.4 Unique bigrams and their frequencies

Bigram Freq Bigram Freq
NNP|NNP 71739 DT|NN 156733
… … … …

Table 4.5 Unique trigrams and their frequencies

Trigram Freq Trigram Freq
NNP|NNP|VBD 6669 NNP|NNP|NNP 18171
DT|NN|IN 46662 DT|NN|RB 4582
… … … …

Recall that for the trigram model, the kji tagtagtag − probability is the probability that

 is followed by . This can be calculated by dividing the frequency of

, which is listed in Table 4.5, by the frequency of , which is stored in

Table 4.4. For example, given two consecutive NNPs, the probability that the third tag is still an

NNP is 0.253293187805796, which is the total frequency of NNP|NNP|NNP (18171, according

to Table 4.5) divided by that of NNP|NNP (71739, as shown from Table 4.4). Other transition

ji tagtag ktag

kji tagtagtag jitagtag

 30

probabilities are calculated in the same way. Table 4.6 is part of the transition probability lookup

table built out of Table 4.4 and Table 4.5, using the method just described.

Table 4.6 The tags-tag transition probability lookup table

From-tag To-tag Tag-tag transition probability
NNP 0.253293187805796
VBD 0.0929619872036131 NNP|NNP
…
IN 0.297716498759036
RB 0.0292344305283508 DT|NN
…
… … … … …

Using equation [4.3], Table 4.3, and Table 4.6, the raw tagger is built. The pseudo code for

tagging a sequence of words is listed in Table 4.7.

4.3 TRAINING THE RAW TAGGER

As said earlier, the determinant values are the emission probabilities and the transition

probabilities, which we have calculated and stored them in Table 4.3 and Table 4.6. Recall that

they are obtained by counting the frequencies of each word’s all tags, the frequency of the

unigrams, bigrams, and trigrams. Most taggers based on Markov models stop at this step.

However, we can try and test whether the two kinds of probability values are actually the ones

needed by the program and whether there is any room for modification so that the tagger can

achieve higher accuracy. This motivates me to try and adjust these probability values.

4.3.1 Preparing the training data

To speed up computation, the project first processes all of the training files into two big

lists, one holding all the words and the other containing their corresponding tags. After that, the

raw tagger tags the list of words, which gives the tagging accuracy and produces the following

two sublists.

 31

Table 4.7 The pseudo code for tagging a sequence of words

words ← a list of words to be tagged
best_tag ← the best tag of a word to be obtained
resulted_tags ← the sequence of the tags to be obtained, initially empty
emission_prob ← a word’s probability of being emitted by a tag, which is listed in Table 4.3
transition_prob ← a tag’s probability of being transitioned from two consecutive preceding tags,

which is listed in Table 4.6

Build a run-time dictionary

key = a word of words
value = the possible tags of that word. If a word exists in Table 4.1, it is retrieved from that

table; otherwise, it is figured out by morphological analysis

for each word of words
{

if word has only one tag
{

best_tag = that only tag
}
else
{

highest_prob = 0

for each tag of word’s tags
{

this_prob = emission_prob × transition_prob

if (this_prob > highest_prob)
{

highest_prob = this_prob
best_tag = tag

}
}

}
add best_tag to resulted_tags

}
return resulted_tags

The first sublist is called unmatched_emission_items, each member in the form of

 where is the tag given by the training data which is treated as

the correct tag, is the tag incorrectly assigned by the raw tagger and is different from

FreqTagTagWord wc ||| cTag

wTag

 32

cTag , and Freq is the frequency of such wrong tagging. For example, the item

means that, for 23 times, saw that is supposed to be tagged as a noun is

tagged as a past tense verb. The other sublist is called unmatched_transition_items, each member

in the form of where are the two consecutive

leading tags,

23||| VBDNNsaw

FreqTagTagTagTag wc |||| 21 21 | TagTag

cTag is the tag following the leading tags given by the training data, wTag is the

actual tag assigned by the tagger and is different from , and Freq is the frequency of such

wrong tagging. For example, means that, for 23 times, a tag sequence of

a determiner followed by an adjective that is supposed to be followed by a noun is actually given

a modal verb by the raw tagger.

cTag

23|||| MDNNJJDT

The frequency value, Freq, is called the tolerance level, which determines how strict the

training is going to be. For instance, if we set Freq as 30, then the above two errors will not be

collected in the two lists, and they will not be treated as tagging errors.

4.3.2 Adjusting the tag-word emission probabilities

This section illustrates how the tagger learns to improve itself by adjusting the tag-word

emission probabilities, using as an example. The pseudo code is listed in

Table 4.8.

23||| VBDNNsaw

We know that saw has four possible tags: NN (noun, e.g., a plastic saw), VB (base verb,

e.g., to saw it open), VBP (the present verb with a plural subject, e.g. They saw wood in the

afternoon.), and VBD (the past form of see, e.g., I saw her a moment ago.). The item

 indicates that , which is the probability that that noun is the

word saw, should be increased. Therefore, the tag NN of this string is called the weak tag. It also

tells us that should be decreased. Therefore VBD is called the strong tag. The

23||| VBDNNsaw)|(NNsawP

)|(VBDsawP

 33

other tags of this word, i.e. VB and VBP are called the common tags, which are neither strong

nor weak.

There are two ways to adjust the probabilities. One is expressed in [4.2], where tax is the

value to be deducted from the probability of the strong tag and added to that of the weak tag P

is the post-adjustment probability and ε is the learning rate that ranges from 0 to 1 exclusive.

Figuratively, it is the tax rate that the strong tag uses to calculate the tax it should pay.

[4.2] ε×=)|(VBDsawPtax

taxVBDsawPVBDsawP −=)|()|(

taxNNsawPNNsawP +=)|()|(

The other way involves changing the probabilities of the common tags as well, as

expressed in [4.3], where κ is the tax rate of the common tags relative to that of the strong tag.

κ ranges from 0 to 1, inclusive. If κ = 0, it means no tax whereas if κ = 1, it means it uses

the same tax rate as that of the strong tag. Through experiments, I found that [4.2] is worse than

[4.3] as it terminates learning too soon.

[4.3] ε×=′)|(VBDsawPxta

xtaVBDsawPVBDsawP ′−=)|()|(

κε ××=′′)|(VBsawPxta

xtaVBDsawPVBDsawP ′′−=)|()|(

κε ××=′′′)|(VBPsawPxta

xtaVBPsawPVBPsawP ′′′−=)|()|(

xtaxtaxtaNNsawPNNsawP ′′′+′′+′+=)|()|(

 34

Table 4.8 The pseudo code for adjusting emission probabilities

items ← list of strings in the form of “word|weak_tag|strong_tag”, where “weak_tag” is the
correct tag and “strong_tag” is the wrong tag

bestAccuracySoFar ← the highest accuracy so far, initially set as 0

for each item of items
{

split item into word, weak-tag and strong-tag
find all the tags of word
adjust emission probabilities as described in [4.3]
thisAccuracy ← retag the text with new probability values

if (thisAccuracy < bestAccuracySoFar)
{

cancel probability adjustments
}
else
{

if (thisAccuracy > bestAccuracySoFar)
{

write new probabilities to file
}
bestAccuracySoFar = thisAccuracy

}
}
return bestAccuracySoFar

4.3.3 Adjusting the Tags-tag transition probabilities

Adjusting the tags-tag transition probabilities is similar to adjusting the tag-word emission

probabilities. The only difference is that the probabilities of the common tags stay intact. This

choice is made to reduce the computation complexity since there are too many tags that can

follow two consecutive tags. The transition adjustment is expressed in [4.4], using the transition

item as an example. The pseudo code is listed in Table 4.9. 23|||| MDNNJJDT

[4.4])1()_|(ε−×= JJDTMDPtax

taxJJDTMDPJJDTMDP −=)_|()_|(

taxJJDTNNPJJDTNNP +=)_|()_|(

 35

Table 4.9 The pseudo code for adjusting tags-tag transition probabilities

items ← list of strings in the form of “tag_tag|weak_tag|strong_tag”, where “tag_tag” is the two

leading tags, “weak_tag” is the correct tag following tag_tag and “strong_tag” is the wrong
tag following tag_tag

bestAccuracySoFar ← the highest accuracy so far

for each item of items
{

split item into tag_tag, weak-tag, strong-tag
adjust transition probabilities as described in [4.4]
thisAccuracy ← retag the text with new probability values
if (thisAccuracy < bestAccuracySoFar)
{

cancel probability adjustments
}
else
{

if (thisAccuracy > bestAccuracySoFar)
{

write new probabilities to file
}
bestAccuracySoFar = thisAccuracy;

}
}
return bestAccuracySoFar

4.3.4 Training the tagger as a whole process

Using the training parameter values listed in Table 10, Table 4.11 lists the pseudo code for

the training process as a whole by adjusting the emission probabilities and the transition

probabilities alternatively. As stated in Table 4.8 and Table 4.9, after each adjustment, the tagger

retags the whole text, which has two effects. One is to update unmatched_emission_items and

unmatched_transition_items. The other is to report the new accuracies which may be higher than,

lower than, or the same as the previous accuracy. For each training generation, the final tagging

accuracy is the highest among the accuracy of the last generation, the new accuracy obtained

from adjusting the emission probabilities, and the new accuracy obtained from adjusting the

transition probabilities. For each generation, if the new accuracy reaches the accuracy goal,

 36

Table 4.10 The training parameters and their values

Parameter Value
accuracy goal: learning stops if this goal is reached 0.965
error tolerance: the frequency by which an erroneous pattern is regarded as an error 350
tolerance reducer: the value by which error tolerance is reduced for each training
generation

20

generations: number of training cycles; learning stops if this number is reached 15
ε : tax of strong tag = its existing probability ×ε 0.1
κ : tax of non-strong tag = its existing probability ×ε ×κ 0.2

Table 4.11 The pseudo code for training the tagger as a whole

errorTolerance = 350;
bestAccuracy = 0.0;
newAccuracy = 0.0;
generations = 0;
limit: the number of cycles beyond which training stops
goal: the accuracy goal
emnItems: the list of “word|correct_tag|wrong_tag” items
tranItems: the list of “tags|correct_tag|wrong_tag” items

while (generations < stopLimit AND bestAccuracy < goal)
{

increment generations by 1
decrease errorTolerance by 20

newAccuracy
emnItems ← Do Tagging
tranItems

bestAccuracy = max(bestAccuracy, newAccuracy)
if (bestAccuracy >= accuracyGoal OR emnItems and tranItems are both empty)
{

stop
}
update emission probs
 ← Adjust emissions probs
accuraqcy1

update transition probs
 ← Adjust emissions probs
accuraqcy2

bestAccuraqcy = Max(bestOfAll, accuracy1, accuracy2)

}

 37

training stops. Training will always stop if the number of training generations has reached the

number of the preset training cycles, regardless of the training effect to avoid endless loop. The

initial tolerance value is 350, high enough to ensure to focus on the most serious errors. For each

training generation, the tolerance value decreases by 20 so that more errors can be corrected.

4.4 CONTEXTUAL FINAL ADJUSTMENT

In the last section, I described the implementation of the machine learning algorithm to

fine-tune the tag-word emission probabilities and the tags-tag transition probabilities into the best

values by using them to tag the training corpora and comparing the result with the original

training data. This section illustrates the implementation of the contextual adjustment algorithm.

This algorithm is actually divided into two procedures. One is to build a context dictionary

during the development of the tagger and the other is to use this dictionary during the actual

tagging process.

The pseudo code for building the context dictionary is listed in Table 4.12. The dictionary

thus built is a complex dictionary: the mother dictionary key is a multi-tag word and the mother

dictionary value is a child dictionary. The child dictionary key is a unique context made up of the

two tags preceding that word and the two tags following that word while the child dictionary

value is the tag given by the training data for that word in that particular context.

The pseudo code for performing the actual contextual adjustments is listed in Table 4.13.

After the tagger produced a tag for each of the words, a word-tag pair list is produced. The

adjustment process goes by looking up each word in the context dictionary. If a word is in the

mother dictionary, it proceeds to build the context and looks it up in the child dictionary. If it

finds the context, the tag of that word will be changed to the new tag. Otherwise, no adjustment

 38

is performed. Though it seems complicated, with the preparation of the context dictionary, the

adjustment process is actually very fast.

4.5 BUILDING THE TAGGER-MAKER

This section illustrates the implementation of the tagger-maker, which is a tool that

automatically builds a tagger out of a pre-tagged corpus. The most important step is building the

list of token-tag pairs from the corpus. Special care should be taken to ignore the tokens that are

not tagged. The pseudo code is listed in Table 4.14.

This completed the implementation of the algorithms. The next chapter will present the

tagging and the tagger-making results.

Table 4.12 The pseudo code for building the context dictionary

words = a list of words whose tags need to be reassigned, according to their contexts
tts = a list of token-tag pairs extracted from the training data

Build_mother_dictionary(words, tts)
{

index = 0;
for each word of words
{

increment index
key = word
value ← Build_child_dictionary(word, index, tts)

}
}

Build_child_dictionary(word, index, tts)
{

left2right2_s ← list of contexts built out of index and tts
for each left2right2 of left2right2_s
{

key = left2right2
value = the tag of word retrived from tts

}
}

 39

Table 4.13 The pseudo code for performing contextual constraint adjustments

tts = the token-tag pairs given by the tagger before contextual adjustments
tt = a token-tag pair

mDict[word, cDict[context, tag]] = a contextual dictionary built as described in Table 4.12

Context_adjustment(tts, mDict[word, cDict[context, tag]])
{

for each tt of tts
{

index = the index of tt in tts
word ← Get_word(tt)

if (word is in dict[word, [context, tag]])
{

left2right2 ← Build_contexts(index, tts)
if left2right2 is in cDict[context, tag]
{

newTag = tag
replace newTag for the tag of tt

}
}

}
}

Get_word(tt)
{

retrieves and returns the word of tt
}

Build_contexts(index, tts)
{

constructs and returns the left2right2 contexts, using index as the anchoring point.
}

 40

Table 4.14 The pseudo code for building a tagger out of training data

training_files: the pre-tagged training corpus

• Build a list of token-tag pairs (tts) out of training_files

• Intelligently detect the token-tag delimiter

• Find the list of words that have more than two tags, called tough_words

• Create the token_tags.txt file out of tts.

- This file contains the allowable tags of each unique word.
- Each line of the resulted file is in the form of “token tag1 tag2 … tagn”

• Create emissions.txt file out of tts

- This file contains tag-word emission probabilites.
- Each line of the resulted file is either a tag or in the form of “word probability”.

• Create transitions.txt file out of tts

- This file contains tags-tag transition probabilites.
- Each line of the resulted file is either a 2-tag string or in the form of “tag probability”.

• Create the contexts.txt file out of tough_words and tts

- This file contains the tough words and their tags given by the training files in particular
contexts.

- Each line of the resulted file is either a word or in the form of “context tag”.
- Modify emsssions.txt and transitions.txt by using algorithms stated in Table 4.11.

 41

CHAPTER 5

RESULTS

This chapter reports the results of the project. It presents the tagging results of the built

tagger at each of the following three stages: 1) before fine-tuning the tag-word emission

probabilities and the tags-tag transition probabilities through machine learning (referred to as

learning hereafter) and before applying the contextual adjustments, 2) after learning but before

applying the contextual adjustments, and 3) after learning and after applying the contextual

adjustments. For easier reference, the tagger at stage one is called the raw tagger, the tagger at

stage two is called the trained tagger and that at stage three is referred to as the final tagger. The

accuracy and the speed of each of the three taggers on the training data and on the testing data

are listed in Table 5.1, where wps stands for the number of words that were processed by the

tagger per second. For easier visual comparisons, two figures were built out of this table. Figure

5.1 compares the tagging accuracy while Figure 5.2 compares the speed.

5.1 TAGGING ACCURACY

Reading the table horizontally, we can see that each tagger produced higher accuracy when

tagging the training data than when tagging the testing data. The differences between tagging

these two types of data are 1.78%, 1.63%, and 1.56% for the raw tagger, the trained tagger, and

the final tagger, respectively. This result is not surprising, since, when tagging the testing data,

the taggers most probably had encountered the words and the tag sequences that they had not

seen before. The tags of the unknown words that were obtained through morphological analyses

 42

may be inaccurate and the new tag sequences may have prevented the application of the

contextual adjustments.

Table 5.1 The tagging results

On training data On testing data Stage
accuracy wps accuracy wps

before contextual adjustments (raw tagger) 94.08% 544,000 92.30% 424,000 before
learning after contextual adjustments 96.89% 400,000 95.26% 276,000

before contextual adjustments (trained tagger) 96.30% 550,000 94.55% 424,000 after
learning after contextual adjustments (final tagger) 98.07% 403,000 96.51% 251,000

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

raw tagger trained tagger f inal tagger

development phases

ac
cu

ra
cy training data

testing data

Figure 5.1 The tagging accuracies on the training data and the testing data

Reading the table vertically, we can have the following results. When tagging the training

data, the learning process made the trained tagger 2.22% more accurate than the raw tagger and

applying the contextual adjustments increased the trained tagger’s accuracy by 1.77%. When

tagging the testing data, the respective increases are 2.25% and 1.96%. Learning plus the

contextual adjustments boosted the tagger’s accuracy from 94.08% to 98.07% on the training

 43

data, producing a total increase of 3.99%, and from 92.30% to 96.51% on the testing data,

raising the accuracy by 4.21%.

0

100000

200000

300000

400000

500000

600000

raw tagger trained tagger f inal tagger

development phases

w
or

ds
 p

er
 s

ec
on

d

on training data

on testing data

Figure 5.2 The tagging speed on the training data and the testing data

Table 5.1 also lists the accuracy figures of the tagger on the training data and on the testing

data after applying the contextual constraints but before learning. These figures indicate that

learning is necessary: the increase obtained by contextual adjustments alone is 2.81% on the

training data and 2.96% on the testing data, much lower than the corresponding increases

produced by contextual adjustments plus learning, namely, 3.99% and 4.21%, respectively.

The 12 hours’ learning progress is presented in Figure 5.3. As shown there, most of the

improvements were made during the first four hours. After that, the learning progress dropped

radically. From the eighth hour on, very marginal progress was made. Recall that we excluded

two types of tags from the words’ part-of-speech lists: all non-punctuation tags were removed

from the tag lists of punctuation marks and all tags that were given by the Treebank annotators in

 44

an attempt to guess the semantic roles of certain words were removed from the tag lists of those

words (such as the comma was annotated as the past tense of a verb and a was annotated as the

present participle of a verb, etc.). But the tagging noise was not removed from the training data.

These discrepancies decreased the tagging accuracy on the training data. For example, suppose a

comma was annotated as a past tense verb and the word a in certain context was annotated as a

present participle. Because those tags were removed from the tag list of comma and from the tag

list of the word a, the tagger will never tag a punctuation mark as a non-punctuation mark or tag

the word a as a present participle. The learning algorithm is designed to disallow the tagger to

add new tags to a word’s tag list if the training material is the Treebank corpora to prevent the

tagger from learning the “bad” tagging habits. Furthermore, for the reasons I don’t know, the

Treebank annotators sometimes simply made mistakes such as tagging never as the comparative

form of an adjective (presumably due to the -er ending of this word) but the new tagger refuses

to tag those words in those incorrect ways. Taking these points into consideration, it is hard for

the learner to progress further once its accuracy reached about 96.30%.

0.94

0.945

0.95

0.955

0.96

0.965

0 1 2 3 4 5 6 7 8 9 10 11 12 13

learning duration (hours)

ac
cu

ra
cy

Figure 5.3 The 12 hours’ learning progress

 45

5.2 TAGGING SPEED

Generally speaking, a tagger’s speed is less important than its accuracy. However, in some

situations, such as real-time speech analysis, tagging speed is extremely important. Table 5.1 and

Figure 5.2 display the following three results concerning the tagging speed on the testing

computer. Note that the tagging speed is measured by the number of tokens tagged per second

(abbreviated as wps), when the input is already a list of tokens. In other words, the time for

tokenization and the time for displaying them are not included.

First, in terms of cross-data-type comparison, tagging the testing data is significantly

slower than tagging the training data. Specifically, the raw tagger’s speed dropped from 544,000

wps on the training data to 424,000 wps on the testing data, the trained tagger’s speed dropped

from 550,000 wps to 424,000 wps, and the final tagger’s speed dropped from 403,000 wps to

251,000 wps. Converted to percentages, the speed of tagging the testing data is 22.1%, 22.9%,

and 37.7% slower than that of tagging the training data for the raw tagger, the trained tagger, and

the final tagger, respectively. The main reason is that extra computation time was spent in

figuring out the tag(s) of the words that have not appeared in the training data.

Second, applying the contextual adjustments reduced the tagging speed from 550,000 wps

to 403,000 wps when tagging the training data and from 424,000 wps to 251,000 wps when

tagging the testing data. In other words, the tagging speed dropped by 26.7% when tagging the

training data and by 40.8% when tagging the testing data because of applying the contextual

adjustments.

Third, the final tagger can process 251,000 words per second on the testing data. This is the

actual speed of the tagger because the real task of a tagger is to tag new text rather than tagging

 46

the training data and tagging is an intermediate process, usually taking a list of words as input

and producing a list of tagged words as output.

5.3 PORTABILITY AND TRAINABILITY

Generally speaking, probability-based taggers are portable to training data of other tagging

schemes, other text types, or even other languages. A good tagger should be trainable as well.

That is, given pre-tagged data of considerably big size, that tagger can learn from them to

improve itself or even produce a new tagger. Building a trainable tagger is another important

goal of this project.

I don’t have tagged English texts of another domain or tagged corpora of another language.

Fortunately, the online CLAWS tagger accepts up to 10,000 words to tag per upload

(http://ucrel.lancs.ac.uk/claws/trial.html). Through this service, I have about 60% of the Brown

corpus tagged by CLAWS4, using its C5 tagset. Since the C5 tagset is different from the

Treebank tagset, the data thus tagged can be used to test the ability of the tagger-maker. I used

the first 99% of the thus-obtained tagged data as the training data and the remaining 1% as the

testing data. The whole tagger-making process was smooth and completely automatic. Table 5.2

lists the time needed to make a new final tagger. As shown there, it took about seven seconds to

extract the data for the raw tagger, about 17 minutes to extract the contextual rules, and about

four hours to complete the learning process.

The tagging speed is about the same as that of the tagger developed out of Treebank-3

(referred to as the main tagger hereafter). As shown in Table 5.3, the final accuracy on the testing

data is 95.18%, which is lower than that of the main tagger. Learning and applying the

contextual rules increased the accuracy by 3.34%, which is also lower than the increase produced

by the same methods in the case of the main tagger. These are probably due to the much smaller

 47

size of the training data. Nevertheless, the tagger-maker is proved working, which also shows

that the main tagger is trainable.

Table 5.2 The time needed for building a new tagger

Procedure Time needed
Producing the raw tagger 7 seconds
Building the context dictionary 17 minutes and 22 seconds
Learning 4 hours

Table 5.3 The new tagger’s accuracy results

Stage Accuracy
Before learning and before contextual adjustments (raw tagger) 91.84%
after learning but before contextual adjustments (trained tagger) 93.21%
after learning and after contextual adjustments (final tagger) 95.18%

 48

CHAPTER 6

CONCLUSIONS

This project is devoted to the development of an efficient, scalable, and trainable tagger of

high accuracy and the development of a tool that automatically turns a pre-tagged corpus into a

tagger, regardless of the tag scheme, the text type or even the language of the corpus. This thesis

illustrated in plain English the involved algorithms and their implementations to build a raw

tagger, to train it by modifying the probability values, and to extract the contextual

transformation rules to make the final adjustment. It also illustrated the procedures to build the

tagger-maker.

In terms of the accuracy of the tagger built out of Treebank-3, the following conclusions

can be arrived at.

First, the hidden Markov model used in this project and the Viterbi algorithm produced

moderately acceptable tagging accuracy, namely, 94.08% on the training data and 92.30% on the

testing data, even though both assumptions do not completely hold for the English language.

Second, there is still much room for improvement. The raw tagger’s accuracy on the testing

data is only 92.30%, which is not impressive at all. We must keep in mind that in most cases

tagging is just an intermediate step. Other follow-up NLP activities may make errors themselves.

Therefore, it is absolutely necessary that a tagger be as accurate as possible.

Third, it is completely possible to increase a probability-based tagger’s accuracy by

applying the contextual transformation rules, since there are always linguistic patterns that

cannot be captured by probability-based methods. However, to do so, the tagger must know the

 49

tags of the contextual words. The more accurate the surrounding words’ tags are, the better result

will be produced by applying these contextual constraints. One way to give the more accurate

tags to the contextual words is to fine-tune the tag-word emission probabilities and the tags-tag

transition probabilities through the trial-and-error machine learning approach, i.e., the

reinforcement machine learning algorithm used in this project. In so doing, the probability

values obtained by counting the frequencies of the tags in the training data are changed into the

values that are tried in the real tagging process, which are naturally more accurate. Applying the

contextual adjustments after the machine learning process boosted the tagger’s accuracy by

4.21% on new texts, enabling its final accuracy to be 96.51%.

The learning algorithm is fruitful and efficient. It increased the raw tagger’s accuracy by a

little more than 2% during the first four hours. Considering the noise and errors existing in

Treebank, no big progress can be expected once the accuracy reached about 96.30% and we

should stop the learning activity to avoid the tagger from overfitting Treebank.

In terms of the tagging speed, two conclusions are reached. First, tagging the testing data is

slower than tagging the training data by 22.1% for the raw tagger, 22.9% for the trained tagger,

and 37.7% for the final tagger. The major reason is that it takes time to compute the tags of

unknown words. Second, applying the contextual adjustments reduced the tagging speed by

26.7% on the training data and by 40.8% on the testing data. However, this loss of speed is

affordable for the tagger, since it is extremely fast. The final tagger can tag about 251,000 words

per second on the testing data, using the testing computer.

The tagger’s trainability is proved by the fact that the tagger-maker automatically and

successfully built a new tagger out of the data pre-tagged with a different tagset with good

 50

testing result. This should be understandable if we think of the nature of the algorithms used in

this project, as summarized below.

Firstly, Bayes’ theorem is just a way of calculating the probability of a hypothesis, given its

prior probability and the probability of observing the training data if that hypothesis holds.

Therefore it is independent of the language to be tagged. Secondly, the hidden Markov model

used in this project is just a finite-state machine, which is language-independent. Thirdly, the

reinforcement machine learning approach is just a trial-and-error fine-tuning process, which is

again independent of the features of the text to be tagged. Finally, that the part-of-speech of a

word is influenced by those of its surrounding words is not peculiar to any particular language

but a universal phenomenon and those contextual rules were not written by hand but obtained

from the training data. These points predict the portability and the trainability of a tagger using

these algorithms.

The tagging accuracy of 96.51% on the testing data indicates that the tagger is among the

most accurate taggers. That it can tag 251,000 words per second on the testing data on the testing

computer makes it the fastest tagger I have even seen. Finally, that the tagger is portable and

trainable is proved by the tagger-maker’s success. In sum, this project has achieved its goals.

 51

BIBLIOGRAPHY

Araujo, L. (2002). Part-of-speech tagging with evolutionary algorithms. Lecture Notes in

Computer Science(2276), 230-239.

Banko, M., & Robert, C. M. (2004). Part of speech tagging in context. Paper presented at the

20th international conference on Computational Linguistics, Geneva, Switzerland.

Brill, E. (1995). Transformation-based error-driven learning and natural language processing: a

case study in part-of-speech tagging. Comput Linguist(21), 543-565.

Brill, E. (2000). Part-of-Speech Tagging. In R. Dale, H. Moisl & H. Somers (Eds.), Handbook of

Natural Language Processing. New York: Marcel Dekker, Inc.

Church, K. W. (1988). A stochastic parts program and noun phrase parser for unrestricted text.

Second conference on applied natural language processing, 36-43.

CLAWS4. Free CLAWS WWW trial service. Retrieved February 20, 2009, from

http://ucrel.lancs.ac.uk/claws/trial.html

Enrique, A., Luque, G., & Araujo, L. (2006). Natural language tagging with genetic algorithms.

Information Processing Letters(100), 173-182.

Forney, G. D. (1973). The Viterbi algorithm. Proceedings of the IEEE, 3(61), 268-278.

Garside, R., Leech, G., & Sampson, G. (Eds.). (1987). The Computation Analysis of English: A

Corpus-based Approach. London: Longman.

 52

http://ucrel.lancs.ac.uk/claws/trial.html

Kim, J., Rim, H., & Tsujii, J. (2003). Self-organizing Markov models and their application to

part-of-speech tagging. Paper presented at the 41st Annual Meeting on Association for

Computational Linguistics, Sapporo, Japan.

Klein, S., & Simmons, R. (1963). A computational approach to grammatical coding of English

words. J ACM(10), 334-347.

Lee, S., Tsujii, J., & Rim, H. (2000a). Hidden Markov model-based Korean part-of-speech

tagging considering high agglutinativity, word-spacing, and lexical correlativity. Paper

presented at the 38th Annual Meeting on Association for Computational Linguistics,

Hong Kong.

Lee, S., Tsujii, J., & Rim, H. (2000b). Lexicalized hidden Markov models for part-of-speech

tagging. Paper presented at the 18th conference on Computational linguistics,

Saarbrücken, Germany.

Lee, S., Tsujii, J., & Rim, H. (2000c). Part-of-speech tagging based on hidden Markov model

assuming joint independence. Paper presented at the 38th Annual Meeting on Association

for Computational Linguistics, Hong Kong.

Leech, G., Garside, R., & Bryant, M. (1994). CLAWS4: the tagging of the British National

Corpus. Paper presented at the 15th conference on Computational linguistics, Kyoto,

Japan.

Marcus, M. D., Santorini, B., Marcinkiewicz, M. A., & Taylor, A. (1999). Treebank-3: Linguistic

Data Consortium, Philadelphia.

Marquez, L., Padro, L., & Rodriguez, H. R. (2000). A Machine Learning Approach to POS

Tagging. Machine Learning(39), 59-91.

 53

Marshall, I. (1983). Choice of grammatical word-class without global syntactic analysis: tagging

words in the Lob Corpus. Computers and the Humanities(17), 139-150.

Mitchel, T. M. (1997). Machine Learning. Boston: WCB/McGraw-Hill.

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. Paper presented

at the Conference on Empirical Methods in Natural Language Processing.

Roche, E., & Schabes, Y. (1995). Deterministic Part-of-Speech Tagging with Finite-State

Transducers. Computational Linguistics, 21(2), 227-253.

Roth, D., & Zelenko, D. (1998). Part of speech tagging using a network of linear separators.

Paper presented at the 36th Annual Meeting of the Association for Computational

Linguistics and 17th International Conference on Computational Linguistics, Montreal,

Quebec.

Schmid, H. (1994). Part-of-speech tagging with neural networks. Paper presented at the 15th

conference on Computational linguistics, Kyoto, Japan.

Thede, S. M., & Harper, M. P. (1999). A second-order Hidden Markov Model for part-of-speech

tagging. Paper presented at the 37th annual meeting of the Association for Computational

Linguistics on Computational Linguistics, College Park, Maryland.

Toutanova, K., & Christopher, D. M. (2000). Enriching the Knowledge Sources Used in a

Maximum Entropy Part-of-Speech Tagger. Paper presented at the Joint SIGDAT

Conference on Empirical Methods in Natural Language Processing and Very Large

Corpora (EMNLP/VLC-2000).

 54

APPENDICS

APPENDIX A: SOFTWARE DOCUMENTATION

This document describes the functionalities and the APIs of this software and illustrates

how to use them.

A.1 RUN THE PROGRAM

To start the program, double click HanTagger\bin\Debug\HanTagger.exe.

A.2 FUNCTIONALITIES

The software provides the following nine functionalities.

A.2.1 Tagging the entered text

File Tag input text

It tags any text in the left text box and the result appears in the right box, one token-tag pair

per line (Figure A.1).

A.2.2 Tagging a file

File Import file and tag it

You can choose any kind of text files. For testing purpose, I supplied the untagged

1-million-word Brown corpus. Its path is HanTagger\data\rawBrown.txt. If the file is not too big,

the tagged text will appear in the right box; otherwise the tagged text will be saved in a file and

its name and location will be shown in the right box instead. The time used will be reported as

well, including the time on tokenization.

 55

Figure A.1 The screenshot of tagging the entered text

A.2.3 Check tagging accuracy

Tools Check tagging accuracy

The tagger will tag the words and compare the assigned tags with the corresponding tags in

the pre-tagged file. The program reports three things: (1) the accuracy, (2) the actual tagging

speed, and (3) lines of strings in the right box, each in the form of a token-tag pair given by the

corpus followed by the token-tag pair produced by the tagger; if they don’t match, the line is

marked by <<<< unmatched (Figure A.2). Note that item (3) will not be reported if the file is

too big.

The chosen file should use the same tagset as that used by the tagger. Currently the

program supports two tagsets: that used by Treebank and the C5 tagset of CLAWS4. For more

tagsets, you need to use this program to build a tagger out of them (See section 2.5 below).

 56

Figure A.2: The screenshot of checking tagging accuracy

For your convenience, I supplied the following four sets of files for accuracy checking.

(1) All Treebank testing files, located in: HanTagger\data\PennTestingFiles\. These are the

testing files set aside by Michael Covington.

(2) A big Treebank training file, which is made by merging all Treebank training files into a

big string of token-tag pairs. Its path is HanTagger\data\TRAINING_penn\tts_training.POS.TXT.

Note that this file contains more than 4.5-million token-tag pairs and it takes about 25 - 60

seconds to finish checking the accuracy, depending on your computer’s power and the tagging

options you are using. As stated in the thesis, applying contextual adjustments slows down the

speed by about one third.

(3) A single Treebank testing file, which is made by merging (1) into an 86,000 token-tag

pairs. Its path is HanTagger\data\PennTestingFiles\ tts_testing.txt.

 57

(4) A single file containing 60% of Brown corpus tagged by CLAWS4. Its path is

\HanTagger\data\TRAINING_nonPenn\tts_training.txt

A.2.4 Improving the accuracy of the tagger

Tools Improve accuracy

This allows you to use the pre-tagged corpus to improve the tagger’s accuracy. Clicking it

will pop up the Tagging and Learning Options panel (Figure A.3) where you need to specify (1)

the corpus source and (2) whether to use the default training parameter values. If you choose

setting your own parameters instead, the Set Training Parameter Values panel will show up

(Figure A.4).

The corpus you specified must (a) use the same tagset as the tagger to be trained and (b) be

big enough to prevent the tagger from overfitting this small corpus.

Training parameters and their meanings

If you tell the program that you want to set the training parameter values by yourself, the

Set Training Parameter Values panel (Figure 4) will show up. The parameters and their values

are explained below.

Error Tolerance: if a tagging error’s frequency is smaller than this value, the error will not

be corrected. The bigger this value is, the quicker the learning is, of course with less obvious

improvements. The smaller it is, the stricter the learning it is. This value decreases by 20 for each

learning generation.

Accuracy Goal: learning stops if the accuracy has reached this value.

Generations to stop: learning stops if the number of learning cycles has reached this value.

Strong Tax Rate: the amount to be deducted from a strong tag’s emission or transition

probability is calculated by multiplying its old probability by this value, which is 0 to 1,

 58

exclusive. If it is too small, learning will be very slow but will ultimately take place. However, if

it is too big, learning will never happen. The default value is 0.1, which means a strong tag’s

probability deduction is one tenth of its own probability.

Figure A.3: The screenshot of tagging and Training Options panel

Common Tax Rate: the amount to be deducted from a common tag’s emission or transition

probability is calculated by multiplying its old probability by Strong Tax Rate and by this value,

which is 0 to 1, inclusive. If it is 1, the deduction value is the same as the strong tag’s deduction

value; if it is 0, the deduction value is zero. The default value is 0.2, which means a common

tag’s deduction is one fifth of the strong tag’s deduction.

Training file: the tagger learns from this corpus. It must be big enough (the current

threshold is half million words) and use the same tagset as the tagger to be trained.

 59

A.2.5 Making a new tagger

Tools Build a new tagger

This function turns a pre-tagged corpus of considerably big size into a new tagger. You

need to tell the program whether the corpora use the same tagging scheme as that used by

Treebank and tell the program the training corpus’ path.

Figure A.4: The screenshot of setting the training parameters

After that, it takes about 5 – 60 seconds to build the raw tagger.

Once the raw tagger is built, the program will ask you whether to allow it to extract the

contextual rules. These rules are used for contextual adjustments.

Finally, the program will ask you whether to allow it to train the tagger. Training is

necessary but it takes up to five hours.

 60

A.2.6 Setting Tagging options

Options Set tagging options

This allows you to specify the tagger type you want to test. By clicking different radio

buttons, you have eight tagger versions (See Figure A.3). The default is the most accurate one

which was trained on Treebank and which applies the contextual adjustments.

These options are there only for academic purposes, i.e., for checking the tagging

differences produced by training and by applying contextual constraints. In the real tagging

situations, we will use the best one, of course.

Corpus Source: this determines which tagging scheme to use. Currently I supplied two: the

Treebank and the C5 of CLAWS4.

Version option 1: this allows us to see the tagging difference produced by learning.

Version option 2: this allows us to see the tagging improvements obtained from performing

the contextual constraints.

A.2.7 Other functions:

The other three functions under File are trivial and self-explanatory: Save input text, Save

output text, and Clear, the last clearing the texts of both text boxes.

A.3 API’s PROVIDED TO PROGRAMMERS

This program provides the following nine APIs which can be incorporated into your

program. In each API, the first is the data type to be returned.

A.3.1 Parameters and their values

o file is the path of the file to be tagged

o connector is the string used to separate one token-tag pair from another (default =

“\r\n”)

 61

o toLower = true changes the text to lower case while toLower = false does nothing. The

default value = false. This is used in tokenization.

o keepPunc = true keeps the punctuation marks while keepPunc = false removes the

punctuations from the text. The default value = true. This is used in tokenization.

o keepDigits = true keeps the digits while keepDigit = false removes the digits from the

text. The default value = true. This is used in tokenization.

A.3.2 APIs

o List<string> TagFile_toList(string file, bool toLower, bool keepPuncs, bool keepDigits)

o List<string> TagFile_toList(string file), which is the same as TagFile_toList (file, false,

true, true)

o string TagFile_toStr(string file, bool toLower, bool keepPuncs, bool keepDigits, string

connector)

o string TagFile_toStr(string file, string connector) , which is the same as TagFile_toStr

(file, false, true, true, connector)

o List<string> TagList_toList(List<string> tokens)

o List<string> TagStr_toList(string str, bool toLower, bool keepPuncs, bool keepDigits)

o string TagStr_toList(string str) , which is the same as = TagStr_toList (str, false, true,

true)

o string TagStr_toStr(string str, bool toLower, bool keepPuncs, bool keepDigits,

string connector)

o string TagStr_toStr(string str, string connector), which is the same as TagStr_toStr str,

false, true, true, connector)

 62

A.4 HOW TO INCORPORATE THIS PROGRAM INTO YOUR OWN

To use the above APIs, follow these steps: (1) unzip the package APIs and Data.zip, which

produces HanLibrary.dll and the data folder, (2) add HanLibrary.dll to your references, (3) add

directive using HanLibrary.PosTagging to your main class, (4) create a HTagger instance, using

the default constructor (a) or the overloaded constructor (b), and (5) call the methods needed by

your program that are provided by the HTagger instance.

(a) HTagger tagger = new HTagger();

(b) HTagger tagger = new HTagger(folder_name_and_path);

If you use the default constructor, you need to copy the data folder with its files and place it

two levels up to your main C# executable. Suppose your main C# executable is called Tagger.exe,

located in bin\Debug\, then the directory layout is:

- data

- bin

- Debug

- Tagger.exe

If you use the overloaded constructor, folder_name_and_path is the name and path of your

own folder to host the data files needed by the tagger. You can use any name you like. The path

of your folder can be specified absolutely such as “C:\\Users\Me\MyData\\” or relatively to the

location of your main executable, such as HTagger tagger = new HTagger(“...\...\..\MyData\\”).

If you forgot the ending slashes, the program will supply them. You need to copy the data files

and place them inside your own data folder.

 63

APPENDIX B: PENN TREEBANK TAGSET

(Source: http://www.mozart-oz.org/mogul/doc/lager/brill-tagger/penn.html)

POS Tag Description Example
CC coordinating conjunction and
CD cardinal number 1, third
DT determiner the
EX existential there there
FW foreign word d'hoevre

IN preposition/subordinating
conjunction in, of, like

JJ adjective green
JJR adjective, comparative greener
JJS adjective, superlative greenest
LS list marker 1)
MD modal could, will
NN noun, singular or mass table
NNS noun plural tables
NNP proper noun, singular John
NNPS proper noun, plural Vikings
PDT predeterminer both the boys
POS possessive ending friend's
PRP personal pronoun I, he, it
PRP$ possessive pronoun my, his

RB adverb however, usually, naturally, here,
good

RBR adverb, comparative better
RBS adverb, superlative best
RP particle give up
TO to to go, to him
UH interjection uhhuhhuhh
VB verb, base form take
VBD verb, past tense took
VBG verb, gerund/present participle taking
VBN verb, past participle taken
VBP verb, sing. present, non-3d take
VBZ verb, 3rd person sing. present takes
WDT wh-determiner which
WP wh-pronoun who, what
WP$ possessive wh-pronoun whose
WRB wh-abverb where, when

 64

APPENDIX C: THE C5 TAGSET OF CLAWS4

(Source: http://ucrel.lancs.ac.uk/claws5tags.html)

POS Tag Description Example
AJ0 adjective (unmarked) good, old
AJC comparative adjective better, older
AJS superlative adjective best, oldest
AT0 article the, a, an
AV0 adverb (unmarked) often, well, longer, furthest
AVP adverb particle up, off, out
AVQ wh-adverb when, how, why
CJC coordinating conjunction and, or
CJS subordinating conjunction although, when
CJT the conjunction that
CRD cardinal numeral 3, fifty-five, 6609 (excl one)
DPS possessive determiner form your, their
DT0 general determiner these, some
DTQ wh-determiner whose, which
EX0 existential there
ITJ interjection or other isolate oh, yes, mhm
NN0 noun (neutral for number) aircraft, data
NN1 singular noun pencil, goose
NN2 plural noun pencils, geese
NP0 proper noun london, michael, mars

NULL the null tag (for items not to be
tagged)

ORD ordinal sixth, 77th, last
PNI indefinite pronoun none, everything
PNP personal pronoun you, them, ours
PNQ wh-pronoun who, whoever
PNX reflexive pronoun itself, ourselves

POS the possessive (or genitive
morpheme) 'S or '

PRF the preposition OF
PRP preposition (except for OF) for, above, to
PUL punctuation - left bracket (, [
PUN punctuation - general mark ! , : ; - ? ...
PUQ punctuation - quotation mark ` ' "
PUR punctuation - right bracket),]
TO0 infinitive marker TO

UNC "unclassified" items which are not
words of the English lexicon

 65

APPENDIX C: THE C5 TAGSET OF CLAWS4 (CONTINUED)

(Source: http://ucrel.lancs.ac.uk/claws5tags.html)

POS Tag Description Example

VBB the "base forms" of the verb "BE"
(except the infinitive) am, are

VBD past form of the verb "BE" was, were
VBG -ing form of the verb "BE" being
VBI infinitive of the verb "BE"
VBN past participle of the verb "BE" been
VBZ -s form of the verb "BE" is, 's

VDB base form of the verb "DO" (except
the infinitive), i.e.

VDD past form of the verb "DO" did
VDG -ing form of the verb "DO" doing
VDI infinitive of the verb "DO" do
VDN past participle of the verb "DO" done
VDZ -s form of the verb "DO" does

VHB base form of the verb "HAVE"
(except the infinitive), i.e. HAVE have

VHD past tense form of the verb "HAVE" had, 'd
VHG -ing form of the verb "HAVE" having
VHI infinitive of the verb "HAVE" have
VHN past participle of the verb "HAVE" had
VHZ -s form of the verb "HAVE" has, 's
VM0 modal auxiliary verb can, could, will, 'll

VVB base form of lexical verb (except the
infinitive) take, live

VVD past tense form of lexical verb took, lived
VVG -ing form of lexical verb taking, living
VVI infinitive of lexical verb take, live
VVN past participle form of lexical verb taken, lived
VVZ -s form of lexical verb takes, lives
XX0 the negative NOT or N'T
ZZ0 alphabetical symbol a, b, c, d

 66

	thesis_body_han.pdf
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 SURVEY OF MAJOR EXISTING TAGGING PROGRAMS
	2.1 RULE-BASED TAGGERS
	2.2 PROBABILITY-BASED TAGGERS
	2.3 HYBRID TAGGERS
	CHAPTER 3 MAJOR ALGORITHMS
	3.1 BAYES’ THEOREM
	Each term of the right side of [3.7] and [3.8] can be obtained by counting the frequencies of certain items of the pre-tagged training data. For example, is the frequency of the word can tagged as a modal verb divided by the total occurrences of the modal verb tag in the training data while is the frequency of a noun immediately followed by a modal verb in the training data divided by the total frequency of the given tag, i.e. the tag noun in the training data. Similarly, is calculated by dividing the frequency of a noun immediately followed by a modal verb immediately followed by a verb in the training data by the total frequency of the leading tags, i.e. the frequency of a noun immediately followed by a modal verb in the training data. Applied to tagging texts of any number of words, [3.7] and [3.8] are generalized into [3.9] and [3.10], respectively.
	3.2 A HIDDEN MARKOV MODEL
	3.3 THE VITERBI ALGORITHM
	3.4 CONTEXTUAL ADJUSTMENT ALGORITHM
	3.5 REINFORCEMENT LEARNING ALGORITHM
	3.6 ALGORITHM DEALING WITH UNKNOWN WORDS

	CHAPTER 4 DEVELOPING THE TAGGER
	4.1 DATA
	4.2 DEVELOPING THE RAW TAGGER
	4.2.1 Constructing the Tag-word Emission Probability Lookup Table
	4.2.2 Constructing the Tags-tag Transition Probability Lookup Table

	Table 4.4 Unique bigrams and their frequencies
	Table 4.5 Unique trigrams and their frequencies
	4.3 TRAINING THE RAW TAGGER
	4.3.1 Preparing the training data
	4.3.2 Adjusting the tag-word emission probabilities
	4.3.3 Adjusting the Tags-tag transition probabilities
	4.3.4 Training the tagger as a whole process

	4.4 CONTEXTUAL FINAL ADJUSTMENT
	4.5 BUILDING THE TAGGER-MAKER

	CHAPTER 5 RESULTS
	5.1 TAGGING ACCURACY
	5.2 TAGGING SPEED
	5.3 PORTABILITY AND TRAINABILITY

	
	CHAPTER 6 CONCLUSIONS
	BIBLIOGRAPHY
	
	APPENDICS
	APPENDIX A: SOFTWARE DOCUMENTATION
	 APPENDIX B: PENN TREEBANK TAGSET
	 APPENDIX C: THE C5 TAGSET OF CLAWS4
	 APPENDIX C: THE C5 TAGSET OF CLAWS4 (CONTINUED)

