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ABSTRACT 

 Pulsed thermographic inspection is native to the domain of fault inspection in rigid 

bodies such as polymer and metal plates. Recent research has shown that it also has some utility 

for agricultural applications, such as the detection of foreign bodies in bulk harvested goods. For 

the problems of cotton foreign matter detection and blueberry bruise detection, a variety of 

sensing modalities have been applied, but to date no research has been conducted into the use of 

thermal imaging to accomplish these tasks. We perform pulsed thermographic inspection of 

cotton foreign matter and cotton lint, extract appropriate features, and demonstrate the ability to 

discriminate between classes on the basis of these features. Similarly, we examine bruised and 

healthy blueberries and show that they can be differentiated by pulsed thermographic inspection. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 BACKGROUND AND MOTIVATION 

This study seeks to explore the possibility of accomplishing two post-harvest quality 

evaluation tasks using pulsed thermographic inspection techniques. With the popularization of 

uncooled microbolometer thermal cameras, these devices have become more portable and less 

expensive, and accordingly, more common in research settings. This has generated increased 

interest in the potential for this sensing modality to improve results or solve difficult issues in the 

domain of post-harvest quality evaluation. The specific tasks attempted in this study are cotton 

trash detection and identification, and blueberry bruise detection. 

1.1.1 Cotton Trash Detection and Identification 

At the time of ginning, harvested cotton lint virtually always contains significant amounts 

of botanical and synthetic debris. If this foreign matter is permitted to remain in the lint 

throughout processing and into yarn spinning, the resulting textiles suffer in quality, entailing 

economic losses for all involved in the processing chain of textile production. High proportions 

of foreign matter in the cotton lint also creates a variety of considerations for the processors, as 

the resulting introduction of oil and dust into processing machinery necessitates regular cleaning 

and careful monitoring of the state of the machinery [1]. 

 The most common foreign matter types are parts of the cotton plant: fragments of leaves, 

stems, seeds seed coats, hulls, bract, and so on. Also common are foreign fibers such as woven 

cotton, plastic, and jute, either from wind-blown debris or from baling tarps and twine. Lastly, 
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various oils and greases may stain the cotton from contact with harvesting and processing 

machinery [2].  

The ginning process removes much of this debris, especially large debris; this is to be 

expected, since ginning was invented for the express purpose of removing cotton seeds from 

harvested lint. However, some debris, especially leaves and bract, may simply be broken into 

ever-smaller pieces, eventually becoming essentially impossible to remove from the lint. This 

phenomenon is so ubiquitous that the standard cotton classification table contains two axes: one 

for color and quality of the cotton fibers themselves, and another for the amount of foreign 

matter present, described by the shorthand “leaf grade, [3]” which reveals the predominance of 

leaf fragments in foreign matter types observed.  

The industry standard device for the evaluation of cotton quality and foreign matter 

content is the High-Volume Instrument (HVI), which returns metrics including fiber length, 

uniformity, and strength; micronaire; color; and foreign matter content [3]. Another popular 

device, the Advanced Fiber Information System (AFIS), returns additional detailed information 

about the cotton fibers themselves. These techniques are frequently coupled with human 

inspection, which makes use of published USDA standards to describe the cotton coloration and 

foreign matter content. Of note is that none of these systems or techniques provide any 

information about the identity of the foreign matter. All foreign matter is summarized generically 

as “leaf grade” or “foreign matter content,” masking the diversity of foreign matter types present 

in the cotton lint. 

A variety of sensing modalities have been applied to the task of improving the detection 

rate of foreign matter and providing additional information about the nature of the foreign matter 

present. These include machine vision with standard RGB images [4,5], Fourier-Transform 
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Near-Infrared Spectroscopy [6,7], hyperspectral imaging [8,9],  fluorescence imaging [10,11], 

and X-ray microtomography [12,13]. However, to the best of the authors’ knowledge, no 

research groups have published results from attempts to apply thermographic inspection to the 

task of cotton trash detection. 

A somewhat comparable task which was attempted, and performed successfully, by a 

research group was the detection of foreign bodies present in harvested nuts by Meinlschmidt 

and Maergner [14], who concluded that the detection of foreign bodies was possible due to 

differences in the thermal properties of the nuts and foreign bodies. Since cotton and cotton 

foreign matter also differ in their thermal properties, this provides the basis to motivate 

exploration of the potential for detecting and identifying cotton foreign matter using 

thermographic inspection techniques. 

1.1.2 Blueberry Bruise Detection 

During processing, blueberries must be sorted to remove debris and berries of poor 

quality. Berries may be underripe, rotten, mechanically damaged, or infested with fungal 

growths. Many of these defects are detectable by visual inspection, and are accordingly removed 

by line workers. However, more subtle damages to the tissues are still a concern, as they 

negatively impact flavor, texture, and shelf life, and increase the rates of rejection by consumers. 

Berries whose tissues are mechanically damaged in a global fashion, that is, throughout most or 

all of the berry, can be detected by soft-sorter machines which palpate the berries and reject 

those which are insufficiently firm. However, this technique relies on direct physical contact 

between the bruised regions and the actuator of the sorting machine. For berries which are 

bruised only in small regions, there is some chance that they will pass inspection by the soft-

sorter despite having significant regions of tissue damage. Such moderately damaged berries are 



 

4 

best diverted to product streams other than fresh-market sale, such as preserves and baking 

mixes. The successful detection of blueberry bruises is therefore a significant financial 

consideration for growers, packers, and distributors. 

Researchers have attempted to apply many methods to the evaluation of blueberry 

quality, including color image analysis [15-17], hyperspectral imaging in the modes of 

reflectance [18,19], transmittance [20], and interactance [21], and even electronic olfaction 

[22,23]. Several research groups have applied thermal imaging to the detection of fruit bruises in 

apples, pears, and citrus fruits [24-28], generally with success, and at times producing 

information about the depth and severity of bruising. To date, no research group has published 

findings of studies performed at the intersection of these two strands of research: blueberry 

bruise detection by thermographic inspection. The successful detection of fruit bruises in other 

fruit types and the economic importance of bruise detection to the blueberry industry motivate 

investigation into the applicability of thermal imaging technology to blueberry bruise detection. 

1.1.3 Thermographic inspection 

The core equation which governs all thermographic inspection techniques is the Stefan-

Boltzmann Law, Eq. 1.1: 

E ൌ εσTସ                                                                      (3.1) 

Here E is the total emitted radiation in W/m2, ε is the emissivity of the object of interest, 

dimensionless, σ is the Stefan-Boltzman constant in W/m2K2, and T is the temperature in 

Kelvins. Immediately apparent in this equation is the exponent of the temperature term, which 

indicates that the amount of thermal energy emitted is most highly dependent on the temperature 

of the emitting object. This is what enables the derivation of the temperature of an object based 

on the observed emitted radiation. The emissivity is also important, however, and determining 



 

5 

the emissivity of an object is frequently an important experimental task to ensure accurate 

temperature readings from thermographic data. 

 Broadly speaking, thermographic techniques can be divided into two families: passive 

and active. In passive thermographic techniques, objects are observed with no external thermal 

stimulus applied by the observer. These techniques are suitable for discriminating between 

objects with different temperatures or emissivities [29], or for the characterization of systems 

which are thermally dynamic [30]. However, for objects which have the same emissivity, the 

same resting temperature, and which are in a state of thermal equilibrium, passive thermal 

techniques will not reveal any differences between the properties of the objects. 

 For such situations, active thermographic techniques must be applied. In active 

thermography, an external thermal stimulus is applied to the objects being examined in order to 

induce thermal disequilibrium. The distribution and redistribution of thermal energy within the 

object, as indicated by the observed temperatures of the object, are then analyzed to derive 

information about the material properties of the object. A variety of methods for thermal 

stimulation can be applied. Varith et. al. used convective heating and cooling treatments to reveal 

differences between bruised and healthy apple tissues which were not apparent at thermal 

equilibrium [27]. For rigid bodies, especially for the purpose of detecting small cracks and flaws, 

ultrasonic stimulation can be applied, causing heat to be generated at flaws were the material 

rubs against itself [31]. However, the most common type of thermal stimulation is radiative, 

often with flash lamps [32] or high-powered lamps [25]. Radio waves, microwaves, and other 

forms of radiative stimulation outside of visible and infrared are infrequently used, as the 

analysis of the distribution of heating that occurs when such methods are applied is a problem 

unto itself even for homogeneous materials. 
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 Within radiative methods of active thermography, there are yet more subdivisions of 

techniques. One technique is lock-in thermography, in which the thermal stimulation applied to 

the target object is sinusoidally modulated. Over time, the temperature of the target object 

follows a sinusoidal pattern of the same frequency as the stimulus source, but with a phase offset. 

Analysis of the magnitude of the phase offset at different portions of the target object may reveal 

sub-surface flaws and defects [28]. In Xavier Maldague’s 1996 paper “Pulse phase infrared 

thermography,” [33] it was demonstrated that this analytical technique is applicable even when 

the stimulus applied is not sinusoidally modulated, but instead a single thermal pulse. By 

applying a temporal Fourier transform to the observed thermal response of the target object to 

the thermal stimulus, the thermal signal can be decomposed into a series of sinusoids of varying 

frequencies, each of which has an associated phase and amplitude values. By examining the 

pertinent phase values (the determination of which phase values are of interest being a question 

of some import) one can not only detect sub-surface defects, but moreover, estimates can be 

produced of the depth of the defect [34]. Due to Maldague’s emphasis on the phase values, 

which in his evaluation had properties superior to the amplitude values, this analytical technique 

became known as pulse-phase thermography. 

1.2 EXPECTED RESULTS 

For the cotton trash task, it is expected that findings will be positive for at least some 

trash types. The various classes of cotton trash differ significantly in the material properties; a 

cotton seed has a radically different geometry and material composition than a sample of bract. 

This should lead to significant differences in the thermal responses of different trash types. Most 

important, however, is the question of whether it will be possible to distinguish between cotton 

and the foreign matter samples. Again, it is expected that at least some foreign matter samples 
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will be distinguishable, owing to their dissimilarity to cotton lint. Others may prove more 

problematic; twine, for example, is woven strands of plant fiber, and might therefore be expected 

to show a thermal response similar to cotton lint. Further complicating this task is the highly 

heterogeneous structure of cotton lint. The lint may form into dense knots and tangles, or may 

instead be loose and straight; these different spatial configurations may produce different thermal 

responses, with, for example, knotted lint retaining large quantities of thermal energy where 

straight, fluffed lint disperses received thermal energy rapidly. This variance in the thermal 

response of cotton may make it difficult to discriminate well between cotton and all types of 

foreign matter. 

The blueberry bruise detection task also presents significant problems. While bract and a 

cotton seed may differ radically, a bruised and healthy blueberry differ in significantly more 

subtle ways. Their geometries and constituent materials are virtually identical. The only 

differences between the two will be those caused by bruising: ruptured cell walls, compression of 

tissues, air pockets, and free water content in the intracellular matrix. Whether these differences 

will result in sufficiently different thermal responses to permit discrimination between bruised 

and healthy berries is not immediately apparent. Furthermore, variations within treatment groups 

may obscure any differences between treatments. Variation in the size of berries may be 

problematic, since a large berry should be expected to heat and cool more slowly than a small 

berry due to its increased thermal inertia. Different cultivars may have different tissue textures, 

different skin properties, and so on. Worse still, interaction effects could complicate the data. For 

example, it may be that one cultivar is more susceptible to bruising than another, and so shows 

larger variation between treatments. These potential pitfalls will necessitate careful handling of 

the data and examination of subsets within the data. 
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ABSTRACT 

Detection of foreign matter in cleaned cotton is instrumental to accurately grading cotton quality, 

which in turn impacts the marketability of the cotton. Current grading systems return estimates 

of the amount of foreign matter present, but provide no information about the identity of the 

contaminants. This paper explores the use of pulsed thermographic analysis to detect and identify 

cotton foreign matter. The design and implementation of a pulsed thermographic analysis system 

is described. A sample set of 240 foreign matter and cotton lint samples were collected. Hand-

crafted waveform features and frequency-domain features were extracted and analyzed for 

statistical significance. Classification was performed on these features using linear discriminant 

analysis and support vector machines. Using waveform features and linear discriminant analysis, 

detection of cotton foreign matter was performed with 99.58% accuracy; Using either waveform 

or frequency-domain features, identification was performed with 90.00% accuracy. These results 

demonstrate that pulsed thermographic imaging analysis produces data which is of significant 

utility for the detection and identification of cotton foreign matter. 

2.1 INTRODUCTION 

During harvest and transportation, cotton is contaminated by foreign matter. The most 

common type foreign matter is botanical matter from the cotton plants: leaf fragments, hulls, stems, 

seeds, seed coats, and so on; followed by foreign fibers and textiles made of cotton, plastic, and 

jute; and least common are inorganic debris and oily substances [1]. Prior to ginning, seeds and 

seed coats are also present. During baling and transportation, cotton may be contaminated with 

baling twine, fragments of module cover, or grease and oil from machinery. Exogenous debris 

such as windblown paper and plastic fragments are also occasionally incorporated during harvest. 

Much of this debris, especially large pieces of debris such as seeds and stems, is removed during 
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the ginning and cleaning process. Other types of foreign matter may be broken into smaller 

fragments and not removed; leaf fragments are the most prevalent of these. Following cleaning, 

cotton is graded according to, among other metrics, its foreign matter content. Cotton containing 

a high proportion of foreign matter results in defects in textiles, as well as interfering with 

processing equipment by introducing oil and dust [2]. The detection of cotton foreign matter is 

therefore a paramount financial consideration for growers, ginners, and textile manufacturers. 

The current industry standard device for cotton grading is the High-Volume Instrument (HVI), 

which measures properties of the cotton including fiber length, uniformity, and strength, 

micronaire, color, and foreign matter content [3]. This is frequently coupled with human grading, 

especially for additional analysis of the foreign matter content. It is notable that this system is not 

capable of determining the type of foreign matter present, nor are human graders tasked with 

making this determination. USDA standards describe the foreign matter content of cotton batches 

in terms of “leaf grade.” The use of this term implies that foreign matter is comprised primarily of 

leaves and similar botanical debris. Though this is generally the case, it masks the diversity of 

foreign matter types encountered in cotton lint. The Advanced Fiber Information System (AFIS), 

another industrial system, shares this shortcoming [4]. 

The low cost and ease of implementation of CCD and CMOS color cameras has led many 

researchers to attempt detection using RGB machine vision. Xu et al. used CCD cameras and 

Xenon illumination to show a strong correspondence between CCD, HVI, and human grading on 

estimates of foreign matter content and cotton color measurements [5]. Later studies by Yang et 

al. combined color and UV illumination for foreign matter detection and achieved a mean detection 

accuracy of 92.34% using both color and shape features [6,7]. However, white foreign matter was 
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problematic, and other researchers have pointed out that shape characteristics are not ideal, since 

mechanical harvesters can produce foreign matter scraps in an endless variety of shapes [8]. 

Significant research has been devoted to the identification of foreign matter by Fourier-

Transform Near-Infrared Spectroscopy (FT-NIR). These techniques use the absorbance spectra of 

cotton and foreign matter as the basis for discrimination between substances. Fortier et al. have 

produced a pair of studies using this technique demonstrating 97% accuracy of classification on a 

set of four foreign matter types (hull, leaf, seed, stem) [9] and 98% accuracy on a set of eight 

foreign matter types (hull, leaf, seed coat, seed meat, stem, plastic, twine) [10]. The primary 

weakness of FT-NIR detection techniques is that they are point-based, presenting difficulties for 

high-volume application; another weakness is the necessity of compiling libraries of the spectral 

characteristics of the materials of interest, a significant complication [2]. 

A combination of machine vision methods and FT-NIR methods is hyperspectral imaging, 

which uses the transmittance or reflectance modes to collect spectra for every visible pixel of a 

sample. Jiang et al. showed that spectral features derived from this method provide a statistical 

basis to separate all of 15 foreign matter types except brown leaves and bract [11]. Guo et al. 

achieved some success in this area, particularly for the detection of foreign fibers, which are a 

common contaminant in Chinese cotton fields [12]. Using mean NIR spectra collected from a set 

of 16 foreign matter types and cleaned cotton lint, Zhang et al. achieved an accuracy of 

classification of 96.5% using LDA classifiers, including 100% accuracy on the cotton lint [13]. 

Some researchers have taken advantage of the natural fluorescence of cotton foreign matter to 

perform detection. Gamble and Foulk [14] were able to reliably identify leaves and hull by 

fluorescence spectroscopy. Mustafic et al. replicated these findings using fluorescence imaging 

under blue illumination, and additionally demonstrated excellent classification of paper, plastic 
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module cover, and commercial plastic bag under UV excitation [15]. Using X-ray 

microtomography, Pai et al. achieved an average classification rate of 96% on a sample set 

including seed coats, bark, and polypropylene [16]. However, the expense of the instrumentation 

and the necessity of strict controls on worker exposure to radiation are both obstacles to industrial 

implementation of this technology. 

One imaging modality that has not been applied to the problem of cotton foreign matter 

detection is thermal imaging. Thermal imaging has been applied to a wide variety of post-harvest 

quality evaluation tasks, such as detecting mechanical damage and bruising in apples [17]; 

evaluating the quality of apple wax coatings [18]; detecting soft spots on tomatoes [19]; and 

detecting insect infestation in wheat kernels [20]. Pulsed and lock-in thermographic techniques 

have been used to detect apple bruises [21-23], with Varith et al. theorizing that the observed 

difference in the temperatures of bruised and healthy tissues can be attributed to different thermal 

diffusivities in the tissues. Specifically, higher thermal diffusivities in bruised tissues create a 

“thermal window” which allows the rapid flow of heat from the exterior to the interior of the apple, 

resulting in a lower surface temperature in bruised regions. Meinlschmidt and Maergner (2002) 

demonstrated that hazelnuts have different thermal properties from typical foreign bodies present 

in harvested nuts, and developed a thermal imaging system to detect these foreign bodies by 

heating the nuts and foreign bodies with a flash lamp [24]. Detection was successfully conducted 

and the researchers concluded that this was possible due to the differing thermal properties of the 

nuts and foreign bodies [25]. Since it is also the case that cotton and cotton contaminants differ in 

their thermal properties (although the degree of difference may be minimal for some 

contaminants), it should be possible to discriminate between cotton and its contaminants using 

similar techniques. Furthermore, since cotton is dried with hot air in early ginning stages, then 
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returns to the general processing floor with temperatures nearer to ambient, both cotton and the 

foreign matter it contains are already exposed to a sharp rise and fall in temperature as part of the 

ginning process. This may enable use of the technology without any exogenous heat source. 

The goal of this paper was to explore the feasibility of using pulsed thermographic imaging 

technique to detect and classify the cotton foreign matter. Specific objectives were to 1) Design 

and construct a pulsed thermographic analysis system with imaging acquisition software and data 

processing pipeline; 2) Extract and evaluate the effectiveness of frequency-domain features and 

thermal waveform features; and 3) Perform classifications of common cotton contaminants using 

these features. 

2.1.1 Pulse-Phase Thermography 

Thermographic analysis is the estimation of a target’s temperature based on the magnitude of 

thermal radiation (infrared radiation) emitted by the target. The relationship between the emitted 

radiation and the temperature of the observed object is governed by the Stefan-Boltzmann law 

[26], eq. (1): 

E ൌ εσTସ (1) 

E is the total emitted radiation in W/m2, ε is the emissivity of the object, dimensionless, σ is 

the Stefan-Boltzman constant in W/m2K2, and T is the absolute temperature in °K. Since 

temperature is the dominating term in the right-hand side of the equation, and since emissivity is 

a static property for most substances, any observed changes in emitted radiation can be attributed 

to changes in the temperature of the object. 

One method that can reveal additional properties of the target object is active thermography: 

in active thermographic techniques, an external source of heat is applied the object. The change in 

the object’s temperature over time is then monitored. A specific technique within this family is 
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pulsed thermography: a radiative heat source is turned on and off at set time intervals, applying a 

pulse of heat to the object. The redistribution of heat within the object is influenced by a variety 

of material properties, such as thermal diffusivity, heat capacity, and the geometry of the object. 

In addition to radiated energy, the object may lose heat from conduction or convection, both of 

which will also be related to various properties of the material.  

Pulse-phase thermography is an analytical technique for pulsed thermographic analysis [27]. 

In this technique, the changing temperature of each pixel of the observed object is considered as a 

thermal signal with a temporal dimension, and the Fourier transform is applied to this signal, 

decomposing it into a sum of sinusoidal components (Figure 2.1).  Since the full characterization 

of the thermal signals of the object pixels is contained in both the amplitude and phase data, both 

of these values are of interest as potential features for discrimination of samples.  
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Figure 2.1. Illustration of temporal Fourier transform of cotton foreign matter pulsed thermography 

videos: Temporal image stack produces phasegram and ampligram image stacks 

2.2. MATERIALS AND METHODS  

2.2.1. Samples 

For this study, eleven types of common cotton contaminants were examined: bark, bract, 

brown leaves, green leaves, hulls, module cover, paper, seed coats, seeds, stems, and twine (Figure 

2.2). Botanical foreign matter samples were extracted from seed cotton samples of four cultivars 

planted and harvested in 2012: Delta Pine 0912; Delta Pine 1050; PhytoGen 499; and FiberMax 

1944. Paper and twine samples were purchased through common consumer channels. Module 

cover samples were taken from a cotton gin in Tifton, GA. Large scraps were collected and roughly 
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cut into small squares with side lengths in the range 2-5 mm. For each foreign matter type, 20 

samples were analyzed. Additionally, 20 samples of cleaned cotton lint of the aforementioned 

cultivars were analyzed. In total, 240 samples of cotton and foreign matter were used in this study.  

 

Figure 2.2. Color photographs of foreign matter and cotton lint samples representative of the 

classes used in this study 

2.2.2. Pulsed thermographic imaging system and data acquisition  

A pulsed thermography system was constructed to facilitate the performance of pulsed 

thermographic analysis (Figure 2.3). A general-use laptop (Getac S400, Windows 8.1 Pro 64-bit, 

Intel Core i5-4210M CPU, 8 Gb RAM) with LabVIEW (National Instruments, Austin, Texas, 

USA) installed served as the operating terminal. Videos were collected by a FLIR (FLIR Systems, 

Wilsonville, Oregon, USA) T440 thermal camera mounted on a frame of Thorlabs (Thorlabs, 

Newton, New Jersey, USA) 25mm steel rails and oriented towards nadir. The T440 uses a focal 

plane array uncooled microbolometer with a resolution of 320 x 240 pixels, a sensitivity range of 

7.5 to 13μm, and a noise-equivalent temperature difference of 0.045 °C. The dimensions of the 

frame were 24” wide by 24” long by 18” tall. Four 325-watt Sunlite (Sunlite, Brooklyn, New York, 

USA) heat lamps with adjustable clamp mounts provide thermal stimulation. A stainless steel plate 

was used as the sample stage (stainless steel is highly reflective in infrared wavelengths, 
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minimizing heating due to the heat lamps and therefore maximizing contrast between the sample 

and background in collected videos). A USB-operated power relay module was used to activate 

and deactivate the lamps with high precision. 

 

Figure 2.3. Pulsed thermography system physical components. A) Operating terminal; B) Thermal 

camera; C) Heat lamps; D) Sample stage; E) USB power relay for lamp control 

A LabVIEW Virtual Instrument (VI) was created to automate the operation of this system. It 

consisted of three main tasks performed in parallel: activation and deactivation of the heat lamps, 

operation of the thermal camera, and memory management to rapidly acquire videos with no 

frame loss. 
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Figure 2.4. Pulsed thermography system automation virtual instrument flowchart 

VIs from the FLIR ThermoVision SDK were used to operate the thermal camera and receive 

frames during video acquisition. To operate the USB power relay module, VIs were used which 

call functions from a third-party digital link library. VIs from LabVIEW’s queueing system 

enabled high-speed data acquisition to memory. Lastly, videos were exported as binary files; 

other methods of export available in LabVIEW were not possible due to the relatively large file 

size of collected videos (approx. 300 megabytes). 



 

19 

 

Figure 2.5. Pulsed thermography system automation virtual instrument front panel 

Videos of pulsed thermographic analysis were collected in the following format: a front 

buffer of approximately 2.5 seconds; 5 seconds of thermal stimulation from the heat lamps; 10 

seconds of cooling; and a rear buffer of approximately 2.5 seconds. Videos were collected during 

two sessions in 2016. A total of 240 videos, one each for each sample, were collected. The 

overall data processing pipeline was performed in four main steps (Figure 2.6): data collection, 

segmentation, feature extraction, and classification. 
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Figure 2.6. Diagram of data processing pipeline 

2.2.3. Segmentation 

Samples were segmented in the following fashion: For cotton samples, a 100-by-100-pixel 

window from the center of each video was extracted. For paper samples, a rectangular region 

from the center of each sample was selected, taking care to leave ample space between the 

selected region and the dark border marked with permanent marker on each sample. For all other 

samples, Otsu thresholding of the frame of peak temperature was used to create segmentation 

masks. Where necessary, the threshold was manually adjusted to produce accurate masks. All 

portions of the segmentation procedure were performed in MATLAB (The MathWorks, Inc., 

Natick, MA, USA). 
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2.2.4. Feature extraction 

2.2.4.1. Frequency-domain features  

Two sets of features were extracted from the segmented videos: pulse-phase thermography 

features of amplitude and phase values from complex components produced by Fourier analysis; 

and waveform features produced by analyzing the temperature waveforms of each pixel of each 

sample. 

Fourier analysis of the samples was performed using MATLAB’s fast Fourier transform 

(FFT) algorithm. This process decomposes the input signal into a sum of sinusoids expressed as 

complex phasors with evenly-spaced frequencies ranging from 0 to 30 Hz (the framerate of the 

acquiring device). Prior to Fourier analysis, each video was trimmed to only the rising and 

falling portions, with the pre- and post-stimulation buffers removed. This resulted in videos of 

precisely 450 frames. The input signal for Fourier analysis was the mean temperature of all of 

the sample’s pixels during each frame, such as that shown in Figure 2.7. Following Fourier 

decomposition, a number of complex components equal to the number of frames in each video 

(450) were produced. According to the Nyquist theorem, all components with a frequency higher 

than ½ the collection frequency are aliased and therefore contain no additional information. 

Examination of the phase and amplitude values of the components confirmed this. Accordingly, 

the 225 components with frequencies higher than 15 Hz were discarded, leaving 225 components 

with frequencies from 0 Hz to 15 Hz. Each component, like all sinusoids, has an amplitude value 

and a phase value. Amplitude values were extracted by calculating the absolute value of each 

phasor, while phase values were determined by examining the angle of the phasor. The phase 

value of the 0-Hz component is always zero and was thus discarded. The final set of frequency-
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domain features produced by this process was 224 phase values and 225 amplitude values for 

each sample. 

2.2.4.2. Waveform features 

In addition to the above frequency-domain features, which were produced by analyzing the 

entire waveform, consisting of the rising and falling portions together, waveforms were also 

analyzed in a split fashion. Since many prior applications [23,28] of pulse-phase thermography 

examine only the falling portion of the thermal signal, it is suspected that more meaningful 

frequency-domain features might be produced by independently performing Fourier analysis on 

the rising and falling portions of the full thermal signal. Additionally, this data may be of use for 

implementation in ginning facilities, where a possible point of examination is immediately after 

the cotton exits the dryers. This was conducted, producing 223 phase values (74 rising and 149 

falling) and 225 amplitude values (75 rising and 150 falling). These will be referred to in 

analyses as “split features,” as opposed to “whole features.” 

Four waveform features were manually extracted from each video: peak temperature, resting 

temperature, rising slope, and falling slope. When the thermal signal of each pixel of a foreign 

matter sample is averaged, the result is a temperature waveform such as that shown in Figure 2.7. 

This mean thermal signal was used to determine the frame of peak temperature, which is also the 

frame in which the lamps are deactivated, labeled as time 2; the mean temperature of all pixels 

during this frame was used as the peak temperature feature. The resting temperature was derived 

by averaging the mean temperature of the sample during the resting period of the video, region a. 

The rising slope was calculated by subtracting the peak temperature from the resting temperature 

and dividing by the length of the stimulation period b, 150 frames. The falling slope was derived 
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by subtracting the peak temperature from the mean temperature at time 3 and dividing by the 

length of region c, 300 frames. 

Preliminary classification trials were performed in order to determine the optimal number of 

amplitude features to use. For each of the three sets of amplitude features (whole, rising, and 

falling), LDA and SVM classifiers were trained to perform both the detection (two-class, with 

one class being cotton and the other foreign matter) and identification (twelve-class, with cotton 

lint and each foreign matter type receiving a unique class label) tasks. Cumulative sets of 

features ranging from the lowest-frequency component’s amplitude alone to a set consisting of 

the fifteen lowest-frequency amplitude values were used. 

 

Figure 2.7. Segmented mean temperature waveform of cotton sample #4. a) resting stage / front 

buffer; b) thermal stimulation; c) cooling; d) rear buffer; 1) lamp activation; 2) lamp deactivation; 

3) data cutoff 
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2.2.5. Statistical analyses and classification  

In order to determine the degree of separation among the foreign matter types when all 

features in a given set are considered together, Hotelling’s T-squared tests were performed for 

each pair of foreign matter classes. Additionally, canonical discriminant analysis was performed 

on each feature set. Both tests were performed using MATLAB’s manova1 function. 

Classification trials were performed in MATLAB using leave-one-out cross-validated 

support vector machine (SVM) and linear discriminant analysis (LDA) classifiers. Classification 

was performed using both waveform and amplitude features. 

2.3. RESULTS 

2.3.1. Waveform feature analysis 

Examining the mean thermal waveform of each foreign matter type shows that there were 

clear differences in the mean thermal signals of the various foreign matter classes (Figure 2.2). For 

example, it is clear that the peak temperature of brown leaf samples, with a mean value of about 

75 degrees Celsius, was substantially higher than that of seed coats, with a mean peak temperature 

of about 35 degrees Celsius. Examining other features of the waveform, it can be seen that bract 

and cotton samples, which achieved similar peak temperatures, had very different rates of cooling: 

the falling slope of the bract samples was substantially steeper than that of the cotton samples. 
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Figure 2.8. Mean thermal waveforms for all sample classes 
 

The maximum temperature achieved by any sample class, approximately 75 degrees Celsius 

for brown leaf, is notable for being well below the threshold temperature at which it is considered 

unsafe to dry cotton, 150-175 degrees Celsius. Cotton may be dried at air temperatures of up to 

120 degrees Celsius [29]. Since this well exceeds the maximum observed temperature of foreign 

matter in this study, it is reasonable to conclude that the magnitude of thermal change that results 

from drying will meet or exceed those observed in this study, and will therefore be sufficient to 

produce differences in thermal waveforms. This strengthens the possibility of implementing this 

technique without the need for exogenous heat sources. Conversely, this also suggests that the 

procedure, if conducted in isolation from the ginning process, poses no risk of overheating and 

damaging the cotton. 
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2.3.2. Frequency-domain feature analysis 

Phase and amplitude data can be visualized by mapping the phase or amplitude values of a 

selected frequency component for each pixel in an image to a color map. The resulting images are 

known as phasegrams and ampligrams, respectively (Figure 2.9). In the thermal images it can be 

seen that bract, brown leaves, and green leaves achieve the highest temperatures, owing to the 

particulars of their geometry (broad and thin); ampligrams are primarily a reflection of this peak 

temperature, appearing as nearly identical to the thermal images, though with de-noised 

backgrounds. Phasegrams are more difficult to interpret: they represent the dynamics of how 

quickly differing regions heat and cool. So, for example, the edges of the module cover sample are 

clearly visible, implying a difference between the rate of heating and cooling between the edges 

and center. Likewise, samples with a linear geometry, such as bark, stem, and twine, all show a 

characteristic difference in phase values between the tips and the centers. 
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Figure 2.9. Thermal images, phasegrams, and ampligrams of each sample type 

 
The accuracies produced by the preliminary computational tests were used to determine the 

optimal number of amplitude features in the range from 1 to 15 components (Figure 2.3). For the 

two-class task, accuracy was unstable until at least six components are used. For the twelve-class 

task, accuracy rose until nine components are used, then fluctuated. Based on these preliminary 

trials, the first ten amplitude features were selected to use in further classification trials and 

statistical analyses. 
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Figure 2.10. Results of preliminary amplitude feature classification trials using whole amplitude 

features and SVM classifiers. (a): Two-class task. (b): Twelve-class task 

 
2.3.3. Statistical analyses 

In the results of the paired Hotelling’s tests (Figure 2.11), it can be seen that, for waveform 

features, almost every p-value between two groups was well below the stringent threshold p = 

0.001. The sole exception was the test pairing leaves and brown leaves. However, even this pairing 

returned a p-value of 0.025, which is below the generally-accepted threshold of 0.05 for statistical 

significance. For amplitude features, all p-values were below 0.001, indicating statistically 

significant separation for all foreign matter types.  
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Figure 2.11. Pairwise p-values returned by Hotelling’s T-squared test performed on waveform 

features. (a): waveform features; (b): amplitude features 

 
2.3.4. Canonical discriminant analysis 

The results of canonical discriminant analysis performed using the waveform features (Figure 

2.12(a)) showed that there was good separation between many foreign matter types. Seeds, module 

cover, hull, and cotton samples were especially well-separated. Bract, brown leaves, and green 

leaves formed a combined cluster; given their biological and material similarity, this is 

unsurprising. Other foreign matter types were less well-separated: Paper, stems, and bark were 

mixed, and twine and seed coats were only moderately well-separated. It should be noted that 

when viewed in three dimensions, with the third canonical score considered, the separation of 

many of these clusters is improved. 

The results of canonical discriminant analysis performed on waveform features showed 

similarly good separation between many classes (Figure 2.12(b)). What is most notable about this 

canonical scores plot is that it seems to be a horizontal reflection of the canonical scores plot of 

the waveform features. Again cotton, hull, module cover and seed samples were cleanly separated 

and clustered; bract, green leaves, and brown leaves formed a complex; seed coats were clustered 
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but not well-separated, and stems, bark, and paper were not well-separated. Although it is a 

subjective analysis, the strong similarity of the canonical score plots of the waveform and 

amplitude features seems to suggest that there is a large degree of overlap in the discriminating 

information contained by these feature sets. 

 
Figure 2.4. Canonical discriminant analysis scores plots from feature sets. (a): waveform features; 

(b): amplitude features 

 
2.3.5. Classification results 

The results of the classification trials produced very good results for the two-class detection 

problem, with more mixed results for the twelve-class identification problem (see Table 2.1). On 

the identification task, no combination of classifier and feature set produced an accuracy lower 

than 93%, while two trials returned accuracies above 99%. For the identification task, LDA 

achieved 90% accuracy of classification using either the waveform or whole amplitude features, 

while SVM provided 86.67% accuracy on whole amplitude features. For both detection and 

identification, the features which produced the best performance for SVM classifiers were whole 

amplitude features. With either classifier, whole amplitude features produced better accuracies 
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than either rising or falling amplitude features. In general, LDA and SVM accuracies on most tasks 

were comparable, with the most notable exception being the identification task when performed 

using waveform features. 

The sharp decline in accuracy between the LDA and SVM performance on the identification 

task using waveform features may be a consequence of the inherent dimensionality of the 

classifiers. LDA, which linearly sums the constituent features to produce a final discriminating 

feature, is inherently one-dimensional; SVM, which projects features into additional dimensions, 

is multidimensional. It may therefore be the case that LDA is better-suited to feature sets with a 

lower dimensionality, such as the waveform feature set, while SVM is preferable for feature sets 

with increased dimensionality, such as the amplitude feature sets. 

 
Table 2.1. Classification accuracies on two-class (detection) and twelve-class (identification) 
tasks using LDA and SVM classifiers and four feature sets 

      Detection  Identification 

Feature set  Number 

of features 

LDA  SVM  LDA  SVM 

Waveform features  4  0.9958  0.9583  0.9000  0.7542 

Whole amp 1:10  10  0.9917  0.9792  0.9000  0.8667 

Rising amp 1:10  10  0.9500  0.9458  0.7292  0.7708 

Falling amp 1:10  10  0.9625  0.9375  0.7500  0.7708 

 

Examining the confusion matrix for the output of the identification task using LDA and 

waveform features (Figure 2.13 (a)), it can be seen that 5 foreign matter types were classified with 

100% accuracy, and four with better than 90% accuracy. The two worst-performing classes, green 

leaves and brown leaves, had all errors as confusions of one another. Considering that there is no 

substantial difference between these classes in their impact on the quality of the cotton lint, this 

confusion may be excusable. Omitting these errors, which account for the majority of misclassified 

samples, produces an overall accuracy of 95.83%. The next-worst class, stems, had all three 
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misclassified samples erroneously labeled as bark. Considering that the surface of the stem 

samples used was bark, this is unsurprising. It is also notable that no cotton sample was 

misclassified, and no sample was misclassified as cotton: differentiation between cotton and all 

foreign matter samples was performed with perfect accuracy. 

Classification errors were more mixed for the identification task using LDA and whole 

amplitude features (Figure 2.13(b)). Brown leaf was the most-misclassified class, for which the 

most common mislabeling was green leaves, but the inverse misclassification is not present. Bract 

samples were also misclassified often, with a wide variety of mislabelings. Just two classes were 

classified with perfect accuracy: cotton and seeds; but for this feature set, two samples were 

erroneously classified as cotton, which in an implemented system would amount to these foreign 

matter samples passing undetected. Although the overall accuracy was only marginally lower than 

that using waveform features, the misclassifications were more scattered and less easily explained, 

suggesting that amplitude features do not compare favorably to waveform features for the 

identification task. 
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Figure 2.13. Confusion matrix for identification task performed using LDA with (a) waveform 

features and (b) amplitude features. Y axis is ground truth, X axis is classifier output. 

 
These results compare well with the accuracies obtained by researchers using other methods: 

Fortier et. al.’s classification rates of 97% and 98% using FT-NIR spectrography are superior but 

are based on datasets with fewer foreign matter types (four and eight, respectively), and which did 

not include cotton. The maximal detection accuracy of 99.58% well exceeds Yang et al.’s detection 

accuracy of 92% [6,7], but does not top the 100% accuracy of Zhang et al. using shortwave infrared 

hyperspectral imaging [13]. Although the results for bark are superior to those of Zhang et al., 

those for stems are not, and it should be noted that Zhang et al. considered inner and outer bark 

and stem surfaces as separate categories, with most misclassification for these foreign matter types 

being the complementary category. Fortier et al.’s best results, those using the OPUS IDENT 

software with the NIR spectrum first derivative, surpass those for hulls and stems using either 

waveform or amplitude features, equal those for leaves using waveform features (Fortier et al. did 

not consider two colors of leaves but only one category). For seed coats their 91% accuracy 
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exceeds the 85% achieved with amplitude features but not the 100% produced by waveform 

features [9]. 

Since cotton is dried several times during ginning, it is possible that this thermal stimulation 

may produce data suitable for thermographic analysis. This would eliminate the need for additional 

exogenous heat sources. However, two reservations should be noted: First, cotton driers function 

on convective heating, not radiative heating, as was used in this study. This may entail changes to 

the thermal responses of the cotton and foreign matter, which warrants more in-depth studies. 

However, cooling should remain relatively unchanged, hence the examination in this study of 

amplitude features drawn only from the falling portion of the thermal waveform. Second, cotton 

drying temperatures are frequently adjusted according to the condition of the cotton being 

processed at the time. This variation necessitates a system which can adjust to multiple drying 

temperatures. These factors need to be considered in the implementation of such a system in a 

ginning facility. 

2.4 CONCLUSION  

The pulsed thermographic imaging system developed by this study was proven to be effective 

in discriminating between cotton foreign matter types. Classification tasks using LDA and SVM 

classifiers produce near-perfect detection of foreign matter using both waveform and frequency 

domain feature sets, and respectable accuracies of identification comparable to and in some cases 

exceeding those achieved by other groups. Waveform features provided perfect discrimination of 

cotton from foreign matter types using LDA classifiers. This technique is a natural fit for the cotton 

processing floor, on which cotton already undergoes significant rapid heating and cooling. These 

findings strongly recommend pulsed thermography as a method for the detection of foreign matter 

in cotton lint. 
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CHAPTER 3 

BLUEBERRY BRUISE DETECTION BY PULSED THERMOGRAPHIC INSPECTION1 
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ABSTRACT 

To maximize profitability of blueberry harvests, bruised berries must be detected and diverted 

from the fresh market product stream.  The goal of this study was to develop a pulsed 

thermographic imaging system and explore its feasibility in non-destructively detecting bruised 

blueberries. In this paper, the design and construction of a pulsed thermographic imaging system 

was described. A total of 200 blueberry fruit samples from two southern highbush cultivars 

(Farthing and Meadowlark) were collected and bruising treatments were applied to half of the 

samples. Relevant features were extracted and were demonstrated to be significantly different 

between healthy and bruised fruit. Classification was performed using LDA, SVM, random forest, 

k-nearest-neighbors, and logistic regression classifiers. Accuracies of up to 88% and 79% were 

obtained for Farthing and Meadowlark berries, respectively. These results demonstrate the 

feasibility of pulsed thermography to discriminate between bruised and healthy blueberries. 

3.1 INTRODUCTION  

During harvesting and processing, blueberries are subjected to mechanical damage from a 

variety of sources: harvesting system actuators, drops into various containment bins, jolts during 

transit, the weight of other berries, and so on [1]. Mechanical damage may result in fruit internal 

bruising, thus reducing the quality and shelf life of the fruit. The profitability of blueberries is 

maximized when bruised and otherwise damaged fruits are successfully detected and diverted from 

the fresh market stream (in which consumers are attentive to the health of the fruits) to alternative 

product streams in which fruit quality is less important, such as baking mixes and preserves.  

Currently, the state-of-the-art method for blueberry internal bruising assessment is by bisecting the 

fruit and observing the discolored area in the cross-sections.  This method is destructive and cannot 

be applied for quality inspection of all the fruit. Although soft-sorter systems typically installed in 
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a blueberry packing line can sort out soft fruit by letting berries land on a force sensor and 

measuring the firmness of the fruit, the system cannot directly measure fruit internal bruising [2]. 

The industry needs a non-destructive sensing technique to assess blueberry internal bruising and 

this paper explores the feasibility of pulsed thermographic imaging for this purpose.  

Infrared thermography (IRT) is the measurement of infrared radiation emitted by an object. 

The fundamental mechanics of IRT are governed by the Stefan-Boltzman equation [3], Eq. 1: 

 P/A ൌ εσTସ             (1) 

Where P is the power of emitted radiation in Watts, A is the area of the emitting surface in 

square meters, ε is the emissivity of the object, dimensionless, σ is the Stefan-Boltzman constant 

in W/m2K4, and T is the absolute temperature in °K. As temperature dominates the equation, a 

good estimate of the temperature of an object can be derived from the emitted radiation even when 

the object’s emissivity is not known. 

When the target of inspection is one which produces heat or has a stable heat distribution, 

thermography is used to monitor the production and distribution of heat throughout the target. 

Thermally inert objects at steady-state conditions achieve a homogenous temperature distribution, 

so only differences in emissivity are visible when passively observing the target. If the material 

property of interest cannot be correlated to changes in emissivity, active thermographic techniques 

may reveal more of the target’s material properties [3]. In active thermography, the target is 

thermally stimulated and the thermal response of the target to the exogenous heat source is 

monitored. Analysis of the distribution of the exogenous heat throughout the target may then be 

performed to derive correlations to material properties. 

One method of active thermography is lock-in thermography. In this method, the thermal 
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stimulation is sinusoidally modulated and applied for at least several periods of the cycle. Over 

time, the object should reach a steady state at which its temperature changes according to a sinusoid 

of the same frequency, but with some phase difference. Thermal video is recorded of the object 

during stimulation, and the phase angle between the stimulation and the object’s response is 

calculated. This produces a phasegram which may reveal the object’s thermal and material 

properties. 

A similar technique is pulsed thermography. In this technique, a single square wave or Dirac 

pulse of thermal stimulation is applied to the target. The Fourier transform is used to decompose 

the time-series thermal response of the object into sinusoidal components. This produces 

sinusoidal components of varying frequencies, each with an associated amplitude and phase. Of 

the data present in the sinusoidal components, the amplitude and phase features can be used to 

delineate the properties of the object. 

Prior research into fruit bruise detection by thermographic methods is limited. A foundational 

study demonstrating the visibility of bruises on apples, mandarin oranges, and Natsudaidai fruits 

in thermal images was conducted by Danno et. al. in 1997 [4]. It was found in that study that fruit 

bruises appeared to be between 0.2 and 1.0 degrees Celsuis cooler than surrounding tissues. Varith 

et. al. applied convective cooling and heating treatments to bruised apples, with bruises being 

visible in some samples [5]. However, this pattern was not always consistent in all samples tested. 

There were also considerable variations in accuracy of detection across cultivars. Varith’s group 

was the first to articulate thermal window theory: the theory that bruised fruit tissues differ in their 

thermal diffusivity from healthy tissues, specifically, that bruised tissues have a higher thermal 

diffusivity. Bruising ruptures cell walls and releases fluid from cells’ interiors into the extracellular 

matrix, creating a pathway for thermal conduction through bruised tissues. When a thermal 
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stimulus is applied to a bruised berry, heat diffuses more quickly from the surface towards the cool 

interior, resulting in a smaller magnitude of temperature increase at the surface compared to a 

healthy berry. This provides the theoretical basis for discrimination between bruised and healthy 

fruit tissues in active thermographic inspection techniques. Baranowski et. al. [6] applied active 

thermographic inspection techniques to bruised apples by heating them with halogen lamps, and 

produced clear visualizations of bruises in thermal, amplitude, and phase images, as well as 

demonstrating phase differences between bruises of differing depths. A follow-up study in 2012 

[7] applied both lock-in and pulsed thermographic techniques to bruised apples, once again 

producing visualizations of bruises and providing information about bruise depth. Most recently, 

Kim et. al. [8] applied lock-in techniques to bruised pears, with bruises being clearly visible in 

phase images. Measured variances in phase values with varying bruise depths were observed, and 

aligned precisely with variances predicted by a photothermal model. 

To the best of the authors’ knowledge, no studies have ever been published on 

thermographic detection of bruises in blueberries, or berries of any kind. Given the demonstrated 

ability of thermographic inspection to detect bruises in other fruits (mostly fruits larger than 

berries), it is worthwhile to explore whether the technique applies to small fruits such as 

blueberries. Additionally, thermographic inspection may be well-suited to blueberry inspection 

in particular due to significant temperature changes which occur to the berries during processing. 

Freshly-harvested berries moved from a hot field (30-40 oC) to a climate-controlled packing 

facility and cold storage (1-5 oC) will experience up to 40 oC of temperature change. It is 

possible that a thermographic inspection system appropriately located downstream from a 

thermal stimulus to the berries could exploit pre-existing temperature changes in berry 

processing, obviating the need for a system which provides its own thermal stimulus. 
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The overall goal of this study was to demonstrate that pulsed thermographic imaging 

analysis can be used to discriminate between healthy and bruised blueberries. The specific 

objectives were to: 1) develop a custom pulsed thermographic imaging acquisition system to 

collect pulsed thermographic images of bruised and healthy berries; 2) extract effective features 

in both the time domain and the frequency domain to delineate differences between bruised and 

healthy berries; and 3) discriminate between bruised and healthy berries on the basis of these 

features using machine learning techniques. 

3.2 MATERIALS AND METHODS 

3.2.1 Pulsed thermographic imaging system 

A pulsed thermographic imaging system was created to facilitate data collection (Figure 3.1). 

The physical components of the system consisted of: a FLIR T440 thermal camera (FLIR Systems, 

Wilsonville, Oregon, USA); four 325-watt Sunlite heat lamps (Sunlite, Brooklyn, New York, 

USA); a Teflon sample stage; a USB-operated power relay; an operating terminal (Dll Inc., Round 

Rock, Texas, USA); and a frame constructed of 25mm optical ThorLabs optical railing, not shown 

(Thorlabs, Newton, New Jersey, USA). 

Selection of an appropriate sample stage is an important consideration: The stage should 

provide a smooth background to facilitate segmentation. It should be reflective in the infrared 

range to minimize absorbed radiation, and therefore accumulation of heat over time, but this 

reflectiveness should be diffuse, rather than specular, to avoid visible reflections of the thermal 

camera and heat lamps. Lastly, the stage should have significant thermal inertia, either due to sheer 

mass or high heat capacity, in order to avoid drastic temperature fluctuations during data 

collection. After preliminary tests, the Teflon sample stage was selected because it never exceeded 

an observed temperature of approximately 307 K. 
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Figure 3.1. Diagram of the pulsed thermographic imaging system 

The imaging system was controlled by a LabVIEW (National Instruments, Austin, Texas, 

USA) Virtual Instrument (VI) created for previous studies [9]. The main functions of the VI were: 

1) Operation of the thermal camera by a source development kit provided by FLIR; 2) Precise 

activation and deactivation of the heat lamps by a USB-controlled power relay using a third-party 

digital link library; 3) Management of the high data volume using memory queueing sub-VIs to 

prevent frame loss; and 4) Export of the collected data as binary files. Figure 3.2 shows the front 

panel of the VI. 

Several additional features were incorporated into the pulsed thermographic system control 

VI for this study.  Importantly, an unintended and detrimental feature of previous VIs was 

compensated for: while a connection between an operating terminal and the T440 is maintained, 

the T440 ceases automatic initiation of its internal recalibration procedure. Like all uncooled 

thermal cameras, the temperature of the thermal camera and its detector can fluctuate due to 
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ambient conditions and prolonged operation. This causes the sensitivity of the camera to fluctuate, 

changing its readings. In order to compensate for this, the T440 periodically closes an internal 

shutter, references its internal thermometer, and adjusts an internal parameter to rectify the 

readings. When this procedure is disabled, the readings taken by the camera drift during continuous 

operation, at times severely. Commands were incorporated into the VI to instruct the thermal 

camera to perform internal shutter calibration following each sample collection; however, the 

camera performs recalibration only when it both receives a recalibration command and detects a 

significant change in its internal temperature. Consequently, the T440 did not perform internal 

recalibration following every sample collection, as desired, but only periodically, a total of 

approximately twenty times during data collection. In addition, an auditory cue was added 

following completion of one video collection, to assist the operator in timely exchange of samples 

and maintaining a high throughput rate. 
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Figure 3.2. Front panel of pulsed thermographic system operation VI 

3.2.2 Sample preparation 

Two cultivars (Farthing and Meadowlark) with 250 berries each were hand-picked from 

Straughn Farms in Waldo, FL on April 27th, 2017. Samples were immediately stored in a cooler 

with ice and transported back to the Bio-Sensing and Instrumentation Laboratory at the University 

of Georgia. Berries were sorted and unripe, shriveled, damaged, or otherwise defective berries 
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were discarded. 100 Meadowlark and 100 Farthing samples of good quality and non-extremal size 

were selected for use in the study. Samples were treated the same evening, that of the 27th, 

approximately 6 hours after picking. Two treatment groups of 100 berries each were created: a 

control group and a bruised group, each containing 50 Farthing and 50 Meadowlark berries. 

Bruised group berries were poured between two plastic containers from a height of four feet a total 

of eight times. Control group berries were not treated. Samples were organized on wooden sample 

holders, covered with aluminum foil (avoiding heating from the ambient light), and set in an air-

conditioned room for 15 hours for bruises to mature.  

3.2.3 Thermal image acquisition 

Prior to imaging, the thermal camera was warmed up for 30 minutes, avoiding potential 

fluctuations in temperature of the detector due to continuous operation. Videos were collected in 

a strict format with a total length of 17 seconds. At one second after initiating recording, the heat 

lamps were activated. At six seconds, they were deactivated, for a total pulse length of five 

seconds. Ten seconds of cooling curve were then collected, and lastly an additional second of 

buffer, to guard against inadvertent truncation. As an additional protection against sensor drift or 

miscalibration, a glass of well-mixed ice water was placed in the field of view of the camera for 

each trial. Subsequent examination of the apparent temperatures of the ice water confirmed that 

there was no significant variation in the sensitivity of the thermal camera throughout data 

collection. 

Preliminary experiments showed that the imaging area becomes hotter as imaging proceeds, 

raising a concern that if one treatment group is imaged after another, it will be exposed to hotter 

ambient conditions, particularly from the hot sample stage and lamps, potentially introducing a 

confound into the data. For this reason, samples were collected in an interlaced fashion: Control 
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group sample 1 was imaged first, followed by bruised group sample 1, then control group sample 

2, and so on. Calyx sides were imaged first, followed by stem sides, for two videos per berry, 

producing 400 videos in total. 

3.2.4 Destructive evaluation and bruise area index derivation 

Following collection of thermal data, all samples were destructively evaluated by slicing them 

in half down a calyx-stem axis and collecting color images of the interior (Figure 3.3). This was 

done in order to ensure that treatments were appropriately administered. In order to validate results 

against ground truth data, destructive evaluation images of berries were analyzed to produce a 

bruise area index feature. This feature is the percentage of pixels of a berry’s destructive evaluation 

image judged to correspond to bruised tissues. The Sobel edge detection method was applied to 

destructive evaluation images to produce an edge detection image; circles were then fit to this 

image to produce preliminary masks because the shape of berry samples could be approximately 

described as two overlapping offset circles. Masks were cleaned up and segmented from one 

another manually using a custom segmentation wizard in MATLAB (The MathWorks, Inc., 

Natick, MA, USA). After observing that the contrast between bruised and healthy tissues was most 

distinct on the green channel, the green channel pixel intensities of the segmented destructive 

evaluation images was examined, and a threshold intensity value of 113 (on a range of 0-255) was 

selected. The number of pixels having an intensity of less than 113 on the green channel was taken 

as the number of bruised pixels for each berry. The dividend of the number of bruised pixels and 

the total number of pixels in the berry image was taken as the bruise area index. 
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Figure 3.3. Illustration of bruise area index derivation 
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3.2.5 Thermal image processing 

3.2.5.1 Preprocessing 

Berries which did not appear in the destructive evaluation images to have received proper 

treatment, such as control group berries with bruises or bruised group berries with little damage, 

were removed from the dataset. A total of 11 bruised group berries were removed, leaving 189 

berries in the dataset, for a total of 378 thermal videos. The 378 videos were further processed with 

masking, feature extraction, statistical analyses, feature selection, and classification (Figure 3.4).  



 

52 

 

Figure 3.4. Data processing pipeline for the acquired thermal videos 

3.2.5.2 Feature extraction 

In each thermal video, the berry sample mask was generated by thresholding the peak 

temperature frame (Frame #186), and was then applied to each frame in the video to extract only 
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berry pixels. All extracted berry pixels were averaged together spatially, producing a temperature 

time series (Figure 3.5). From these mean temperature time series, two classes of features were 

extracted: time-domain waveform features and frequency-domain features.  

Six waveform features were extracted from each temperature time series, including the 

starting and peak temperatures and the mean and standard deviation of rising and falling waveform 

features. The starting temperature was the mean temperature of all frames prior to time ‘a’, and 

the peak temperature was the mean temperature at time ‘c’ (Figure 3.5). The rising waveform 

feature was the difference between the peak temperature and starting temperature, or the total mean 

temperature increase during the heating phase. The falling waveform feature was the difference 

between the peak temperature and cooled temperature (the temperature at time e in Figure 3.5), or 

the total mean temperature decrease during the cooling phase. Since each pixel in each video has 

its own waveform, each pixel therefore also has its own waveform features. Both the mean value 

of the rising and falling waveform features across the visible pixels of a sample and the standard 

deviation of the features were extracted.  
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Figure 3.5. Mean thermal waveform of all samples with extracted thermal images for 

representative bruised and healthy samples. (a) Lamp activation; (b) Heating midpoint; (c) Peak 

temperature/lamp deactivation; (d) Cooling midpoint; (e) Cooling endpoint/data termination 
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To extract frequency-domain features, the thermal time series were first processed by Fast 

Fourier Transform (FFT) using the algorithm native to MATLAB. This produces a number of 

components in the complex domain equal to the number of frames in each video, that is, 511. The 

frequencies of these sinusoidal components are evenly-spaced from zero to the framerate of the 

thermal camera, 30 Hz. According to the Nyquist theorem, half of these components are aliased, 

and therefore contain no information that is not present in the other half. As such, 255 components 

were discarded, leaving the lowest-frequency 256 components. From each of these components, 

the phase and amplitude values were extracted by taking the angle and magnitude, respectively, of 

the complex phasor. Since the phase of the zero-frequency component is always equal to zero, this 

was also discarded, leaving 256 amplitude values and 255 phase values for each sample. Due to 

the relatively long timescale of the experiment, low-frequency phenomena were emphasized; 

consequently, only the first ten values from the ten lowest-frequency components were used in the 

following processes. 

3.2.5.3 Statistical analyses 

This study aimed to explore the feasibility of using pulsed thermographic imaging to identify 

bruised blueberries, so it was important to minimize (or eliminate) effects due to experimental 

factors other than the bruising treatment. As preliminary experiments showed the mean rising 

waveform was a good indicator of differentiating berry samples, an analysis of variance (ANOVA) 

test was performed on this feature to test the effects of all potential experimental factors (bruise 

treatment, sample orientation, and cultivar). The result recommended the examination of data 

subsets divided by orientation and cultivar (Table 3.3 in Supplementary Materials), and thus the 

following statistical analyses, feature selection, and classification trials were executed for 

individual data subsets. 
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ANOVA tests were firstly conducted to evaluate the usefulness of individual waveform 

features in identifying bruised blueberries. To further prove the efficacy, Pearson correlation 

analyses were also performed between the waveform features and bruise area index derived from 

destructive evaluation. In addition to the univariate features, the bruise identification power was 

examined using multivariate analysis of variance (MANOVA) for feature sets. Three sets of 

features were examined: waveform, amplitude, and phase. The waveform feature set consisted of 

the rising and falling waveform features plus their respective standard deviation features. The 

amplitude and phase feature sets consisted of the ten lowest-frequency values available for each 

feature set, plus the ten corresponding standard deviation features (that is, the standard deviations 

of the amplitude and phase values for each component when considered across all the pixels of 

each sample). ANOVA and MANOVA tests were performed in SAS (SAS Institute Inc. Cary, NC, 

USA), whereas Pearson correlation analysis was performed in MATLAB. 

3.2.5.4 Feature selection 

Feature selection was performed using the RELIEFF algorithm implemented in WEKA (The 

University of Waikato, Hamilton, New Zealand). The RELIEF algorithm iteratively updates a 

vector of feature merit scores based on the Euclidian distance between same-class and different-

class samples in the feature space. Features which contribute to the clustering of same-class 

samples are updated with increased merit scores, while features that contribute to the clustering of 

different-class samples are penalized. Feature rankings are returned by ordering features according 

to their merit scores. RELIEFF is an updated version of this algorithm which uses Manhattan rather 

than Euclidian differences as the basis of its score adjustment, iterates exhaustively through all 

samples, and checks against more same-class and different-class samples. For these analyses, the 

following parameter values were used: number of neighbors checked, k, was 10; the neighbor 
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influence parameter σ was 2; weighting by distance was set to false; and all samples were used for 

attribute estimation. Based on the results, additional optimal feature sets were assembled and used 

for classification.  

3.2.5.5 Classification 

Feature sets were classified using five classifier systems: linear discriminant analysis (LDA), 

support vector machine (SVM), random forest, logistic regression, and K-nearest-neighbors 

(KNN). For SVM classifiers, four variants were tried: Two trials were performed with normalized 

data, and two with unnormalized data; and within each set of two, one classifier employed a linear 

kernel, and the other a radial basis function (RBF). Classification trials were performed using ten-

fold cross-validation, with the three full feature sets (waveform, amplitude, and phase) and 

additional optimized feature sets from feature selection. The mean accuracy with its standard 

deviation was obtained for each trial to compare performance among classifiers. In addition, 

Cohen’s Kappa statistics were calculated for performance evaluation to compensate for the 

unbalanced Meadowlark dataset (shown in Supplementary Figure 3.5). All trials and performance 

comparisons were performed in WEKA.  

3.3 RESULTS AND DISCUSSION 

3.3.1 Basic feature analysis 

Examining the raw thermal waveforms (Figure 3.6), it can be seen that the treatment groups 

begin at roughly the same starting temperature, but peak and cooled temperatures are higher for 

control group berries. However, large variations were also observed within each treatment group, 

making a quick visual discrimination not an easy task. Among phase values, the mean value for 

most components is in the range of 1.2-2.2 radians, while those for the second component were 
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centered on a mean near -3 radians; phase values for the second frequency component have 

therefore been omitted from the figure, in order to increase the visibility of differences in other 

components; for example, it can be seen that component 9 has a larger difference between mean 

treatment group phase values than other components. In the case of amplitude values, the 

magnitude of the values decreases logarithmically with increasing component frequency, 

necessitating the omission of the three lowest-frequency components in order to produce a scale 

on which differences between the means are intelligible. It can be seen that the values for 

component six, and to a lesser degree, component five, show larger mean differences than other 

components. Similarly to thermal signals, the differences between frequency-domain features are 

accompanied by relatively large standard deviations that motivate more detailed inspection and 

analysis. 
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Figure 3.6. Mean thermal waveforms, mean phase values, and mean amplitude values for bruised 

and healthy treatment groups, separated by cultivar. 

3.3.2 Thermal image visualizations 

For the purposes of feature extraction, the Fourier transform was performed on the mean time 
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series for each sample, but it can also be performed on the individual pixel time series in each 

video. The phase and amplitude values for a given frequency component can then be mapped to 

color values and displayed, producing images known as phasegrams and ampligrams, respectively. 

In some applications, defects such as cracks or voids in rigid parts, or bruises in fruits, can be 

observed in these images. In this case, color images reveal no obvious differences between the 

bruised and healthy berry, but thermal images taken from the time of peak temperature show a 

clear temperature difference, with the control berry being hotter (Figure 3.7). Ampligrams, tending 

to resemble de-noised thermal images, likewise show a higher magnitude of amplitude values for 

the healthy berry. Phasegrams primarily highlight the different tissues of the samples, with the 

pedicle being distinct, and calyxes shown clearly in calyx-end images. Significant differences 

between the mean phase values of bruised and healthy berries are not visually apparent. 
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Figure 3.7. Thermal images, phasegrams, ampligrams and RBG images of healthy and bruised 

berries. Thermal color bar units are in Kelvins. Amplitude color bar units are unitless but roughly 

correspond to Kelvins. Phase color bar units are in radians. 
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ANOVA of the waveform features shows that calyx-end subsets are almost never statistically 

distinct, while stem-end subsets are consistently distinct on the rising and falling waveform 

features and peak temperature (Figures 3.8 and 3.9). Consequently, calyx-end data was excluded 

from further analysis. Unlike other features, the starting temperature feature did not show 

significant difference between control and bruised berries in both cultivars.  These findings agree 

well with the previously-mentioned thermal window theory: bruised tissues have higher thermal 

diffusivity than control tissues. During the heating phase, received thermal radiation heats the 

surface of the berries. In both bruised and healthy berries, this heat energy is drawn from the 

exterior into the relatively cool interior by conduction. In the healthy berries, intact cell walls and 

organized cell layers impede this conduction (or thermal diffusion), while in bruised berries, 

ruptured cell walls and disrupted tissue layers with pockets of free water provide a better 

conductive medium. More of the heat on the surface of bruised tissues is therefore drawn from the 

exterior towards the interior, resulting in a lower surface temperature.  

The indiscriminability of the calyx ends is best attributed to differences in the tissue types of 

the relevant physiological structures. Stem ends consist primarily of tissues consistent with the 

majority of the flesh of the fruit, with a relatively small pedicle. By contrast, calyxes consume 

much of the area of the calyx ends. Vestigial sepals obscure the underlying tissue with a differing 

thermal response due to their thin geometry, while the base of the calyx is noticeably stiff and 

woody compared to the remainder of the fruit tissue. This may result in less bruising in the calyx 

region when treated, smaller changes in thermal properties when bruising is present, or interference 

with examination of the underlying tissues. 
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Figure 3.8. Box plots of waveform features, Farthing cultivar. (a) Rising waveform feature; (b) 

Falling waveform feature; (c) Starting temperatures; (d) Peak temperatures 
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Figure 3.9. Box plots of waveform features, Meadowlark cultivar. (a) Rising waveform feature; 

(b) Falling waveform feature; (c) Starting temperatures; (d) Peak temperatures 
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3.3.4 Correlation between waveform features and bruise area index 

Figures 3.10 and 3.11 show the results of linear correlation analysis of the bruise area index 

feature against the four waveform features for Farthing and Meadowlark subsets, respectively. 

Rising and falling waveform features and peak temperature all show strong statistical significance 

of correlation on both cultivars, with rising and falling waveform features being stronger than peak 

temperature. Starting temperature shows no statistical significance and weak r values, suggesting 

little relation between the amount of bruising and the starting temperature. The bruise area index 

was negatively correlated with the rising and falling waveform features, indicating that the less-

bruised berries (control group) are more strongly affected by heating and cool more rapidly after 

heating. Likewise, healthier berries achieved a higher peak temperature than more-bruised berries. 

These findings are in alignment with the predictions of thermal window theory [5]. 

Overall, the two cultivars showed a similar pattern, although some differences between 

cultivars were observed. All correlations are more statistically significant for Farthing berries than 

for Meadowlark. This is perhaps related to the observed fact that many Meadowlark berries are 

less susceptible to bruising. Only very minor differences in the magnitude of the correlations were 

observed between cultivars.  
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Figure 3.10. Correlation plots of bruise area index against waveform features, Farthing berries 
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Figure 3.11. Correlation plots of bruise area index against waveform features, Meadowlark berries 

3.3.5 MANOVA results and feature selection 

MANOVA of feature sets showed strong statistical significance on all subsets (Table 3.1). 

The Farthing phase feature set was slightly weaker than the others, but was also strongly 

statistically significant. This indicates that all feature sets were suitable for use in classification 
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trials. 

Table 3.1. P-values from MANOVA of feature sets on various data subsets 

Feature set  Farthing  Meadowlark 

Waveform  1.00E‐04  1.00E‐04 

Whole amplitude  1.00E‐04  1.00E‐04 

Whole phase  5.10E‐03  1.00E‐04 

 

Examining the merit scores of the features (supplementary Table 3.4), it can be seen that the 

rising and falling waveform features were consistently the best performers, with the falling 

waveform feature being superior to the rising feature on all subsets. Mean amplitude features are 

next-best, followed by the waveform feature standard deviations. Phase features and amplitude 

standard deviation features were poor, and phase standard deviation features were very poor. 

Based on the merit scores (Table 3.4 in Supplementary Materials), six additional feature sets 

were assembled for the purposes of classification. Feature set sizes were determined by selecting 

those features which returned merit scores on the full dataset equal to or greater than threshold 

values of 0.02 and 0.01, producing feature sets containing seven and thirteen features, respectively. 

A third feature set was assembled containing an empirically-selected set of the twenty highest-

merit features on the full dataset. Having determined feature set sizes of seven, thirteen, and twenty 

features, feature sets were then extracted independently for each cultivar by taking the seven, 

thirteen, and twenty highest-merit features on each cultivar. These will be referred to as the “seven-

feature sets,” “thirteen-feature sets,” and “twenty-feature sets,” respectively. 

 

3.3.6 Classification 

The best classification accuracy obtained was 89.50% using waveform features, the Farthing 
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subset, and a logistic regression classifier. This trial also returned the highest kappa value of any 

trial, 0.79, indicating high reliability. The best classification accuracy for Meadowlark berries, 

80.72%, was obtained with the twenty-feature set and the normalized linear kernel SVM, and had 

an associated kappa value of 0.61, indicating fair repeatability. Overall, waveform features out-

performed amplitude and phase features.  

Among the feature sets produced by feature selection, the general trend was improved 

accuracy in feature sets with a larger total number of features. Especially for the twenty-feature 

sets, accuracies tended to be on par with waveform feature set trials. If too many features were 

selected for these sets, it would be expected that cross-validated accuracies would decline due to 

overfitting as the number of features increased. The steadily increasing accuracies with increased 

feature numbers suggests that this threshold was not exceeded and that the feature sets are suitable 

for classification. 

Farthing waveform results were highly dependent on the classifier used, while Meadowlark 

waveform results were more stable. No single best classifier is readily identified, although LDA 

and linear kernel normalized SVM are both strong performers. Normalization tended to improve 

the results of linear kernel SVM classifiers, while it significantly worsened many RBF kernel 

results. Linear kernel SVMs generally out-performed RBF-kernel SVMs, suggesting that the 

relationships between the features are relatively simple, that is, linear or near-linear, rather than 

multidimensional or interacting. 

Regarding the disparity in classification accuracies between the cultivars, it is important to 

note that destructive evaluation showed significant heterogeneity of bruising in Meadowlark 

berries compared to Farthing berries, which by contrast tended to be thoroughly and uniformly 

bruised, and all of the samples which had to be removed due to insufficient bruising were 
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Meadowlark berries. This would seem to imply that Meadowlark berries are more resistant to 

bruising. If so, then the superior classification accuracy of Farthing berries over Meadowlark 

would most simply be attributed to more severe and complete bruising in the Farthing berries, and 

therefore larger changes in the thermal properties, leading to larger differences in the extracted 

waveform features.  

Table 3.2. Table of classification accuracies, stem-end subsets 

   

SVM 
Random 
Forest 

LDA 
Logistic 

Regression 
K Nearest 
Neighbors 

    Normalized 
Non‐

normalized   

C
u
lt
iv
ar
 

Fe
at
u
re
 s
et
 

RBF  Linear  RBF  Linear 

           

Fa
rt
h
in
g 

Waveform  81.84  87.67  68.06  69.90  78.92  84.28  89.50  82.52 

Amplitude  67.69  82.57  51.09  81.99  77.60  82.57  79.90  73.73 

Phase  61.77  65.38  54.30  59.40  72.17  61.22  58.56  52.49 

7  67.99  66.49  46.47  68.18  72.13  72.18  71.58  66.21 

13  70.51  79.72  48.37  67.84  80.94  70.76  84.39  73.48 

20  74.99  83.34  54.59  84.06  81.01  82.58  78.53  67.39 

M
ea
d
o
w
la
rk
 

Waveform  78.63  76.39  77.71  78.63  74.94  76.26  77.89  73.72 

Amplitude  68.63  75.76  55.00  73.97  75.53  74.68  70.78  67.10 

Phase  53.53  74.11  58.39  65.11  78.06  73.99  70.11  62.14 

7  76.94  76.01  61.57  75.56  73.89  77.26  76.93  69.28 

13  78.61  79.06  55.00  74.46  78.99  77.74  76.76  72.56 

20  79.74  80.72  55.00  75.36  78.85  77.67  75.43  73.43 

 

3.4 CONCLUSION 

Significant differences between bruised and healthy berries were present only between stem 

ends, with virtually no significant differences between calyx ends. Among stem-end subsets, 

healthy berries displayed more rapid surface temperature fluctuations during both the heating and 
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cooling phases, which is supported by the thermal window theory. Good classification accuracies 

were produced from the waveform feature set and the twenty-feature selected sets including 

amplitude and phase features in the frequency domain, yielding top accuracies of 90% and 80% 

for Farthing and Meadowlark cultivars, respectively. The results presented here suffice as a proof 

of concept that pulsed thermographic imaging could be used to detect blueberry internal bruising 

due to differences in thermal properties between healthy and bruised tissues. The thermal imaging 

technique could be considered as one viable sensing technique given the large temperature 

fluctuation blueberries experience in postharvest handling.  
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3.6 SUPPLEMENTARY MATERIALS 
 
Table 3.3. Independent and interactance p-values for treatment, orientation, and cultivar from 

ANOVA of rising waveform feature 

Feature(s) P‐value 

Treatment <.0001 

Orientation <.0001 

Cultivar 0.0002 

Treatment * Orientation 0.0123 

Treatment * Cultivar 0.7615 

Orientation * Cultivar <.0001 

Treatment * Orientation * Cultivar 0.523 

 

 
 
Table 3.4. Results of RELIEFF feature evaluation 
 
   Dataset 

  Farthing  Meadowlark  Average 

Feature  Merit  Rank  Merit  Rank  Merit  Rank 

rising waveform  0.050  2.5 0.075 2.2 0.063 2.350

falling waveform  0.056  1.0 0.089 1.0 0.073 1.000

rising waveform std  0.005  19.9 0.007 21.5 0.006 20.700

falling waveform std  0.013  11.1 0.005 26.4 0.009 18.750

whole amp 1  0.023  7.0 0.018 9.8 0.021 8.400

whole amp 2  0.041  4.0 0.072 2.8 0.057 3.400

whole amp 3  0.049  2.5 0.041 4.6 0.045 3.550

whole amp 4  0.020  7.1 0.016 10.5 0.018 8.800

whole amp 5  0.015  9.2 0.008 20.5 0.012 14.850

whole amp 6  0.014  10.2 0.026 7.1 0.020 8.650

whole amp 7  0.010  13.0 0.017 10.2 0.014 11.600

whole amp 8  0.004  23.8 0.001 34.7 0.003 29.250
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whole amp 9  0.010  13.4 0.017 10.2 0.014 11.800

whole amp 10  0.001  31.3 ‐0.007 44.8 ‐0.003 38.050

whole amp std 1  0.003  26.4 0.004 26.7 0.004 26.550

whole amp std 2  0.007  16.2 0.005 27.0 0.006 21.600

whole amp std 3  0.004  22.5 0.004 28.9 0.004 25.700

whole amp std 4  0.004  23.5 0.009 17.5 0.007 20.500

whole amp std 5  0.002  28.4 0.010 17.0 0.006 22.700

whole amp std 6  0.004  24.0 0.006 22.2 0.005 23.100

whole amp std 7  0.003  26.4 0.004 29.2 0.004 27.800

whole amp std 8  0.001  32.9 0.010 17.5 0.006 25.200

whole amp std 9  0.002  29.6 0.004 26.6 0.003 28.100

whole amp std 10  ‐0.001  37.8 0.005 24.8 0.002 31.300

whole phase 1  0.021  7.0 0.040 4.4 0.031 5.700

whole phase 2  0.009  14.0 0.000 38.9 0.005 26.450

whole phase 3  ‐0.017  46.0 0.003 31.0 ‐0.007 38.500

whole phase 4  0.016  8.5 0.012 14.5 0.014 11.500

whole phase 5  ‐0.002  39.9 0.008 21.3 0.003 30.600

whole phase 6  0.005  22.8 0.005 26.5 0.005 24.650

whole phase 7  0.004  22.3 0.001 37.1 0.003 29.700

whole phase 8  0.005  23.7 ‐0.003 42.9 0.001 33.300

whole phase 9  0.005  21.7 ‐0.011 45.5 ‐0.003 33.600

whole phase 10  ‐0.001  36.5 0.009 19.6 0.004 28.050

whole phase std 1  0.005  21.4 0.029 6.7 0.017 14.050

whole phase std 2  0.006  21.4 0.001 35.0 0.004 28.200

whole phase std 3  ‐0.006  44.5 0.008 19.8 0.001 32.150

whole phase std 4  ‐0.005  43.4 0.003 31.3 ‐0.001 37.350

whole phase std 5  0.001  32.8 0.012 14.8 0.007 23.800

whole phase std 6  0.002  29.3 0.005 24.0 0.004 26.650

whole phase std 7  ‐0.001  37.7 0.001 38.0 0.000 37.850

whole phase std 8  ‐0.003  41.5 ‐0.003 43.5 ‐0.003 42.500

whole phase std 9  ‐0.002  40.1 0.001 36.5 ‐0.001 38.300

whole phase std 10  ‐0.001  38.7 0.004 28.2 0.002 33.450
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Table 3.5. Cohen’s Kappa for classification trials 
 
      Classifier 

   SVM   

  Normalized 
Non‐

normalized   

C
u
lt
iv
ar
 

Fe
at
u
re
 s
e
t 

RBF  Linear  RBF  Linear 
Random 
Forest 

LDA 
Logistic 

Regression 
K Nearest 
Neighbors 

Fa
rt
h
in
g 

Waveform  0.64  0.75  0.36  0.40  0.58  0.69  0.79  0.65 

Amplitude  0.36  0.65  0.04  0.64  0.55  0.65  0.60  0.47 

Phase  0.24  0.31  0.09  0.19  0.44  0.22  0.17  0.05 

7  0.36  0.33  ‐0.05  0.36  0.46  0.44  0.43  0.33 

13  0.41  0.60  ‐0.01  0.37  0.61  0.41  0.69  0.47 

20  0.47  0.72  0.11  0.67  0.65  0.63  0.54  0.40 

M
ea
d
o
w
la
rk
 

Waveform  0.56  0.52  0.54  0.56  0.49  0.52  0.55  0.46 

Amplitude  0.33  0.51  0.00  0.48  0.50  0.48  0.41  0.32 

Phase  ‐0.03  0.45  0.09  0.25  0.55  0.47  0.40  0.23 

7  0.53  0.51  0.18  0.51  0.49  0.54  0.53  0.38 

13  0.56  0.57  0.00  0.47  0.58  0.55  0.53  0.44 

20  0.58  0.61  0.00  0.50  0.59  0.55  0.51  0.46 
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CHAPTER 4 

CONCLUSION 

Both tasks attempted were performed with some success. As predicted, cotton trash 

detection was the easier of the two; differences of up to forty degrees Celsius between the peak 

temperatures achieved by different foreign matter types rendered some portions of identification 

trivially easy. Moreover, the separability of cotton from most debris types on at least one of the 

derived features enables a near-perfect discrimination between cotton and all types of foreign 

matter. Further, the ability to distinguish between foreign matter types is of significant utility, as 

this can provide the basis for foreign matter scoring which is more sensitive to the nature of the 

debris present, potentially enabling a more discriminating allocation of various grades of cotton 

to different uses. 

 One issue that remains to be investigated is the penetrability of the technique; the 

feasibility of detecting and identifying foreign matter that is not on the surface of the cotton lint, 

but inside of it, partially or wholly obscured from view. Absent the ability to reveal such foreign 

matter, the technique will only provide a sampling of the foreign matter present, rather than a 

comprehensive inventory. This is still an improvement on visual grading, which is of course 

likewise non-penetrating, but is nonetheless a shortcoming. 

 Another shortcoming of the study is the relative uniformity of shape and large size of the 

foreign matter samples used. Most foreign matter that is present following ginning has been 

reduced to minute fragments, which may prove significantly more difficult to detect. However, a 
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sufficient image resolution of the detecting system should ameliorate most of the issues that this 

would entail. 

 Blueberry bruise detection was more difficult and results were more mixed. Unlike the 

fruit bruise detection studies performed by previous researchers, visualization of the bruises was 

not possible. This is likely due to a number of factors, all of which, in sum, amount to the 

significant physiological differences between blueberries and the fruits used in previous studies. 

The tissues of apples and pears are less dense than water, whereas those of blueberries are more 

dense. Apples and pears are much firmer than blueberries. Lastly, the relatively large size of 

apples and pears makes the discrimination of a relatively small bruise on their surfaces easier; 

curvature effects and edge effects are of less concern. Nonetheless, certain combinations of 

feature sets and classifiers achieved respectable accuracies of discrimination. On the other hand, 

the use of an extreme bruising treatment, producing berries which were certainly so badly 

bruised as to be screened out by a soft-sorting device,  raises the question of whether a good 

accuracy can be had in detecting more moderate bruises. As the results stand, this study can 

serve, at a minimum, as a proof of  concept that bruising results in differences in the material 

properties of blueberries which can, in turn, be detected by pulsed thermographic analysis. 

Additional studies with more moderate treatments, attempting, perhaps, to discriminate between 

bruises of varying severity, can now be performed on the basis of these findings. 

 Pulsed thermographic inspection is a powerful tool for the evaluation of post-harvest 

quality for a variety of crops. Whenever the discrimination that is desired is to be made on the 

basis of materials that differ significantly in their material properties, there is an opportunity to 

detect these differences by thermographic examination. In this thesis, the potential for applying 

this technique to the problems of cotton foreign matter detection and blueberry bruise detection 
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has been shown to be feasible, and in the case of cotton foreign matter detection, perhaps even 

extraordinarily efficacious. With further study, these techniques may someday find industrial 

application; for the time being, a theoretical basis has been established for their application, 

paving the way for fine-grained investigation of further problems in the domain. 

 

REFERENCES 

1. Himmelsbach, D.S.; Hellgeth, J.W.; McAlister, D.D. Development and use of an 

attenuated total reflectance/fourier transform infrared (atr/ft-ir) spectral database to 

identify foreign matter in cotton. Journal of agricultural and food chemistry 2006, 54, 

7405-7412. 

2. Federation, I.T.M. Itmf cotton contamination survey. Zurich, Switzerland, 2014. 

3. Ghorashi, H. Uster® hvi classic. Technologies, U., Ed. CI Singapore, 2004. 

4. Xu, B.; Fang, C.; Huang, R.; Watson, M.D. Chromatic image analysis for cotton trash 

and color measurements. Textile research journal 1997, 67, 881-890. 

5. Yang, W.; Li, D.; Wei, X.; Kang, Y.; Li, F. In An automated visual inspection system for 

foreign fiber detection in lint, 2009 WRI Global Congress on Intelligent Systems, 2009; 

IEEE: pp 364-368. 

6. Fortier, C.A.; Rodgers, J.E.; Cintron, M.S.; Cui, X.; Foulk, J.A. Identification of cotton 

and cotton trash components by fourier transform near-infrared spectroscopy. Textile 

Research Journal 2011, 81, 230-238. 

7. Fortier, C.; Rodgers, J.; Foulk, J.; Whitelock, D. Near-infrared classification of cotton 

lint, botanical and field trash. Journal of cotton science 2012. 



 

81 

8. Guo, J.; Ying, Y.; Li, J.; Rao, X.; Kang, Y.; Shi, Z. Detection of foreign materials on 

surface of ginned cotton by hyper-spectral imaging. Transactions of the Chinese society 

of agricultural engineering 2012, 28, 126-134. 

9. Zhang, R.; Li, C.; Zhang, M.; Rodgers, J. Shortwave infrared hyperspectral reflectance 

imaging for cotton foreign matter classification. Computers and Electronics in 

Agriculture 2016, 127, 260-270. 

10. Gamble, G.R.; Foulk, J.A. Quantitative analysis of cotton (gossypium hirsutum) lint trash 

by fluorescence spectroscopy. Journal of agricultural and food chemistry 2007, 55, 4940-

4943. 

11. Mustafic, A.; Li, C. Classification of cotton foreign matter using color features extracted 

from fluorescent images. Textile Research Journal 2015, 85, 1209-1220. 

12. Pai, A.S. X-ray microtomographic image analysis for identification of cotton 

contaminants. Texas Tech University, 2002. 

13. Pai, A.; Sari-Sarraf, H.; Hequet, E.F. Recognition of cotton contaminants via x-ray 

microtomographic image analysis. IEEE Transactions on Industry Applications 2004, 40, 

77-85. 

14. Meinlschmidt, P.; Maergner, V. In Detection of foreign substances in food using 

thermography, AeroSense 2002, 2002; International Society for Optics and Photonics: pp 

565-571. 

15. Matiacevich, S.; Cofr, C.; #xe9; , D.; Silva, P.; Enrione, J.; Osorio, F. Quality parameters 

of six cultivars of blueberry using computer vision. International Journal of Food 

Science 2013, 2013, 8. 



 

82 

16. MatIaCeVIC, S.; SILV, P. Evaluation of blueberry color during storage by image 

analysis. Color in Food: Technological and Psychophysical Aspects 2012, 211. 

17. Leiva-Valenzuela, G.A.; Aguilera, J.M. Automatic detection of orientation and diseases 

in blueberries using image analysis to improve their postharvest storage quality. Food 

Control 2013, 33, 166-173. 

18. Leiva-Valenzuela, G.A.; Lu, R.; Aguilera, J.M. Prediction of firmness and soluble solids 

content of blueberries using hyperspectral reflectance imaging. Journal of Food 

Engineering 2013, 115, 91-98. 

19. Jiang, Y.; Li, C.; Takeda, F. Nondestructive detection and quantification of blueberry 

bruising using near-infrared (nir) hyperspectral reflectance imaging. Scientific Reports 

2016, 6, 35679. 

20. Leiva-Valenzuela, G.A.; Lu, R.; Aguilera, J.M. Assessment of internal quality of 

blueberries using hyperspectral transmittance and reflectance images with whole spectra 

or selected wavelengths. Innovative Food Science & Emerging Technologies 2014, 24, 2-

13. 

21. Hu, M.-H.; Dong, Q.-L.; Liu, B.-L.; Opara, U.L. Prediction of mechanical properties of 

blueberry using hyperspectral interactance imaging. Postharvest Biology and Technology 

2016, 115, 122-131. 

22. Li, C.; Krewer, G.W.; Ji, P.; Scherm, H.; Kays, S.J. Gas sensor array for blueberry fruit 

disease detection and classification. Postharvest Biology and Technology 2010, 55, 144-

149. 



 

83 

23. Demir, N.; Ferraz, A.C.O.; Sargent, S.A.; Balaban, M.O. Classification of impacted 

blueberries during storage using an electronic nose. Journal of the Science of Food and 

Agriculture 2011, 91, 1722-1727. 

24. Danno, A.; Miyazato, M.; Ishiguro, E. Quality evaluation of agricultural products by 

infrared imaging method. Memoirs Fac Agric 1978, 14, 123-138. 

25. Baranowski, P.; Mazurek, W.; Witkowska-Walczak, B.; Sławiński, C. Detection of early 

apple bruises using pulsed-phase thermography. Postharvest biology and technology 

2009, 53, 91-100. 

26. Baranowski, P.; Mazurek, W.; Wozniak, J.; Majewska, U. Detection of early bruises in 

apples using hyperspectral data and thermal imaging. Journal of Food Engineering 2012, 

110, 345-355. 

27. Varith, J.; Hyde, G.; Baritelle, A.; Fellman, J.; Sattabongkot, T. Non-contact bruise 

detection in apples by thermal imaging. Innovative Food Science & Emerging 

Technologies 2003, 4, 211-218. 

28. Kim, G.; Kim, G.-H.; Park, J.; Kim, D.-Y.; Cho, B.-K. Application of infrared lock-in 

thermography for the quantitative evaluation of bruises on pears. Infrared Physics & 

Technology 2014, 63, 133-139. 

29. Frater, M.R.; Arnold, J.F. Coding of 12-bit video from thermal imaging systems. Signal 

Processing: Image Communication 2000, 15, 907-916. 

30. Mc Cullagh, J.; Setchell, D.; Gulabivala, K.; Hussey, D.; Biagioni, P.; Lamey, P.J.; 

Bailey, G. A comparison of thermocouple and infrared thermographic analysis of 

temperature rise on the root surface during the continuous wave of condensation 

technique. International Endodontic Journal 2000, 33, 326-332. 



 

84 

31. Shepard, S.M.; Ahmed, T.; Lhota, J.R. In Experimental considerations in 

vibrothermography, Defense and Security, 2004; International Society for Optics and 

Photonics: pp 332-335. 

32. Maldague, X.; Ziadi, A.; Klein, M. Double pulse infrared thermography. NDT E Int. 

2004, 37, 559-564. 

33. Maldague, X.; Marinetti, S. Pulse phase infrared thermography. Journal of Applied 

Physics 1996, 79, 2694-2698. 

34. Ibarra-Castanedo, C.; Maldague, X. In Review of pulse phase thermography, SPIE 

Sensing Technology+ Applications, 2015; International Society for Optics and Photonics: 

pp 94850T-94850T-94810. 

 


