
 

 

COMPUTER VISION CAPABILITIES FOR A SEMI-AUTONOMOUS WHEELCHAIR 

by 

JEREMY TARVER 

(Under the Direction of Walter D. Potter) 

ABSTRACT 

The semi-autonomous wheelchair uses a multi-layered intelligent agent architecture 

designed to provide people with severe multiple disabilities navigational assistance in indoor 

environments.  This paper describes the addition of computer vision capabilities to the semi-

autonomous wheelchair.  Specifically an intelligent agent design is described which detects 

doorways in indoor environments and provides the location to the user via a tactile interface.  A 

prototype is developed that demonstrates the software architecture is capable of operating in a 

real time environment. 

 
INDEX WORDS: Artificial Intelligence, Computer Vision, Assistive Technology, Doorway 

Detection 



 

 

 

COMPUTER VISION CAPABILITIES FOR A SEMI-AUTONOMOUS WHEELCHAIR 

 

by 

 

JEREMY TARVER 

B.S., University of Georgia, 2002 

 

 

 

 

 

 

 

 

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment 

of the Requirements for the Degree 

 

MASTER OF SCIENCE 

 

ATHENS, GEORGIA 

2008 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2008 

Jeremy Tarver 

All Rights Reserved 



 

 

 

COMPUTER VISION FOR A SEMI-AUTONOMOUS WHEELCHAIR 

 

by 

 

 

JEREMY TARVER 

 
 
 
 
 
 
 
 
 
 

Major Professor: Walter D. Potter 
 

Committee: Khaled Rasheed 
Pete Bettinger 
 
 

 
 
 
 
 
 
 
Electronic Version Approved: 
 
Maureen Grasso 
Dean of the Graduate School 
The University of Georgia 
May 2008  
 



 

ACKNOWLEDGEMENTS 

I would like to thank the open source community, whose labors to create free (as in 

freedom) software have created tools that make scientific progress easier.  This research would 

not have been possible without my colleagues who assisted in various stages of the wheelchair 

project, Hajime Uchiyama, Dr. Covington, Robert Eunice, and Dr. Potter.  I also thank my 

family, friends, and especially my loving wife for support and encouragement through the 

travails of this journey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iv 



 

 

 

 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

CHAPTER 

1 INTRODUCTION .........................................................................................................1 

Motivation .................................................................................................................1 

Problem Statement ....................................................................................................2 

2 BACKGROUND ...........................................................................................................3 

Computer Vision .......................................................................................................3 

Computer Vision in Wheelchair Systems .................................................................4 

Doorway Detection ....................................................................................................9 

Problems with Prior Work  ......................................................................................13 

3 DESIGN .......................................................................................................................15 

Design Overview .....................................................................................................15 

Doorway Candidate Search .....................................................................................18 

4 IMPLEMENTATION ..................................................................................................23 

Chapter Overview ....................................................................................................23 

Control Architecture ................................................................................................23 

Vision Module .........................................................................................................24 

v 



 

vi 

Communication Protocol .........................................................................................25 

Software Architecture ..............................................................................................26 

Doorway Candidate Search .....................................................................................27 

5 RESULTS ....................................................................................................................39 

Results .....................................................................................................................39 

Execution Time and Performance ...........................................................................45 

6 CONCLUSION ............................................................................................................46 

Summary .................................................................................................................46 

Future Work ............................................................................................................46 

REFERENCES ..............................................................................................................................48 

APPENDICES 

A SOURCE CODE FOR DOORWAY CANDIDATE DETECTOR .............................52 

B OPENCV FUNCTION REFERENCE ........................................................................73 

 

 



 

 

CHAPTER 1 

INTRODUCTION 

1.1  Motivation 

Individuals in powered wheelchairs with multiple disabilities face extreme challenges to 

their personal autonomy.  Their ability to live more independently and with a higher quality of 

life could be increased by intelligent assistive technologies.  Currently there are no commercial 

systems that users could benefit from.  Since the fall of 2002 the University of Georgia's 

Artificial Intelligence Center has been involved in the design and implementation of an 

intelligent wheelchair system.  The semi-autonomous wheelchair project is large in scope, and 

represents a collaboration of several researchers.  The project started when we received a request 

from a student at UGA who was both visually and mobility impaired, and was seeking 

technologies that would provide her with more autonomy.  Some of the goals we identified 

through interviews include obstacle detection and avoidance, doorway navigation, and 

acquisition of guidance information such as room numbers and signs.  We aim to develop an 

intelligent system to assist users with multiple disabilities in core day-to-day activities.  

 The activities the project will focus on include assisted navigation in indoor 

environments aided by sensory augmentation rather than fully autonomous control.  The sensory 

enhancement includes basic level features such as notification of nearby obstacles, indications of 

path of least obstruction (help navigate out of a crowded space), and discovery of doorways.   

 

 

 1



 2

1.2  Problem Statement 

The design and implementation of the semi-autonomous wheelchair system is described 

in Perceptual Navigation for Semi-Autonomous Wheelchair Operations [Uchiyama, 2008].  The 

system is comprised of individual sensing agents which collectively can be coordinated to 

achieve high levels of intelligent behavior, such as finding free space in a crowded corridor or 

assisting the user through the navigation of a doorway.  Based on the needs of the user we 

interviewed, our prototype is specifically tailored to a mobility impaired user with severe visual 

impairment but fine motor control of the upper extremities and fully capable cognitive abilities.        

We aim to extend the capabilities of the semi-autonomous wheelchair system to provide 

computer vision capabilities.  The eventual aim for our semi-autonomous wheelchair project is 

assisting users in the navigation of doorways; this project represents the first steps toward 

accomplishing that task.  The goal of this project is to design the software architecture necessary 

to accurately classify doorways in a real time environment as well as the implementation of a 

prototype system for a real-time search for doorway candidates.   

In order to perform high level object detection and classification such as doorway 

detection in a real-time environment, a number of complex processing stages and an efficient 

algorithmic implementation are required.  The combination of constraints requiring a low cost 

system, quick processing in a real time environment and effective operations in a noisy 

environment including obstructions makes for an extremely challenging problem.    

.   

 



 

 

CHAPTER 2 

BACKGROUND 

2.1  Computer Vision 

 Computer vision deals with the theory and process of obtaining information from images.  

It lies at the nexus of artificial intelligence, robotics, signal processing, optics, and machine 

learning.  Computer vision is closely related to the fields of image processing and machine vision 

and shares many of the same principles and techniques.     

Image processing tends to focus on 2D images, typically how to transform a source 

image to another image.  Such operations can include image enhancement or compression, color 

conversions, or geometrical transformations.  Image processing mainly focuses on these 

transformations, rather than extraction and analysis of information from images [Jain et al. 

1995].   

Machine vision has been defined as “…the study of methods and techniques whereby 

artificial vision systems can be constructed and usefully employed in practical applications.  As 

such, it embraces both the science and engineering of vision" [Davies 2004].  Machine vision 

often distinguishes itself from computer vision by the typically more industrial application of 

computer vision processes.   

Computer vision can be differentiated by the attempt to extract information from an 

image scene, which often involves higher level classification tasks.  Despite the slight 

distinctions between them, there is much overlap in terms of principles and techniques.  This 

implies that they could be essentially considered as the same field, but the distinctions may be 

 3



necessary in order to focus research and publication materials due to the tremendous scope of 

information available from visual images. 

 

2.2  Computer Vision in Wheelchair Systems 

The TALOS project was undertaken at ICS-FORTH in Greece.  To my knowledge it 

represents the first usage of computer vision for assistive technologies.  The purpose of the 

project was to provide semi-autonomous navigational assistance to users of powered 

wheelchairs, specifically targeted navigational assistance [Trahanias et al., 1997].  In this case 

the intention was to allow the operator to choose a target from an image of the local environment 

which the wheelchair then attempts to navigate towards.  

The interface consists of a visual display by means of which images captured from the 

cameras are displayed to the user.  The user is able to select a target in the image by means of a 

pointing device.  Once a target is selected the navigation process is given over to the system.  

The system achieves navigation toward the target selected by the user by an internal hierarchical 

motion planner.  Essentially the wheelchair directs itself towards the target selected in the image, 

if an obstacle is encountered by the sonar/IR sensors a routine for obstacle avoidance is invoked 

which overrides the global planner.  This is an example of the subsumption architecture proposed 

by Brooks [1986]. 

The computer vision algorithm works essentially by creating a color histogram of the 

targeted region in the image.  The histogram of the target region and a small window 

surrounding it is referred to as a template.  Regions of subsequent images are compared to the 

target template by a sum of squares difference criterion.  The location of the best fit in the new 

image is defined as the new target, and the template is updated.  The direction of the target in 

 4



regards to center of the image (direction the camera is pointing) is easily obtained.  The direction 

is given by arctan(x/f), where x is the centroid of the template and f is the focal length of the 

camera.  This is both the angle the camera needs to pan in order to fix the template in the center 

of the image and the direction the wheelchair itself needs to go.  The implementation of their 

design includes 2 separate processors, a Pentium for computer vision and control of the camera 

positioning system, and a 486 processor for controlling the wheelchair motion and the other 

sensors attached to the system.  The implementation does not address the issue of autonomous 

object detection and classification, but rather relies on the user to select a region in the image 

after which the software tracks the region of interest. 

A project using a panoramic vision system was implemented at ICS-FORTH in Greece 

[Argyros et al., 2002].  A powered wheelchair is again used as the platform for the system.  The 

sensors include an odometer for tracking wheelchair motion, 6 sonar units, a microphone, and 

most importantly a Neuronics panoramic camera with a parabaloid mirror and a 360 field of 

view.  The purpose of this project is like the previous in that it is aimed at semi-autonomous 

navigation.  The user is able to direct the motion of the wheelchair via voice commands towards 

a particular direction, or use a visual display to select a target region for the system to navigate 

towards.  This also includes the following of a moving target such as a person.  

The use of a panoramic camera has several advantages.  It allows for simultaneous access 

to visual information in a complete 360 range surrounding the platform.  Traditional camera 

systems require pan/tilt systems to focus the camera in order to gather visual information about a 

region that is not currently in view.  The hardware and software to control the movement is an 

additional time and design cost that is avoided with the use of a single camera capable of a 360 

view.  

 5



However the use of a panoramic camera is not without its own costs, it requires 

additional software processing in order to account for the different properties of the image.  

Traditional images can benefit from the large existing libraries of vision processing techniques 

available, whereas techniques and libraries for omni-directional image processing are not readily 

available.  The omni-directional camera is also much more expensive than traditional cameras, as 

of 12/10/2007 a typical quoted price runs around $2,000.  

The implementation of their prototype used the sonar sensors to calculate the distance to 

the moving object targeted by the vision system.  The vision system would calibrate the direction 

of the target, and the sonar system would calculate the distance.  This represents a nice 

combination of two levels of sensors, and the technique could be applied to estimate distances 

without relying on the complexities of stereo vision.  As in previous research the higher level 

system of targeted navigation is subsumed by obstacle avoidance techniques if hazards are 

encountered.  The target is also similarly recognized, a color histogram is used, but this time with 

the addition of 3 regions representing the head, torso, and legs of the human body.  

A major downside to the approach of using only color histograms is that it is reliant upon 

the color of the target being sufficiently different from the color of the background.  For example 

if the system followed a target wearing a white shirt, whenever the target crossed in front of a 

white wall or corridor the system could no longer find and track the target.  This approach also 

relies on the selection of a target of interest by the user, and does not attempt to detect and 

classify objects autonomously.   

The aims of the TAO project involve the development of an add-on system to powered 

wheelchairs to increase the autonomy of the user [Gomi and Griffith 1998].  Some of the tasks 

undertaken in its development include basic collision avoidance, corridor navigation, doorway 

 6



navigation, escape of tight situations, and landmark based navigation.  The TAO 1 sensors 

include 2 CCD color cameras, 3 bump sensors, and 12 IR sensors.  It uses one processor used for 

the vision system and another for the other sensors and subsystem.  

The vision system is used to calculate the depth and size of free space in the area near the 

wheelchair, the vanishing point, and indoor landmarks.  The vision processing receives as input 

two 256x128 images and operates at a rate of about 8 frames per second.  The image from each 

camera is divided into sections left/right/center, and then the two images are averaged down to a 

64x32 pixel image.  Subsequent processing occurs on this averaged down image.  The technique 

for obtaining depth values is called Horswill's habitat constraint vision processing.  Other 

information obtained from the vision sensors is the vanishing point and area detection (for 

determining amount of free space).   

The Wheelesley project from MIT is based on the Tin Man II prototype [Miller and Slack 

1995], and aims to provide navigational assistance to powered wheelchair users in both indoor 

and outdoor environments.  The early work published on Wheelesley describes the GUI used to 

interface with the control system, with the underlying sensors and capabilities being essentially 

the same as the Tin Man [Yanco et al., 1995].  Later work describes the addition of a stereo 

vision system to be used in outdoor navigational assistance [Yanco 2001].  Principally the two 

images were compared for difference between points, thus generating a disparity map.  An edge 

detector was applied to the disparity map and significant changes in gradient are classified as 

obstacle boundaries.  

A technique was also implemented for following a sidewalk by using edge detection, then 

fitting a line to edge points on the left and another line to edge points on the right, with the 

requirement that at least 8 points must fit the line.  It appears that the array of other sensors 

 7



available on the Tin Man platform was never used in the implementation, but rather obstacle 

detection relied entirely on computer vision.  The two functions described in this paper are 

sidewalk following and an inferior implementation of obstacle detection.  

The vision system described could be useful as an addition for obstacle detection, 

particularly in situations relating to drop off detection where sonar would fail.  Vision is a very 

high level and computationally intense information pathway, for simple tasks such as detecting 

obstacles the primary tool should be sonar whenever possible due to its low complexity, 

monetary, and computational cost.  

Since the fall of 2002 the University of Georgia has been involved in the creation of a 

semi-autonomous wheelchair to assist individuals with multiple disabilities.  Foundational work 

was done on the project by Yuki Ono, who did experimental work on the design of a control 

system for a robotic platform.  His approach involved a multi-agent system with different 

components to handle sensors, computer vision, locomotion, and collision avoidance [Ono et al., 

2004].  The hardware consisted of a commercial robot kit called the ERI Personal Robot System.  

It is a small robotic kit including a chassis, power supply, wheels, motors, and a collection of 

sensors.  The sensors include 3 infrared sensors, a microphone, and a web camera.  The kit is 

controlled by a laptop which sits on top of the chassis.  

This platform was used to develop software to attempt to solve some of the problems 

involved with corridor navigation. The web camera was used to acquire images which were 

processed to determine if the location was a corridor.  A 160x120 color image was converted to 

grayscale, after which it was smoothed with a Gaussian filter.  Then a Sobel operator was applied 

to enhance the edges, followed by binary thresholding and a thinning operator.  The final step 

 8



was a Hough Transform to detect candidate lines which conformed to the geometry expected of a 

corridor. 

 

2.3  Doorway Detection 

The detection of doorways is a critical component to robot navigation in structured 

environments.  The recognition of a doorway gives important information for autonomous or 

semi-autonomous vehicles.  This section examines different approaches used in detecting 

doorways, and discusses the advantages and disadvantages of different approaches. 

 In Stoeter et al. [2000], a mobile robot captures camera images 380x280 pixels in size.  

A Sobel filter is applied to detect edges then the edge image is thresholded to eliminate weak 

edges.  Dilation is a morphological operator which essentially causes objects to grow or dilate in 

size.  Erosion has the opposite effect, it causes objects to shrink.  Combining these two operators 

in sequence was used to close line segments.  Once the vertical segments were obtained, the 

locations of possible doorways were reported based on the expected dimensions of doors and the 

corridor parameters.  The corridor parameters were the direction and distance of the wall with 

respect to the robot.  The direction and distance to the wall were obtained by locating the line 

intersection of the floor with the walls.  On a 166 Mhz processor the robot processed roughly one 

image per second.  The computer vision techniques were combined with sonar readings to verify 

if the door was open or closed.  

This technique has several advantages, namely its speed, especially considering that 

current processors are roughly 15 times faster.  Another advantage is that it takes into account a 

very important property of doorframes that most other techniques using a single camera do not; 

the corridor dimensions and the relationship of the frame to the wall.  The drawback to the 

 9



authors’ method is that it only detects the vertical bars and the relative distance between them 

(and corridor parameters) to classify an object as a doorframe.  This means that any two strong 

vertical lines sufficiently apart will be falsely classified as a doorframe, and does not take into 

account addition features such as the lintel.  Therefore the edges of an inset wall containing a 

water fountain would be falsely classified as a doorway, as would a wide painted vertical stripe 

extending from the floor to the ceiling.   

Monasterio et al. used a single camera to obtain images 160x120 pixels in size.  Very 

similar to the work done by Stoeter et al., a vertical Sobel filter was applied to the image in order 

to capture the strong vertical lines of the doorframe.  The image was filtered again with a dilation 

filter and afterwards columns separated by thin spaces are merged.  If a column was wider than 

35 pixels, it was determined to be a doorway.  This approach has several disadvantages, it is not 

adaptable to changes in perspective, the camera must be close enough to the door (within 2 

meters) so that the vertical sides are sufficiently apart, and again any two sufficiently strong 

vertical lines sufficiently apart would be falsely identified as a doorway.   

Another approach taken has been to classify doorways by recognizing components of the 

doorway as identified by neural networks Ciricelli et al. [2003].  Two neural networks were 

trained to detect components by color.  First the image was translated from the RGB color space 

to HSV color space, which represents Hue, Saturation, and Value.  Next the Hue and Saturation 

channels for an 18x18 pixel sub-window of the image were fed into a neural network.  The 

components that were searched for include both the top right and left corners and the vertical and 

horizontal bars.  First a neural net was trained for the upper left corner, and then the same net 

was used to detect upper right corners by simply flipping the image.  The same technique was 

used to detect the vertical and horizontal bars of the doors.  Each sub-window is shifted by two 

 10



pixels, (not tiled) so for one scan there are (a seemingly excessive) 98820 of sub-windows tested 

by the network.  A voting scheme was used to prevent false positives.  After the corners and bars 

were detected, a heuristic was used to determine if there were sufficient components of the door 

present to be considered a door.   

The advantage to this method is that it is (at least in the component stage) not based on 

heuristics, but the neural network is trained by real examples and constitutes true machine 

learning.  The corner and bar detectors are also able to positively identify corners and bars that 

are slightly off in terms of angles, so it is perspective and scale insensitive.  A large disadvantage 

of the system is the computational cost in detecting the components.  This drawback could be 

improved by using a gray-scale image rather than color, for the color of doors is variant, and the 

number of input nodes to the neural network could be reduced by half.  Furthermore the gray-

scale image could be convolved with an edge detector and optionally thresholded before being 

input to a neural network.  For the corner detector rather than a binary output the neural net could 

be trained to output the pixel closest to the absolute corner.  Also more aggressive shifting 

should be done, so rather than a shift of only 2 pixels and having excessive overlap, a shift of at 

least 1/3 the size of the sub-window would significantly decrease the computational complexity.   

In Snaith et al., [1998] the authors propose a system to assist blind users to detect 

doorways by means of a camera mounted on the shoulder.  First the search area was constrained 

by sparse scanning of the image by means of two horizontal lines which divide the image into 

thirds.  The grayscale value of the two lines was used as the two input vectors to a linear 

correlation.  If the linear correlations exceeded a threshold, six further equally spaced lines were 

scanned.  These lines (and their immediate vertical neighbors) were convolved with a vertical 

3x3 Sobel operator.  The output was fed into a simple threshold based transition detector to 

 11



detect the horizontal position of major transitions.  All of the lines are then searched for pairs of 

lines or transitions which have the expected separation which a doorframe would.  Starting from 

the first likely point found, lines beneath it were searched in a half angle cone of 5 degrees 

(allowing the camera to be not entirely vertical).  The results made up a matrix of arrays of 

candidate points which may represent a vertical doorframe line.  Each array was then searched to 

determine covariance with respect to the start pixel.  Classification was then performed on the 

candidate line based on the number of matching pixels.  Lines that had all matching pixels were 

deemed primary, and lines with 2/3rd’s pixels matching were considered secondary.  When an 

image was found that had 2 secondary lines sufficiently apart, or a secondary with a primary, or 

two primaries, further processing was performed.  The region between the top of the candidate 

lines was searched using the same method as previously described, but this time the search was 

performed for horizontal lines.  If a primary or secondary horizontal line was found, the group of 

lines was classified as a doorframe.   The computational cost seems very reasonable, as the 

authors were able to achieve a rate of about 1 frame per second, on a 486 PC running Windows 

3.1.  This technique seems promising because it is robust to occlusion.  The covariance matching 

technique is unfortunately sensitive to changes in illumination, and requires near constant 

illumination across the image.  The technique is also susceptible to classifying any large 

rectilinear object, such as a large cabinet, as a doorway.   

In Muñoz-Salinas et al., [2004] a real time system for the detection of doorframes was 

developed using fuzzy logic.  First a Canny Edge Detector was applied to the image followed by 

a specialized Hough Transform [Foresti 2000] to extract line segment information.  Two 

configurations were detected, a single doorframe and a double doorframe (caused by either the 

door being closed, or a wide moulding on the edges of the frame).  The authors used fuzzy logic 

 12



to categorize line segments and their relationship to each other, and thereby classified objects as 

a doorframe or not.  This method is insensitive to perspective or color, and is capable of working 

at an experimented rate of 6 frames per second on a 320x288 image.  On a Pentium 4 2.4 Ghz 

processor images took on average 160 ms.  These processing speeds make the technique 

applicable to real time doorway detection; however it was not demonstrated in a real time 

environment.  The authors later modified the parameters used to check for fuzzy concept 

membership in a separate paper [Muñoz-Salinas et al., 2006], where they tuned the thresholds 

using a genetic algorithm.  They also modified the possible classifications defining a Frame 

Edge, Door Frame, and Frame Edge with Evidence.  This approach is the best attempt so far to 

classifying potential doors in a single image with no depth information. 

 

2.4  Problems with Prior Work 

The previous approaches detailed above fail to fully address the problem of doorway 

classification.  We can evaluate the incompleteness of prior work based on scene conditions that 

would cause a misclassification of a doorway.  The following scenes will be used to evaluate 

previous approaches: a large cabinet the size of a doorway (complete with handles and hinges); a 

large painted vertical stripe on a corridor wall; and finally a store with model door units on 

display.  Table 2.1 categorizes previous approaches based on these situations. 

 

 
Table 2.1:  Scene limitations of prior work 

 Cabinet Vertical Stripe Door in the Store 
Monasterio 
Cicirelli  
Snaith  
Munoz-Salinaz  
Stoeter   

 

 13



 14

 

 

Approaches taken by Monasterio and Stoeter do not search for the lintel of a doorway, 

thus they are vulnerable to classifying a large painted vertical stripe on a corridor wall as a 

doorway.  Approaches such as those by Monasterio, Cicirelli, Snaith, and Munoz-Salinaz which 

do not calculate distance information and ignore the relationship of the doorway in relation to the 

plane of the wall are vulnerable to classifying a large cabinet as a doorway.  One might argue 

that a highly refined feature identifier could be designed to distinguish between the door of a 

large cabinet and a standard door.  Let us assume for a moment that such a system exists and it 

can distinguish between a large cabinet door and a standard door.  Now imagine the user of such 

a system navigating through a store that sells doors.  The model door units on display would 

match every qualifying feature derivable from a two dimensional image, even though the model 

door units are not in fact doorways.  One could argue that the likelihood of such a situation 

occurring is small enough such that this situation could reasonably be ignored.  However rare the 

situation may be, to ignore it would be to miss a fundamental characteristic of doorways 

highlighted by this situation.  The key feature that distinguishes the model door units from a 

navigable doorway is that they are not embedded in the plane of a wall.  Doorways by their very 

nature are designed to be a movable barrier to selectively prevent or allow passage through the 

plane of a wall.  Therefore approaches which do not take distance and planar information into 

account, even if sufficiently tuned to distinguish between large cabinets and standard doors, will 

nevertheless fail the “Door in the Store” problem.  



 

 

CHAPTER 3 

DESIGN 

3.1  Design Overview 

The previous section detailed prior work in detecting doorways and the unsatisfied 

problems of the previous approaches.  We identified the necessity of both detecting doorways by 

their position with respect to the plane of a wall and their geometric features.  To obtain the 

requisite distance information we will utilize the laser range finding unit described in Perceptual 

Navigation for Semi-Autonomous Wheelchair Operations [Uchiyama, 2008].  Our system 

incorporates a low cost web camera with a horizontal laser line generator allowing the detection 

of laser points in the image to be identified and based on the technique of triangulation converted 

to distance measurements.   

It is desirable in the operation of the laser line generating unit to activate it intermittently 

in order to both consume less power and prevent the unit from overheating.  Therefore our 

design calls for a two stage approach to doorway detection.  The first stage is the Doorway 

Candidate Search which will rely only on the web camera to search for doorway candidates 

based on features derived from the monocular image.  If a doorway candidate is detected the 

second stage will be activated which is Doorway Verification.  Doorway Verification will 

involve activating the laser range finding behavior in order to obtain the distance data necessary 

to calculate both the doors exact dimensions and its parameters with respect to the wall.  Figure 

3.1 shows the design overview of the Doorway Detection and Notification process.  

 15



Figure 3.1: Stages of Doorway Detection System 

 

 

 16



The start node represents initiation of the doorway detection system, and will be invoked 

when the semi-autonomous wheelchair is in general navigation mode.  The first process is the 

search for doorway candidates.  In this stage video frames are continually being retrieved from 

the camera unit and processed in order to detect potential doorways.  The pan/tilt system is used 

to pan the camera unit back and forth in the search process.  If an image contains a doorway 

candidate, the Doorway Verification routine is then invoked.   

The Doorway Verification process may choose to pan or tilt the servo motors to focus 

more directly on the potential doorway, after which it activates the laser line generator and 

acquires an image from the camera unit.  The newly acquired image containing the laser line is 

passed to the Range Finder.  The Range Finder locates the laser points in the source image and 

based on the pixel coordinates will transform the coordinate values into a real-world distance 

measure.  The result is a one dimensional array of distance values whose length is equal to the 

width of the image.  Therefore each column in the original image will have a corresponding 

distance measurement associated with it.  When the distance values are computed the array of 

range values is returned to the Doorway Verification unit.   

If the doorway candidate is verified, then the distance and direction to the center point of 

the doorway is sent to the Notify User process.  The Notify User process will send signals to the 

glove microcontroller to vibrate the motors that correspond to the proper direction and distance 

of the detected doorway.  The detection and notification process ends once the user has been 

notified of the location of the doorway.   

 

 

 

 17



3.2  Doorway Candidate Search 

The process of extracting information from an image is one that involves a series of 

stages.  The design is described below in a step by step method, with a section devoted to each 

stage in the computer vision process.  The following stages of the design will be discussed: 

preprocessing, detecting edges, extracting line segments from the edge images, and finally 

matching the lines together to classify doorway candidates.   

Preprocessing often involves image transformation as preliminary steps in order to 

decrease the overall order of magnitude of the operations performed over the course of 

information extraction.  If a number of operations has to be performed on an NxN array for each 

of the several stages, then the time involved is on the order of O(S x N2), where S is the number 

of operators which have to be applied to each pixel in the image.  Since N dominates S the 

reduction in the size of N is very desirable for reducing computational cost.  Therefore the first 

step of preprocessing will be to reduce the image size by half; from the original 640x480 to 

320x240 pixels. 

The second method of reducing computation time is a conversion from color to greyscale.  

Typical color images are composed of three channels, an array for red values, an array for green 

values, and an array for blue values.  Some images also include a fourth array for alpha, or 

transparency values, but it is not the case with the images we will capture.  Since color is also not 

necessary to detect the geometrical properties of the doorframe, we can reduce these three 

channels to a single channel representing only a greyscale value. By reducing three channels of 

color information representing a pixel to a single value, the number of operations is reduced by 

another factor of three.  The number of operations after these preprocessing steps have been 

made is therefore reduced from (S x N2), to (S x (N/6)2).   

 18



Edge detection is the next stage in processing images from the indoor environment.  Edge 

detectors work by finding and enhancing large differences in adjacent pixel values.  The Sobel 

operator is a commonly used method in detecting or enhancing edges.  It works by 

approximating the first order derivative which expresses the gradient of the image intensity at 

each point.  The way this works is that the original image is convolved with a 3x3 kernel.  For 

the enhancement of vertical edges (the horizontal derivative) the kernel used is shown in Figure 

3.2.  For horizontal edges the kernel is shown in Figure 3.3.   

 

 
 
 
 
 
 

-1 0 1 

-2 0 2 

-1 0 1 

 
 
 
 
 

 

1 2 1 

0 0 0 

-1 -2 -1 

Figure 3.2: Vertical Sobel Kernel 

 
Figure 3.3: Horizontal Sobel Kernel 

 
 

The usage of these operations on an image is best imparted with visual examples, so the 

following will demonstrate their effects on the source image in Figure 3.4.  Figure 3.5 is the 

result of applying the vertical Sobel filter, and Figure 3.6 is the result of the horizontal Sobel 

filter. 

 

 19



Figure 3.4: Original Image 

  

Figure 3.5: Vertical Sobel Filter Applied Figure 3.6: Horizontal Sobel Filter Applied 

 

 

Another commonly used technique is the Laplacian operator.  It works by computing the 

second derivative of the intensity image and finding the zero crossings.  Figure 3.7 shows the 

standard kernel used for the Laplacian operator.  An advantage to the Laplacian is that it results 

in thinner lines than the Sobel operator; however it is also sensitive to noise.  To resolve this 

issue typically a smoothing filter is applied to the image to reduce noise.  The Gaussian filter is 

 20



most often used for this step; it acts by using a normal distribution to transform each pixel which 

has the effect of averaging pixels to achieve a blurring or smoothing effect.  Figure 3.8 shows the 

result of applying a 3x3 Gaussian smoothing filter followed by the Laplacian operator.   

 

   

 

 

 
Figure 3.8: Original Image 

 
 

1 1 1 

1 -8 1 

1 1 1 
 

Figure 3.7: Laplacian Kernel 

 

 

 

Once the stage of edge detection has been completed the next task is to try and extract 

straight lines from the pixels that represent edges in the original image.  The task of grouping 

edge pixels into corresponding sets of features, even simple ones like straight lines represents a 

significant problem.  Due to noise or inaccuracies from the image data, there are often gaps in 

pixels or edges that are noisy.  The Hough Transform is a technique that is designed to overcome 

the imperfections in the edge image by the means of a voting process.  In essence each edge 

pixel is examined and is allowed to cast a vote about the lines it could possibly lie upon.  Since 

vertical lines when represented by the slope-intercept form have a slope approaching infinity, 

 21



 22

this form of representation is avoided in favor of polar coordinates.  Polar coordinates are a 

means of representing a line’s location in a Cartesian plane by an angle measure (θ) and a 

distance measure (ρ).  The distance measure is the distance from the center of the coordinate 

system along a line that lies perpendicular to the line that is being described.  The votes from 

each pixel are stored in an accumulator array.  The accumulator array, also known as the Hough 

space, is indexed by the ρ and θ values.  Strong lines in the image will have many edge pixels 

voting for them, and thus will be represented as peaks in the Hough space.  After the voting 

process is complete, the Hough space is searched for local maxima in order to detect lines in the 

image. 

The last stage in the process is classifying doorways based on the line segment 

information.  The classification is made by matching two lines that are vertical and of sufficient 

distance apart that are also joined by a horizontal line. The allowable amount between line 

endpoints to be considered as “connected” will be experimentally derived. Once all of the 

conditions have been satisfied with regards to line structure and placement, the location of a 

potential doorway is signaled.  Note that the doorway could be open or closed, and this technique 

will also allow for partial occlusion of the lower regions of the doorframe, for instance when a 

person or object partially obscures the view of the doorway.  However it should be noted that 

doorways that do not have a straight lintel, but rather an arched one, will not be classified by the 

doorway candidate search.  

 



 

 

CHAPTER 4 

IMPLEMENTATION 

4.1  Chapter Overview 

Since the design and physical embodiment of the semi-autonomous wheelchair has been 

detailed in previous work [Uchiyama, 2008], this section will briefly provide an overview of the 

Control Architecture and the Vision Module, and then introduce a new protocol design for 

communication between the sensors, controllers, and actuators.  Next the software architecture of 

the computer vision system will be outlined, followed by a detailed description of the processing 

stages involved in the Doorway Candidate Search implementation.  

 

4.2  Control Architecture 

The semi-autonomous wheelchair system is comprised of three control processor 

architectures.  The first and highest level of processing is performed by an on-board laptop which 

we refer to as the "host computer".  The host computer sits beneath the chair and interfaces with 

the additional processing units which act as intermediaries in the sensory processing and control 

stages. The second is a custom micro-controller designed by Dr. Covington to activate the 

vibrations of the tactile glove.  We refer to this as the “glove controller”.  The glove controller 

accepts signals from the host computer via a serial connection.  The third is a microcontroller 

which handles the rest of the interactions between the sensors, the actuators, and the host 

computer.  We refer to this as the “Main Controller” due to its dominant role in the 

sensor/actuator control scheme.  The bulk of the interactions between sensors, actuators, and the 

 23



host computer are mediated by the Main Controller, a Rowley Associates LPC2138.  The Main 

Controller collects input from the sonar sensor array, accelerometer, and gyroscope.  It also 

offers the ability to control functions such as turning the horizontal line laser on and off, and 

sending control signals to move the pan/tilt servo module.  The Main Controller is connected to 

the host computer by a USB connection which delivers both power and control signals.   

 

4.3  Vision Module 

In addition to the sensors connected to the Main Controller, the host computer also is able 

to obtain visual information from the environment via a direct USB connection with a Logitech 

Quickcam Pro 4000.  Figure 4.1 shows the physical configuration of the computer vision 

module.   

 

 
Figure 4.1: Computer Vision Module 

 

 24



The laser is mounted atop of the pan/tilt module which is secured to a custom designed 

aluminum frame over the back of the wheelchair.  Extending upwards from the laser 

approximately 12" is an extension of the frame which attaches to the camera unit.   

 

4.4  Communication Protocol 

The host computer communicates with the Main Controller by means of a custom 

communication protocol.  Our design is capable of representing all of the control signals 

necessary for the actuators in addition to representing the information gathered from the sensors.  

Thus the protocol is a two-way device for communicating both commands and data.  The Main 

Controller operates on 32 bit instructions, thus the communication protocol is based on a 32 bit 

packet containing a header, type, and value.  The first eight bits of the packet represent the 

header, which is an indication to the processor that a new signal is beginning, and the instruction 

type and data payload are following.  The next eight bits represent the packet type, which can 

indicate any one of the following types of information:  pan, tilt, laser, sonar, gyroscope, or 

accelerometer.  The last 16 bits contain the data payload, which in the case of a sonar packet will 

represent different sonar distance readings, or in the case of pan or tilt packets represent a control 

value indicating the degrees that the servo motors will move.  An example packet is shown in 

Table 4.1.  Table 4.2 represents a list of the packet types and their descriptions.   

 
Table 4.1: Communication Protocol Packet Descriptors 

 

Header ID Data 

10000001 00000001 0000000010110100 

0x81 Pan[Fixed] 180° 
 
 

 25



Table 4.2: Communication Protocol Packet Descriptors 
 

ID Type Description 
1 Pan [Fixed]  Move the pan servo motor to a fixed point on a 360° system 
2 Pan [Relative] Move the pan servo motor N degrees relative to the current 

position 
3 Tilt [Fixed] Move the tilt servo motor to a fixed point on a 180° system 
4 Tilt [Relative] Move the tilt servo motor N degrees relative to the current 

position 
5 Laser Activate/Deactivate 
6 Sonar 0 Value reading from sonar sensor 
7 Sonar 1 Value reading from sonar sensor 
8 Sonar 2 Value reading from sonar sensor 
9 Sonar 3 Value reading from sonar sensor 
10 Sonar 4 Value reading from sonar sensor 
11 Sonar 5 Value reading from sonar sensor 
12 Sonar 6 Value reading from sonar sensor 
13 Sonar 7 Value reading from sonar sensor 
14 Sonar 8 Value reading from sonar sensor 
15 Gyroscope Value reading from Gyroscope 
16 Accelerometer Value reading from Accelerometer 

 

 

4.5  Software Architecture 

Figure 4.2 shows a schematic of the Software Architecture Layers involved in our 

implementation of computer vision capabilities for the Semi-Autonomous Wheelchair.  The base 

layer is the operating system.  We chose Linux early on as an ideal candidate for an operating 

system due to its open nature which allows for maximum configurability.  In a real time 

environment the ability to limit running processes to a minimum provides extra processing time 

available for our own software stack in addition to freeing up other resources.  The next software 

layer is a set of library functions made available by Intel.  Called Intel Integrated Performance 

Primitives (Intel IPP), these libraries offer highly optimized functions for multimedia data 

processing and communications applications.  Specifically the functions that we are interested in 

provide an extremely fast set of functions for low level image manipulation.  On top of the 

 26



performance primitives is an open source library called OpenCV.  This library is also released by 

Intel, and it includes many extremely useful functions for real time computer vision applications.  

The topmost layer in the software architecture is our custom code designed to implement the 

stages required in doorway classification.  Figure 4.2 displays three custom software modules: 

Doorway Detection, Range Finder, and Door Verifier.  Naturally other modules can be added to 

this layer as necessary, these three are chosen for their direct relevance to the Doorway Detection 

System. 

  

Figure 4.2: Software Architecture Layers 

 

 

4.6  Doorway Candidate Search Overview 

The implementation of the Doorway Candidate Search will be described in the following 

sections.  Each section corresponds to a stage in the processing required to extract information 

about doorway candidates.  The stages of implementation that will be described are 

 27



Preprocessing, Edge Detection, Line Segment Extraction, Merging Line Segments, and Doorway 

Candidate Classification.  The OpenCV library functions used to perform stages of the image 

processing pipeline will be included in the discussion. 

 

4.6.1  Preprocessing 

Preprocessing is the stage in computer vision where operations are undertaken to prepare 

the image for further analysis.  The first step in the preprocessing phase is the reduction of the 

image size.  The prototype camera we are working with has a maximum resolution of 640x480, 

and we capture images at the maximum resolution.  This allows the possibility of performing 

future operations that require crisp images or fine details.  However the detection of strong lines 

comprising doorframes is not one of those applications requiring high resolution, so we can 

reduce its size by one half and achieve a very significant reduction in time complexity. The 

image is reduced in size and simultaneously convolved with a Gaussian smoothing filter in order 

to reduce noise in the image.  The function cvPyrDown convolves the source image with a 5x5 

Gaussian filter and then down samples the image by rejecting even rows and columns.  The 

image is converted to greyscale using the function cvCvtColor. The down sampled and greyscale 

image is used as a basis for two new images, one for horizontal edges and one for vertical edges. 

 

4.6.2  Edge Detection 

Figure 4.3 displays the results of a standard Laplacian operator.  After the vertical edges 

are detected a separate process is performed which detects horizontal edges.  The horizontal edge 

image was produced by convolving the original image with a 2nd order horizontal 3x3 Sobel 

filter.  Thresholding was then performed whereby pixel values 32 or less were reduced to zero.  

 28



 

 
Figure 4.3: Results of Laplacian Edge Detector 

 

 

Figure 4.4: Results of Horizontal Sobel Edge Operator 

 

 

 29



4.6.3  Line Segment Extraction 

Lines were extracted using a Probabilistic Hough Transform.  The method 

cvHoughLines2 allows as one of its parameters the type of Hough Transform to be used.  The 

OpenCV library functions available include the Standard Hough Transform, Multi-Scale Hough 

Transform, and Probabilistic Hough Transform.  Of the three only Probabilistic returns line 

segment information.  Having spent some time previously implementing a Hough Transform 

with line segment detection, the ability to use this library function was a great help in providing a 

faster implementation.  The downside however was the lack of control over theta (or angle) 

search range.  An example of how this would be useful: knowing in advance that the starting 

point for door detection is strong vertical lines, the Hough space could be greatly reduced by 

limiting the theta parameter to a few degrees plus or minus the vertical axis.  A similar outcome 

can be approximated by setting the theta parameter to PI.  The result is that edge points are 

allowed to vote only on vertical or horizontal lines.  If it can be guaranteed that the lines are 

vertical, this approach is acceptable.  However in real-time environments it is difficult to 

guarantee the camera maintains an exact orientation.  For example if the mobile platform the 

camera is attached to is not perfectly horizontal, or the camera itself gets bumped, or pan/tilt 

servos move the camera, the lines will not be perfectly vertical.  With the use of a gyroscope it is 

possible to determine the position of the camera with respect to the vertical axis by considering 

the Z axis value, and transform the image by the number of degrees the camera is off of true 

vertical.  However this would require more complexity and further image operators, thus a better 

approach is simply to allow a margin of error for vertical lines, but still restrict the search space.  

The current implementation opts for accurate line detection, allowing a theta step of 1 degree.   

 30



The result of cvHoughLines2 is a sequence of line segments.  Since the order of lines is 

not guaranteed nor is the orientation of the lines, a few post-processing operations are performed 

in order to make subsequent processing easier.  First the list is traversed and the y coordinates of 

each line endpoint are compared, the lowest value is set to be the first of the two points.  In 

addition if the x values of the top and bottom points are too great, the line is considered 

insufficiently vertical and is dropped from the list. 

 

 
Figure 4.5: Vertical Lines Detected from edge image 

 31



 
Figure 4.6: Horizontal Lines Detected from edge image 

 

 

4.6.4  Merging Line Segments 

Unfortunately discretation errors often lead to a prominent line being represented by a 

series of smaller ones, or by two adjacent lines one pixel apart [Van Veen & Groen 1981].  In the 

development stages a window was created to display each stage of image processing.  After 

detecting the vertical lines it became obvious a segment merge algorithm was required.  The 

restricted slope of the vertical line list made segment merging possible by a simple algorithm.   

Our algorithm achieves good results and is simple.  Figure 4.7 displays the set of all lines 

initially detected from a source image, individual lines are distinguished by random coloration.  

Figure 4.8 shows the same set of lines after being processed by the segment merge algorithm.   

 

 32



 

 

 

 

 

 

 

 

 
 

Figure 4.7: Set of all detected Vertical Lines 
 

 

 

 
Figure 4.8: Set of Vertical Lines after application of Merger Algorithm 

 
 

 33



It reduces the number of detected lines by one half to one third, and improves the quality 

and length of major lines by the addition of smaller segments.  It could be improved by 

comparing horizontal distance between the centroids of the lines as opposed to simply their tops 

as primary condition for merger, or alternately the distance between the nearest point of each 

line.   

The horizontal line merging was more difficult.  Due to the much wider range of segment 

slopes, the conditions for merger become complex.  The horizontal merging algorithm is based 

on the vertical merging technique, but additionally takes into account the slope to limit merge 

candidates, and a top to bottom, left to right sorting of line candidates.  Images in Figures 4.9 

through 4.12 illustrate the operations of the line merging algorithm. 

 

 
Figure 4.9: Set of all detected Horizontal Lines 

 

 34



 
Figure 4.10: Set of Horizontal Lines after application of Merger Algorithm 

 

 

 
Figure 4.11: Set of all detected Horizontal Lines 

 

 35



 
Figure 4.12: Improper merge of horizontal lines 

 

 

The horizontal merge improved line segment quality in most situations, but led to some 

improper joins in certain conditions, such as in Figure 4.12.  The results were considered a 

sufficient improvement and the errors sufficiently small to still be useful.  However for a better 

discussion of line segment merging, we would direct the reader to Manuel et al. [1995], 

Chmielewski [1995], and Hussien and Sridhar [1993]. 

 

4.6.5  Doorway Candidate Classification 

A doorway is classified by the matching of a lintel with two supporting doorjambs.  This 

essentially means a valid combination of two strong vertical lines whose top endpoints lie within 

a given Euclidean distance from the corresponding endpoints of a strong horizontal line.  The 

algorithm is the obvious approach and is therefore not detailed here.  The matching algorithm is 

 36



described succinctly in “A method for recognition and localization of generic objects for indoor 

navigation” [Kim and Nevatia 1999].  A classification of a potential doorway will result in the 

program storing in memory the start and end points of both left and right jamb, the start and 

endpoint of the lintel in terms of image coordinates.  A flowchart representing the stages of 

software processing is presented in Figure 4.13. 

 37



Figure 4.13:  Flowchart for Doorway Candidate Search 

 

 38



 

 

CHAPTER 5 

RESULTS 

5.1  Results 

 This section describes the method used to quantify the performance and the results of the 

performance evaluation.  In order to empirically analyze the performance of the doorway search 

algorithm the following method was used:  the wheelchair system was navigated through the 

corridors of Boyd Hall at the University of Georgia and video was recorded by the camera and 

saved on the host computer, the stored video sequences were then processed by the doorway 

candidate search algorithm which saved sample images from the sequence, the sampled images 

were then analyzed by hand in order to quantify performance.  The process is described in more 

detail below. 

The speed of the wheelchair was set to the medium setting, which we felt would represent 

the top speed a visually impaired user of the system would be safely able to travel at.  The 

camera was fixed in a forward facing position because the pan/tilt control system is still under 

development.  We chose to record the traversal in sections of video rather than a single 

continuous file.  Doing so made the analysis more manageable by allowing us to analyze the 

traversal one section at a time, allowing us to skip to later sections without having to analyze all 

preceding footage, as well as the option of focusing on particular sections of corridors.  

Therefore on occasion the chair was stopped, the current video was saved, then the recording 

was started again and the corridor traversal resumed.  Starting from the micro-electronics lab the 

wheelchair traversed the entire floor of Boyd Hall acquiring video footage.  Approximately 9 

 39



minutes of video was recorded in 7 files, ranging from 1 to 3 minutes long.  The videos include 

recordings of a typical corridor navigation (driving in the center of a well lit corridor) in addition 

to corner turning, traversing a darkened corridor, and navigation through a double door with a 

complex configuration.   

The doorway candidate search program processes the images and is capable of saving a 

composite image comprised of the original footage from the camera, an image of the detected 

horizontal and vertical lines, and an image of the doorways detected in the image.  Since the 

video was recorded at 15 frames per second, analyzing each of the approximately 8100 images 

by hand was infeasible.  Therefore we configured the program to save every 5th image, for a total 

of three images per second.  Three sections of video were chosen as representative samples, and 

images were sampled for a period between 35 and 43 seconds in each.  The resulting data was 3 

groups of processed images, the first containing 118 images, the second 130 images, and the 

third 107.  Each image was analyzed by hand to quantify the following datum: the number of 

doors within range (3 meters), the number of doors out of range, the number of doors in range 

that were successfully detected, the number of doors out of range that were successfully detected, 

and the number of false positives. 

The first image sequence analyzed was of a standard corridor traversal, traveling down 

the center of a well lit corridor.  The end of the corridor is a complex doorway configuration, by 

which we mean the corridor ends with a set of double doors, with a second door visible from 

between the set of double doors.  In this sequence every visible doorway is detected, for a total of 

60 doorway candidates.  There were 0 false positives.  Figure 5.1 shows a typical doorway 

candidate on the left side of the corridor being detected, along with the complex doorway 

 40



configuration in the background.  In Figure 5.2 the complete double door region is detected as a 

candidate, as well as the doorway on the left side of the corridor.     

Figure 5.1: Typical Doorway Candidate Detection 

 

Figure 5.2: Detection of both double doorway and typical doorway 

 

The second group of analyzed images includes a section of corridor starting past the 

elevators, traveling through a darkened corridor region, traversing a corner and continuing 

 41



straight toward a difficult scene of a reflective glass wall with several rectangular supports of the 

same size and shape as the glass doorway in the wall.  The analysis of this sequence shows a 

total of 58 doorway candidates were detected, all doorways are detected as candidates with only 

two doorway candidates as false positives.  Figure 5.3 shows a doorway candidate detected on 

the right side of the corridor and the difficult glass scene in front.  The false positives detected in 

this sequence both derive from the same region in the scene depicted in Figure 5.4. 

 

Figure 5.3: Difficult glass scene ahead, successful detection on right 

 

 42



Figure 5.4: False Positive – rectangular region detected as doorway candidate 

 

The final group of images is based on a video sequence involving a continuation of the 

same difficult scene in sequence two, with the addition of a corner traversal.  After the corner 

traversal a short straight corridor stretch with a doorway on the left is navigated.  A second 

corner is traversed to a corridor with three elevators on the right and a doorway at the far end.  

The analysis of this sequence shows again that every doorway including the elevators was 

detected.  There were a total of 60 doorway candidates detected, and four false positives.  The 

difficult region involving reflective glass surfaces resulted in two additional false positives.  A 

bulletin board that was detected twice as a doorway candidate is indicated in Figure 5.5.   

 

 43



Figure 5.5: Two doorway candidates, bulletin board on right is a false positive 

 

 

The natural inclination would be to require the door jamb to extend a minimum distance 

to the floor.  However enforcing that requirement would also eliminate some of the robustness to 

partial obstructions of doorjambs, such as when a person is standing or walking thereby 

occluding the full length of the jamb.  Therefore we have found it more effective to accept 

occasional anomalies such as this in the candidate detection phase in order to capture doors in 

more difficult situations, and allow the doorway verification behavior to further filter the results.  

The region of the corridor containing elevators is shown in Figure 5.6.  The elevator is detected 

as a doorway candidate, note that this image was acquired during the turning of the corner, which 

typically results in more blurred images due to the extra motion.          

  

 44



Figure 5.6: Successful detection of elevator as doorway candidate 

      

 

5.2  Execution time and performance 

In the design phase we designated as a critical requirement that the system be able to 

operate in real time in a real world indoor environment.  The design and implementation of the 

software architecture demonstrably meets that goal.  On the host computer (a Dell Latitude 

D600, 1.8 GHz Pentium processor with 1 GB of RAM) the Door Candidate search is capable of 

processing images at an average rate of 49 ms.  The workstation where the software was 

designed and implemented, an Intel Pentium 4.3 GHz processor with 2 GB of RAM, is capable 

of processing images at an average rate of 33 ms.  The performance is more than capable of 

processing all of the images acquired at the current 15 frames per second, which should allow the 

future Doorway Verification behavior ample time to perform the subsequent operations, even at 

such a high frame rate.  

   

 45



 

 

CHAPTER 6 

CONCLUSION 

6.1  Summary 

 We have presented motivation for the creation of computer vision capabilities for a semi-

autonomous wheelchair and a description of the problem.  Background including prior work for 

both wheelchair systems utilizing computer vision as well as prior work in the field of detecting 

doorways was detailed.  A design was proposed for computer vision capabilities to augment the 

sensory system of a semi-autonomous wheelchair system in the process of development at the 

University of Georgia.  The implementation of a real-time software architecture has been 

described.  Results were presented which prove the design and software architecture are both 

suitable for real-time computer vision techniques, and show very good results for detecting 

candidate doorways.   

6.2  Future Work 

 Future work to be done on this project should include calibration of the laser range finder 

which involves a point-to-distance correspondence.  Further work could also be done to improve 

the robustness of the laser detection to various factors such as strong white light and reflective 

surfaces.  In terms of the overarching semi-autonomous wheelchair system, an integration of the 

various software modules should be undertaken to make the system work as a functioning whole.  

The designed communication protocols between microcontrollers and host computers will also 

need to be implemented to allow the achievement of high level semi-autonomous behavior.  In 

the realm of doorway detection there is a rich opportunity for gather further information from the 

 46



 47

region surrounding a doorway.   For example, after a doorway candidate has been detected and 

possibly verified, the region on either side of the door jamb could be searched for signs that 

indicate room numbers or other information.  By detecting appropriately sized rectilinear regions 

containing text, and performing optical character recognition, the information obtained could be 

used both to enhance the landmark itself – such as informing the user what floor the wheelchair 

is on, as well as valuable information such as an Emergency Exit sign.  Further work on the laser 

range finder will also allow future research to more accurately classify doorways by providing 

distance data, which can then be used to develop projective transformation to ensure the potential 

doorframe has all of the correct dimensional attributes.  The mobile computing platform with its 

wealth of sensing and actuator capabilities provides a very exciting platform for future research.  

Hopefully the platform will continue to be used for further research which will one day aid 

persons with multiple disabilities to live a richer and more autonomous life. 



 

 

REFERENCES 

 

Argyros, A., Georgiadis, P., Trahianas, P., Tsakiris, D. (2002) “Semi-autonomous 

navigation of a robotic wheelchair.” Journal of Intelligent and Robotic Systems 34: 315-

29. 

 

Borgolte, U., Hoyer, H., Buhler, C., Heck, H., Hoelper, R. (1998) "Architectural concepts 

of a semi-autonomous wheelchair." Journal of Intelligent and Robotic Systems, 22:233–

253. 

 

Brooks, R. A. (1986) "A robust layered control system for a Mobile Robot."  IEEE 

Journal of Robotics and Automation, RA-2(1): 14-23. 

 

Chmielewski L. (1995)  "A note on merging line segments with the search space reduced 

by a condition based on an ordering." Machine Graphics & Vision, 4(1-2):  29-38. 

 

Ciricelli, G., D'Orazio, T., and Distante, A. ( 2003) "Target recognition by components 

for mobile robot navigation."  Journal of Experimental and Theoretical Artificial 

Intelligence.  Vol. 15, No. 3, Jul-Sept, 15(3): 281-297  

 

Davies, E. R. (2004) "Machine Vision: Theory, Algorithms, Practicalities." Morgan 

Kaufmann Publishers Inc. 

 

 48



Foresti, G. L. (2000) "A Real-Time Hough-Based Method for Segment Detection in 

Complex Multisensor Images."  Real-Time Imaging, 6: 93-111. 

 

Gomi, T. and Griffith, A. (1998) "Developing intelligent wheelchairs for the 

handicapped." In Mittal et al. eds., Assistive technology and AI. LNAI-1458, Berlin: 

Springer-Verlag, 150-78. 

 

Hussien, B., Sridhar, B. (1993) "A robust line extraction and matching algorithm", SPIE 

Intelligent Robots and Computer Vision XII  2055: 369-380.  

 

Jain, R., Kasturi, R., and Schunck, B. G. (1995) Machine Vision. McGraw-Hill, Inc. 

 

 

Kim, D and Nevatia, R. (1998) "A method for recognition and localization of generic 

objects for indoor navigation." Image and Vision Computing, 16(11):729–743. 

 

Levine, S. P., Bell, D. A., Jaros, L. A., Simpson, R. C., Koren, Y., and Borenstein, J. 

(1999) "The NavChair Assistive Wheelchair Navigation System." IEEE Transactions on 

Rehabilitation Engineering, 7(4): 443-51. 

 

Manuel J., Tavares, R. S., and Padilha, A. J. "A new approach for merging edge line 

segments."  7th Portuguese Conference on Pattern Recognition. 1995. Aveiro, Portugal.  

 

Miller, D.P., and Slack, M. G. (1995)  "Design and testing of a low-cost robotic 

 49



wheelchair prototype."  Autonomous Robots, 2: 77-88. 

 

Monasterio, I., Lazkano, E., Rano, I., Sierra, B. (2002)  "Learning to traverse doors using 

visual information."  Mathematics and Computers in Simulation,  60: 347-356. 

 

 

Munoz-Salinas, R., Aguirre, E., Garcia-Silvente, M., Gonzalez, A. (2004)  "Door-

detection using computer vision and fuzzy logic."  World Scientific and Engineering 

Academy and Society, Transactions on Systems, 10(3): 3047-3052. 

 

Muñoz-Salinas, R.  Aguirre, E.  and García-Silvente, M. (2006)  "Detection of doors 

using a genetic visual fuzzy system for mobile robots."  Autonomous Robots, 21(2): 123-

141. 

 

Ono, Y., Uchiyama H., Potter W. (2004) "A Mobile Robot for Corridor Navigation: A 

Multi-Agent Approach." In the Proceedings of the 42nd Annual ACM Southeast 

Conference, pp. 379-384. 

 

Stoeter, S. A., Le Mauff, F., Papanikolopoulos, N. P. "Real-Time Door Detection in 

Cluttered Environments." Proceedings of the 2000 IEEE International Symposium on 

Intelligent Control. Rio Greece, July 2000. 

 

Snaith, M., Lee, D., Probert, P. (1998) "A low-cost system using sparse vision for 

navigation in the urban environment."  Image and Vision Computing 16: 225-233. 

 50



 51

 

Trahanias, P.E., Lourakis, M. I. A., Argyros, S. A., Orphanoudakis, S. C. (1997) 

"Navigational support for robotic wheelchair platforms: an approach that combines vision 

and range sensors." Proceedings of the 1997 IEEE International Conference on Robotics 

and Automation, Albuquerque, NM, 1265-70. 

 

Yanco, H. A., Hazel, A., Peacock, A., Smith, S., Wintermute, H. (1995) "Initial report on 

Wheelesley: a robotic wheelchair system." Proceedings of the Workshop on Developing 

AI Applications for the Disabled, held at the International Joint Conference on Artificial 

Intelligence, Montreal, Canada. 

http://www.cs.uml.edu/~holly/papers/ijcai95.pdf 

 

Uchiyama, H. (2008) “Perceptual and Navigational Behaviors for Motorized Wheelchair 

Operations.”  Master's Thesis, The University of Georgia. 

 

Van Veen, T.M. & Groen, F.C.A. (1981) "Discretization errors in the Hough transform."  

Pattern Recognition, 14: 137-145. 

 

Yanco, H. A. (2001) "Development and Testing of a Robotic Wheelchair System for 

Outdoor Navigation."  Proceedings of the 2001 Conference of the Rehabilitation 

Engineering and Assistive Technology Society of North America.  RESNA Press. 

 

http://www.cs.uml.edu/%7Eholly/papers/ijcai95.pdf


 

 

APPENDIX A 

SOURCE CODE FOR DOORWAY CANDIDATE DETECTOR 

#ifdef _CH_ 
#pragma package <opencv> 
#endif 
 
#ifndef _EiC 
#include <cv.h> 
#include <highgui.h> 
#include <stdio.h> 
#include <math.h> 
#include <string.h> 
#include <time.h> 
#endif 
 
CvMemStorage* storage = 0; 
 
typedef struct Door 
{ 
    CvPoint* lintel, *leftJamb, *rightJamb;     
} 
Door; 
 
//IMAGES 
IplImage* img = 0; 
IplImage* horz_edges = 0; 
IplImage* vert_edges = 0; 
IplImage* vert_edges_16S = 0; 
IplImage* coloredLines1 = 0; 
IplImage* coloredLines2 = 0; 
IplImage* display = 0; 
 
//COLORS 
const CvScalar RED = CV_RGB(255,0,0); 
const CvScalar GREEN = CV_RGB(0,255,0); 
const CvScalar BLUE = CV_RGB(0,0,255); 
const CvScalar YELLOW = CV_RGB(255,255,0); 
const CvScalar ORANGE = CV_RGB(255,100,0); 
const CvScalar WHITE = CV_RGB(255,255,255); 
 

 52



//array of colors used for display 
CvScalar myColors[] = {RED,GREEN,BLUE,YELLOW,ORANGE}; 
const int NUM_COLORS = 5; 
CvScalar color; 
 
char* myVid = "/home/tarver/Videos/Thesis Videos/Video 36.wmv"; 
char* picsDir = "/home/tarver/Documents/Results Analysis/batch3/"; 
const char* ext = ".jpg"; 
int fileCount = 0; 
int frameCount = 0; 
const int nFrames = 5; 
char fileName[50]; 
 
bool SAVE_FILES = false; 
bool stop = true; 
CvFont font; 
 
//Vertical Lines 
const int v_thresh = 32; 
const int minVotes = 40; 
const int minLineLength = 40; 
const int maxLineGap = 4; 
const int degree = 1; 
const int VERT_ENOUGH = 4; 
const int CORNER_DISTANCE = 13;//11; 
double theta = degree * CV_PI/180; 
 
//Horizontal Lines 
const int h_thresh = 32; 
const int h_minVotes = 10;//12 
const int h_minLineLength = 15;//20 
const int h_maxLineGap = 5;  
double h_theta = degree * CV_PI/180; 
//how much y difference is allowed to still be considered horizontal  
const float HORZ_ENOUGH = 0.75; 
 
//Misc stuctures/vars for lines 
CvSeq* v_lines = 0; 
CvSeq* h_lines = 0; 
CvSeq* candidate_lines = 0; 
CvPoint* line; 
const int BOT = 0; 
const int TOP = 1; 
int lowestTop = -1; 
const int MIN_VLINE_TOP = 85; 
 

 53



//DOORS 
const int LEFT = 0; 
const int RIGHT = 1; 
const int LINTEL = 2; 
const int JAMB_DISTANCE = 12;//15 //jambs must be this many pixels apart 
CvSeq* allDoors; 
  
//Program control vars 
int waitTime = 100; 
int up = 30; 
int down = -30; 
 
/* Sort vertical lines in left-to-right order */ 
static int v_leftToRightSort( const void* _a, const void* _b, void* userdata ) 
{   
    CvPoint* line1 = (CvPoint*)_a; 
    CvPoint* line2 = (CvPoint*)_b;     
    return line1[TOP].x - line2[TOP].x;         
} 
/* Sort horizontal lines in left-to-right order */ 
static int h_leftToRightSort( const void* _a, const void* _b, void* userdata ) 
{   
    CvPoint* line1 = (CvPoint*)_a; 
    CvPoint* line2 = (CvPoint*)_b;     
    return line1[LEFT].x - line2[LEFT].x;         
} 
/* Sort lines in top-to-bottom and l-to-r order */ 
static int topToBottomSort( const void* _a, const void* _b, void* userdata ) 
{   
    CvPoint* line1 = (CvPoint*)_a; 
    CvPoint* line2 = (CvPoint*)_b;     
     
    int y_diff = line1[LEFT].y - line2[LEFT].y; 
    int x_diff = line1[LEFT].x - line2[LEFT].x; 
    return y_diff ? y_diff : x_diff;   
} 
/* convert integer to character */ 
char* itoa(int val, int base){  
 static char buf[32] = {0};  
 int i = 30;  
 for(; val && i ; --i, val /= base)  
  buf[i] = "0123456789abcdef"[val % base];  
 return &buf[i+1];  
} 
double getEuclidDistance(CvPoint pt1, CvPoint pt2) 
{ 

 54



 double x_diff, y_diff; 
 x_diff = pt1.x - pt2.x; 
 y_diff = pt1.y - pt2.y;  
 return sqrt( (x_diff*x_diff)+(y_diff*y_diff) ); 
} 
bool closeEnough(CvPoint pt1, CvPoint pt2) 
{ 
 return (getEuclidDistance(pt1,pt2) < CORNER_DISTANCE);  
} 
float getHorizontalSlope(CvPoint* inLine) 
{ 
 //first get the x diff 
 float slope = abs(inLine[LEFT].x - inLine[RIGHT].x); 
  
 //computers hate infinity...to avoid extremely high slopes (vert lines) 
 //cheat - extreme slopes will have a small x diff 
 if( slope <= 2 )   
  return 1000; 
  
 //otherwise return (y2-y1)/(x2-x1) 
 else 
  return abs(inLine[LEFT].y - inLine[RIGHT].y)/slope; 
} 
 
//paint doors in final image 
void drawDoors() 
{   
 coloredLines2 = cvCreateImage(cvGetSize(vert_edges),8,3); 
 cvCvtColor(vert_edges,coloredLines2,CV_GRAY2BGR); 
  
 CvPoint* PointArray = (CvPoint*)malloc( 4*sizeof(CvPoint) ); 
 Door* tmp; 
  
 int i; 
  
 if(!allDoors) 
  return; 
  
 //for each door extract the 4 points, draw from top two to lowest of bottom 2  
 for(i=0; i < allDoors->total; i++) 
 {   
  tmp = (Door*)cvGetSeqElem(allDoors,i); 
  PointArray[0] = (tmp->leftJamb[BOT]); 
  PointArray[1] = (tmp->leftJamb[TOP]); 
  PointArray[2] = (tmp->rightJamb[TOP]); 
  PointArray[3] = (tmp->rightJamb[BOT]); 

 55



   
  if(PointArray[0].y > PointArray[3].y) 
   PointArray[3].y = PointArray[0].y; 
  else 
   PointArray[0].y = PointArray[3].y; 
   
  cvFillConvexPoly(coloredLines2,PointArray,4,RED,8,0);   
 } 
} 
 
//match jambs to lintel 
void matchEm() 
{ 
 //if there are no lintels or less than 2 jambs a doorway is not possible 
 if(h_lines->total == 0 || v_lines->total < 2) 
  return; 
   
 //sort left to right  
 cvSeqSort(h_lines,h_leftToRightSort,0); 
   
 CvPoint* lintel,*leftLine,*rightLine; 
 int i,j,k,leftIndex = 0;  
   
 Door *possible_door = new Door; 
  
 storage = cvCreateMemStorage(0); 
 allDoors = cvCreateSeq(CV_SEQ_ELTYPE_GENERIC, sizeof(CvSeq), sizeof(Door) , 
storage); 
 cvFree(&storage); 
  
  
 for( i = 0; i < h_lines->total; i++ ) 
 {   
  lintel = (CvPoint*)cvGetSeqElem(h_lines,i); 
   
  for(j = leftIndex; j < v_lines->total; j++) 
  { 
   leftLine = (CvPoint*)cvGetSeqElem(v_lines,j); 
    
   if( closeEnough(leftLine[TOP],lintel[LEFT]) )  
   { 
    //check the other lines and try to find a match 
    for(k = j+1; k < v_lines->total; k++) 
    { 
     rightLine = (CvPoint*)cvGetSeqElem(v_lines,k); 
      

 56



     if( closeEnough(rightLine[TOP],lintel[RIGHT]) ) 
     { 
      //ensure the two vertical lines are far enough apart 
      if(abs(leftLine[TOP].x - rightLine[TOP].x) > 
JAMB_DISTANCE) 
      { 
       //match 
       possible_door->leftJamb = leftLine; 
       possible_door->rightJamb = rightLine; 
       possible_door->lintel = lintel;   
    
       cvSeqPush(allDoors, possible_door); 
       break; 
      } 
     } 
     //vertical lines are all to the right of the lintel 
     else if( lintel[RIGHT].x < rightLine[TOP].x) 
      break; 
    } 
     
    //this lintel has no right match or is matched already 
    break; 
   } 
   //stop searching this vertical line and those to the left 
   else if( leftLine[TOP].x < lintel[LEFT].x ) 
    leftIndex++;    
   else 
    break;    
  }   
 }  
} 
 
void detectHorizontalLines() 
{  
 //ignore horizontal lines below a minimum height 
 int i_height = MIN_VLINE_TOP; 
  
 //or top of lowest line, whichever makes the smallest area to search 
 if( i_height > lowestTop && lowestTop > 0) 
  i_height = lowestTop; 
  
 //set region of interest for search 
 cvSetImageROI(horz_edges,cvRect(0,0,horz_edges->width,i_height)); 
  
 storage = cvCreateMemStorage(0); 

 57



 candidate_lines = cvHoughLines2(horz_edges, storage, 
CV_HOUGH_PROBABILISTIC, 1, h_theta, h_minVotes, h_minLineLength, h_maxLineGap); 
 cvFree(&storage); 
   
 CvPoint tLine; 
 int i = 0; 
  
 //remove lines that are too vertical 
 for(;i<candidate_lines->total;i++) 
 { 
  line = (CvPoint*)cvGetSeqElem(candidate_lines,i); 
   
  //if not sufficiently horizontal 
  if( getHorizontalSlope(line) > HORZ_ENOUGH) 
  { 
   cvSeqRemove(candidate_lines,i); 
   i--; 
  } 
 } 
  
 //make sure left point is westernmost  
 for(i = 0; i < candidate_lines->total; i++) 
 { 
  line = (CvPoint*)cvGetSeqElem(candidate_lines,i);  
   
  if(line[LEFT].x > line[RIGHT].x) 
  { 
   tLine = line[LEFT]; 
   line[LEFT] = line[RIGHT]; 
   line[RIGHT] = tLine; 
  } 
 }  
} 
 
void detectVerticalLines() 
{  
 storage = cvCreateMemStorage(0);  
 v_lines = cvHoughLines2(vert_edges, storage, CV_HOUGH_PROBABILISTIC, 1, 
theta, minVotes, minLineLength, maxLineGap); 
 cvFree(&storage); 
  
 int i; 
 CvPoint top,bot; 
  
 //remove non-vertical lines 
 //make the bottom point the 0th element (swap top and bot if needed) 

 58



 for(i = 0; i < v_lines->total; i++) 
 { 
  line = (CvPoint*)cvGetSeqElem(v_lines,i);   
  bot = line[0]; 
  top = line[1];   
   
  //if top and bottom aren't within D pixels of same column 
  if( abs(top.x - bot.x) > VERT_ENOUGH ) 
  { 
   cvSeqRemove(v_lines,i); 
   i--; 
  }  
  //otherwise flip top and bottom if necessary 
  else 
  { 
   if(top.y > bot.y) 
   { 
    line[0] = top; 
    line[1] = bot; 
   }      
  }    
 } 
} 
 
//only merging subset - the sufficiently horizontal ones 
void mergeHorizontalLines() 
{     
 //if less than 2 lines don't attempt to merge, just copy candidates into h_lines 
 if(candidate_lines->total < 2) 
 { 
  storage = cvCreateMemStorage(0);  
  h_lines = cvCloneSeq(candidate_lines,storage); 
  cvFree(&storage); 
  return; 
 } 
   
 storage = cvCreateMemStorage(0);  
 h_lines = cvCloneSeq(candidate_lines,storage); 
 cvFree(&storage); 
  
 int i = 0; 
  
 //sort horizontal lines from top to bottome 
 cvSeqSort(h_lines, topToBottomSort, 0);  
  
 int HGAP = 5; 

 59



 int VGAP = 4; 
  
 CvPoint* curLine,*prevLine; 
  
 for( i = 1; i < h_lines->total; i++) 
 { 
  //get the first line 
  prevLine = (CvPoint*)cvGetSeqElem(h_lines,i-1); 
  curLine = (CvPoint*)cvGetSeqElem(h_lines,i);   
     
  //same group 
  //TODO consider:  might want to user center Y for each...or slopes 
  if( abs(curLine[LEFT].y - prevLine[LEFT].y) <= VGAP ) 
  { 
   //top line is rightmost 
   //A 
   if(prevLine[RIGHT].x > curLine[RIGHT].x) 
   { 
    //A1 
    //top line dominates bottom 
    if( curLine[LEFT].x >= prevLine[LEFT].x ) 
    { 
     cvSeqRemove(h_lines,i); 
     i--; 
    } 
    //A2 
    //merge lines 
    else if( (prevLine[LEFT].x - curLine[RIGHT].x) <= HGAP ) 
    { 
     prevLine[LEFT].x = curLine[LEFT].x; 
     //maybe undo y's? 
     prevLine[LEFT].y = curLine[LEFT].y; 
     cvSeqRemove(h_lines,i); 
     i--; 
    } 
   } 
   //rightmost points are equal 
   else if(prevLine[RIGHT].x == curLine[RIGHT].x) 
   { 
    //bottom line dominates 
    if( prevLine[LEFT].x > curLine[LEFT].x ) 
    { 
     //delete top line 
     cvSeqRemove(h_lines,i-1); 
      
     //set previous to current 

 60



     prevLine = curLine; 
     i--; 
    } 
    //top line dominates 
    else 
    { 
     //remove current line 
     cvSeqRemove(h_lines,i); 
     i--; 
    } 
   }   
   //bottom line is rightmost 
   //C 
   else  
   {     
    //C1 
    //if bottom line dominates 
    if(prevLine[LEFT].x >= curLine[LEFT].x) 
    { 
     cvSeqRemove(h_lines,i-1); 
     prevLine = curLine; 
     i--; 
    } 
    //C2 
    //if close enough to merge 
    else if( curLine[LEFT].x - prevLine[RIGHT].x <= HGAP ) 
    { 
     curLine[LEFT].x = prevLine[LEFT].x; 
     curLine[LEFT].y = prevLine[LEFT].y; 
     cvSeqRemove(h_lines,i-1); 
     prevLine = curLine; 
     i--; 
    } 
   } 
  } 
 }//done looping   
} 
 
void mergeVerticalLines() 
{   
 //do nothing if there are less than 2 lines 
 if(v_lines->total < 2) 
  return; 
  
 lowestTop = -1; 
  

 61



 //sort lines from left to right  
 cvSeqSort(v_lines, v_leftToRightSort, 0);  
  
 CvPoint* curLine; 
 CvPoint* prevLine; 
   
 int i = 1;  
 int HGAP = 2; 
 int VGAP = 7; 
   
 for( i = 1; i < v_lines->total; i++) 
 { 
  //get the first line 
  prevLine = (CvPoint*)cvGetSeqElem(v_lines,i-1); 
  curLine = (CvPoint*)cvGetSeqElem(v_lines,i);   
   
  //same group 
  if( abs(curLine[TOP].x - prevLine[TOP].x) <= HGAP ) 
  { 
   //left line is higher 
   if(prevLine[TOP].y < curLine[TOP].y) 
   { 
    //left line dominates right 
    if( curLine[BOT].y <= prevLine[BOT].y ) 
    { 
     //TODO - don't absorb if right has neighbors? 
     cvSeqRemove(v_lines,i); 
     i--; 
    } 
    //merge lines 
    else if( curLine[TOP].y - prevLine[BOT].y <= VGAP ) 
    { 
     prevLine[BOT].y = curLine[BOT].y; 
     //maybe do x's? 
     cvSeqRemove(v_lines,i); 
     i--; 
    }         
   } 
   //tops are equal 
   else if(prevLine[TOP].y == curLine[TOP].y) 
   { 
    //right line dominates 
    if( prevLine[BOT].y < curLine[BOT].y ) 
    { 
     //delete left line 
     cvSeqRemove(v_lines,i-1); 

 62



     
     //set previous to current 
     prevLine = curLine; 
     i--; 
    } 
    //left line dominates 
    else 
    { 
     //remove current line 
     //TODO - check for neighbors? 
     cvSeqRemove(v_lines,i); 
     i--; 
    } 
   } 
   //right line is higher 
   else  
   {     
    //if right line dominates 
    if(prevLine[BOT].y <= curLine[BOT].y) 
    { 
     cvSeqRemove(v_lines,i-1); 
     prevLine = curLine; 
     i--; 
    } 
    //if close enough to merge 
    else if( prevLine[TOP].y - curLine[BOT].y <= VGAP ) 
    { 
     curLine[BOT].y = prevLine[BOT].y; 
     cvSeqRemove(v_lines,i-1); 
     prevLine = curLine; 
     i--; 
    } 
   }    
  }   
 }//end for loop  
  
 //do a final check of the merged lines 
 for( i = 0; i < v_lines->total; i++) 
 { 
  curLine = (CvPoint*)cvGetSeqElem(v_lines,i); 
   
  //remove those whose tops are too low for doorways 
  if(curLine[TOP].y > MIN_VLINE_TOP) 
  { 
   cvSeqRemove(v_lines,i); 
   i--; 

 63



  } 
  //update the lowest top for ROI of horizontalSearch 
  else if(curLine[TOP].y > lowestTop) 
   lowestTop = line[TOP].y; 
 } 
} 
 
//draw detected vertical lines in green in the image coloredLines1 
void drawVerticalLines() 
{ 
 coloredLines1 = cvCreateImage(cvGetSize(vert_edges),8,3); 
 cvCvtColor(vert_edges,coloredLines1,CV_GRAY2BGR); 
 int i; 
  
 for(i = 0; i < v_lines->total; i++) 
 { 
  line = (CvPoint*)cvGetSeqElem(v_lines,i); 
  //draw it 
  cvLine(coloredLines1, cvPoint(line[0].x,line[0].y), cvPoint(line[1].x,line[1].y), 
GREEN, 1,CV_AA, 0);  
 } 
 cvPutText( coloredLines1, itoa(v_lines->total,10), cvPoint(260,200), &font, GREEN); 
  
} 
 
//draw detected horizontal lines in blue in the image coloredLines1 
void drawHorizontalLines() 
{ 
 //draw merged lines in image  
 if(!coloredLines1) 
 { 
  //reset ROI, was set previously to top 2/3rds of image 
  cvResetImageROI(horz_edges); 
   
  //create new cute little color image 
  coloredLines1 = cvCreateImage(cvGetSize(horz_edges),8,3); 
  cvCvtColor(horz_edges,coloredLines1,CV_GRAY2BGR); 
 } 
 
 int i; 
 //draw merged lines 
 for(i = 0; i < h_lines->total; i++) 
 { 
  line = (CvPoint*)cvGetSeqElem(h_lines,i); 
  //draw it 

 64



  cvLine(coloredLines1, cvPoint(line[0].x,line[0].y), cvPoint(line[1].x,line[1].y), 
BLUE, 1,CV_AA, 0); 
 } 
  
 //write number of lines found in bottom right corner 
 cvPutText( coloredLines1, itoa(h_lines->total,10), cvPoint(260,230), &font, BLUE); 
} 
 
//initialize edge images 
void initEdgeImages() 
{ 
 //create greyscale image from original 
    IplImage* grey = cvCreateImage( cvGetSize(img), 8, 1 ); 
    cvCvtColor(img,grey,CV_BGR2GRAY);  
      
    //create 1/2 sized image for edge detection 
    horz_edges = cvCreateImage( cvSize(grey->width/2, grey->height/2), 8, 1 ); 
     
    //downsample greyscale image 
    cvPyrDown(grey, horz_edges, IPL_GAUSSIAN_5x5);   
     
    //make a second image for vertical edges 
    vert_edges_16S = cvCreateImage(cvSize(horz_edges->width, horz_edges-
>height),IPL_DEPTH_16S,1); 
     
    vert_edges = cvCloneImage(horz_edges); 
             
    cvReleaseImage(&grey); 
} 
 
//prepare image for display 
void makeDisplayImage() 
{ 
 //make display image, big enough for original plus 1/2 size width 
 display = cvCreateImage(cvSize(640+320,480), IPL_DEPTH_8U, 3 ); 
  
 //set roi and copy original to top left 
 cvSetImageROI(display,cvRect(0,0,640,480)); 
 cvCopy(img,display); 
  
 //set roi for upper right corner 
 cvSetImageROI(display,cvRect(640,0,320,240)); 
  
 IplImage* tmpEdges = 0; 
  
 if(coloredLines1) 

 65



  cvCopy(coloredLines1,display); 
 else 
 {   
  //make a temporary color image for edges  
  tmpEdges = cvCreateImage(cvGetSize(vert_edges),8,3); 
   
  //copy vertical edges into temp 
  cvCvtColor(vert_edges,tmpEdges,CV_GRAY2RGB);   
  
  cvCopy(tmpEdges,display); 
 } 
  
 //set roi and copy coloredLines1 (currently merged horizontal lines) 
 cvSetImageROI(display,cvRect(640,240,320,240)); 
  
 if(coloredLines2) 
  cvCopy(coloredLines2,display); 
 else 
 { 
  //make a temporary color image for edges  
  tmpEdges = cvCreateImage(cvGetSize(vert_edges),8,3); 
   
  //copy vertical edges into temp 
  cvCvtColor(vert_edges,tmpEdges,CV_GRAY2RGB); 
  cvCopy(tmpEdges,display); 
 } 
   
 cvResetImageROI(display); 
  
 cvLine(display,cvPoint(640,0),cvPoint(640,480),RED,1,8); 
 cvLine(display,cvPoint(640,240),cvPoint(640+320,240),RED,1,8);  
  
 if(tmpEdges) 
  cvReleaseImage(&tmpEdges); 
} 
 
//show image on screen 
void showImage(char* name, IplImage* inImg ) 
{ 
 if(inImg) 
 { 
  IplImage* copy = cvCloneImage(inImg); 
  cvShowImage(name, copy); 
  cvReleaseImage(&copy); 
 } 
} 

 66



 
void detectVerticalEdges() 
{  
 //laplace to detect vert edges 
 cvLaplace(horz_edges,vert_edges_16S,3);  
 //scale back down 
 cvConvertScale(vert_edges_16S, vert_edges,1,0); 
 cvReleaseImage(&vert_edges_16S); 
   
 //threshold to remove weak edge points 
 cvThreshold(vert_edges,vert_edges,v_thresh,255,CV_THRESH_TOZERO); 
} 
 
void detectHorizontalEdges() 
{  
 //2nd order sobel for horz lines 
 cvSobel(horz_edges,horz_edges,0,2,3); 
  
 //threshold to remove weak edge points 
 cvThreshold(horz_edges,horz_edges,h_thresh,255,CV_THRESH_TOZERO); 
} 
 
 
void setupWindows() 
{ 
 // create window 
 cvNamedWindow( "Door Detection", 1 );  
 //place it   
 cvMoveWindow("Door Detection",0,0); 
} 
 
void adjustSpeed(int num) 
{ 
 if ( waitTime + num > 0 ) 
  waitTime += num; 
 else 
  waitTime = 1; 
} 
 
void initialize() 
{ 
    cvInitFont( &font, CV_FONT_HERSHEY_SIMPLEX, 1,1,0,2,CV_AA);    
} 
 
int main( int argc, char** argv ) 
{ 

 67



 //double time_sum = 0.0; 
  
 initialize(); 
 setupWindows();  
  
 //VIDEO 
 CvCapture* capture = 0; 
  
 char* filename = argc == 2 ? argv[1] : myVid; 
 capture = cvCaptureFromAVI( filename ); 
 //capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 ); 
    
 if( !capture ) 
    { 
        fprintf(stderr,"Could not initialize capturing...\n"); 
        return -1; 
    } 
 
    //live video 
    cvSetCaptureProperty(capture,CV_CAP_PROP_FRAME_WIDTH, 640); 
    cvSetCaptureProperty(capture,CV_CAP_PROP_FRAME_HEIGHT, 480); 
      
    char keyPressed; 
     
    //VIDEO LOOP 
    for(;;) 
    { 
     //clock_t start = clock(); 
      
     img = cvQueryFrame(capture);      
      
     if(!img) 
      break; 
           
     initEdgeImages();      
     detectVerticalEdges(); 
  detectVerticalLines(); 
  mergeVerticalLines();   
   
  drawVerticalLines(); 
   
  if(v_lines->total >= 2 ) 
  { 
   detectHorizontalEdges(); 
   detectHorizontalLines(); 
   mergeHorizontalLines(); 

 68



   drawHorizontalLines(); 
   matchEm();  
   drawDoors(); 
    
    
  } 
  //time_sum += ((double)clock() - start) / CLOCKS_PER_SEC; 
   
  //printf("Time elapsed: %f\n", ((double)clock() - start) / CLOCKS_PER_SEC); 
   
  makeDisplayImage();   
  showImage("Door Detection",display); 
   
  frameCount++;   
    
  char* tmp; 
   
  if(fileCount < 10) 
   tmp = "000"; 
  else if(fileCount < 100) 
   tmp = "00"; 
  else if(fileCount < 1000) 
   tmp = "0"; 
  else 
   tmp = ""; 
    
    
  if( SAVE_FILES && frameCount % nFrames == 0 ) 
  { 
   sprintf(fileName,"%s%s%d%s",picsDir,tmp,fileCount,ext);  
   cvSaveImage(fileName,display);   
   fileCount++; 
  } 
   
  //clean up structures in memory     
  cvClearSeq(allDoors); 
  cvClearSeq(candidate_lines); 
  cvClearSeq(v_lines); 
  cvClearSeq(h_lines); 
   
  //interactive program control 
  if(stop) 
  { 
   keyPressed = cvWaitKey(1000000); 
    
   if(keyPressed != -1) 

 69



   { 
    if(keyPressed == 'q') 
     break;     
    //- 
    else if(keyPressed == -85) 
     adjustSpeed(down); 
    //+ 
    else if(keyPressed == -83) 
     adjustSpeed(up); 
    else if(keyPressed == '.') 
     {;} 
    else if(keyPressed == 'g' ) 
    { 
     sprintf(fileName,"%s%s%d%s",picsDir,tmp,fileCount,ext); 
   
     cvSaveImage(fileName,display);   
     fileCount++; 
    } 
    else if(keyPressed == 's' ) 
    { 
     SAVE_FILES = true; 
    } 
    else if(keyPressed == 'e' ) 
    { 
     SAVE_FILES = false; 
    } 
    else  
     stop = false; 
   } 
  } 
  else 
  { 
   keyPressed = cvWaitKey(waitTime);   
    
   if(keyPressed != -1) 
   { 
    if(keyPressed == 'q' ) 
     break; 
    else if(keyPressed == -85) 
     adjustSpeed(down); 
    else if(keyPressed == -83) 
     adjustSpeed(up); 
      
    else if(keyPressed == 'g' ) 
    { 

 70



     sprintf(fileName,"%s%s%d%s",picsDir,tmp,fileCount,ext); 
   
     cvSaveImage(fileName,display);   
     fileCount++; 
    } 
    else if(keyPressed == 's' ) 
    { 
     SAVE_FILES = true; 
    } 
    else if(keyPressed == 'e' ) 
    { 
     SAVE_FILES = false; 
    } 
    else  
     stop = true; 
   } 
  } 
     
  //release all images 
  cvReleaseImage( &horz_edges ); 
  cvReleaseImage( &vert_edges ); 
  cvReleaseImage( &coloredLines1 ); 
  cvReleaseImage( &coloredLines2 ); 
  cvReleaseImage( &display );  
    } 
     
    //printf("Avg time: %f\n",time_sum/frameCount); 
     
    //VIDEO CLEANUP 
    cvReleaseCapture( &capture );     
    cvDestroyAllWindows(); 
     
    // release both images 
 cvReleaseImage( &horz_edges ); 
 cvReleaseImage( &vert_edges ); 
 cvReleaseImage( &coloredLines1 ); 
 cvReleaseImage( &coloredLines2 ); 
 cvReleaseImage( &display ); 
  
    return 0; 
} 
 
 
#ifdef _EiC 
main(1,"DoorDetector.c"); 
#endif 

 71



 72

 



 

 

APPENDIX B 

OPENCV FUNCTION REFERENCE 

PyrDown 
Downsamples image 
void cvPyrDown( const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5 ); 

src 
The source image.  

dst 
The destination image, should have 2x smaller width and height than the source.  

filter 
Type of the filter used for convolution; only CV_GAUSSIAN_5x5 is currently supported.  

The function cvPyrDown performs downsampling step of Gaussian pyramid decomposition. 
First it convolves source image with the specified filter and then downsamples the image by 
rejecting even rows and columns. 

 

CvtColor 
Converts image from one color space to another 
void cvCvtColor( const CvArr* src, CvArr* dst, int code ); 

src 
The source 8-bit (8u), 16-bit (16u) or single-precision floating-point (32f) image.  

dst 
The destination image of the same data type as the source one. The number of channels 
may be different.  

code 
Color conversion operation that can be specifed using 
CV_<src_color_space>2<dst_color_space> constants (see below).  

The function cvCvtColor converts input image from one color space to another. The function 
ignores colorModel and channelSeq fields of IplImage header, so the source image 
color space should be specified correctly (including order of the channels in case of RGB space, 
e.g. BGR means 24-bit format with B0 G0 R0 B1 G1 R1 ... layout, whereas RGB means 24-bit 
format with R0 G0 B0 R1 G1 B1 ... layout). 

 73



Sobel 
Calculates first, second, third or mixed image derivatives using extended Sobel operator 
void cvSobel( const CvArr* src, CvArr* dst, int xorder, int yorder, int 
aperture_size=3 ); 

src 
Source image.  

dst 
Destination image.  

xorder 
Order of the derivative x .  

yorder 
Order of the derivative y .  

aperture_size 
Size of the extended Sobel kernel, must be 1, 3, 5 or 7. In all cases except 1, aperture_size 
×aperture_size separable kernel will be used to calculate the derivative. For 
aperture_size=1 3x1 or 1x3 kernel is used (Gaussian smoothing is not done). There is 
also special value CV_SCHARR (=-1) that corresponds to 3x3 Scharr filter that may give 
more accurate results than 3x3 Sobel. Scharr aperture is:  

| -3 0  3| 
|-10 0 10| 
| -3 0  3| 

for x-derivative or transposed for y-derivative.  

The function cvSobel calculates the image derivative by convolving the image with the 
appropriate kernel: 
dst(x,y) = dxorder+yodersrc/dxxorder•dyyorder |(x,y) 

The Sobel operators combine Gaussian smoothing and differentiation so the result is more or less 
robust to the noise. Most often, the function is called with (xorder=1, yorder=0, aperture_size=3) 
or (xorder=0, yorder=1, aperture_size=3) to calculate first x- or y- image derivative. The first 
case corresponds to  
  |-1  0  1| 
  |-2  0  2| 
  |-1  0  1| 

kernel and the second one corresponds to 
  |-1 -2 -1| 
  | 0  0  0| 
  | 1  2  1| 
or 
  | 1  2  1| 
  | 0  0  0| 
  |-1 -2 -1| 

 74



kernel, depending on the image origin (origin field of IplImage structure). No scaling is 
done, so the destination image usually has larger by absolute value numbers than the source 
image. To avoid overflow, the function requires 16-bit destination image if the source image is 8-
bit. The result can be converted back to 8-bit using cvConvertScale or cvConvertScaleAbs 
functions. Besides 8-bit images the function can process 32-bit floating-point images. Both 
source and destination must be single-channel images of equal size or ROI size. 

 

Laplace 
Calculates Laplacian of the image 
void cvLaplace( const CvArr* src, CvArr* dst, int aperture_size=3 ); 

src 
Source image.  

dst 
Destination image.  

aperture_size 
Aperture size (it has the same meaning as in cvSobel).  

The function cvLaplace calculates Laplacian of the source image by summing second x- and 
y- derivatives calculated using Sobel operator: 
dst(x,y) = d2src/dx2 + d2src/dy2 

Specifying aperture_size=1 gives the fastest variant that is equal to convolving the image 
with the following kernel: 
|0  1  0| 
|1 -4  1| 
|0  1  0| 

Similar to cvSobel function, no scaling is done and the same combinations of input and output 
formats are supported.  

 

HoughLines2 
Finds lines in binary image using Hough transform 
CvSeq* cvHoughLines2( CvArr* image, void* line_storage, int method, 
                      double rho, double theta, int threshold, 
                      double param1=0, double param2=0 ); 

image 
The input 8-bit single-channel binary image. In case of probabilistic method the image is 
modified by the function.  

line_storage 
The storage for the lines detected. It can be a memory storage (in this case a sequence of 

 75



lines is created in the storage and returned by the function) or single row/single column 
matrix (CvMat*) of a particular type (see below) to which the lines' parameters are written. 
The matrix header is modified by the function so its cols or rows will contain a number 
of lines detected. If line_storage is a matrix and the actual number of lines exceeds 
the matrix size, the maximum possible number of lines is returned (in case of standard 
hough transform the lines are sorted by the accumulator value).  

method 
The Hough transform variant, one of: 

• CV_HOUGH_STANDARD - classical or standard Hough transform. Every line is 
represented by two floating-point numbers (ρ, θ), where ρ is a distance between 
(0,0) point and the line, and θ is the angle between x-axis and the normal to the line. 
Thus, the matrix must be (the created sequence will be) of CV_32FC2 type.  

• CV_HOUGH_PROBABILISTIC - probabilistic Hough transform (more efficient in 
case if picture contains a few long linear segments). It returns line segments rather 
than the whole lines. Every segment is represented by starting and ending points, 
and the matrix must be (the created sequence will be) of CV_32SC4 type.  

• CV_HOUGH_MULTI_SCALE - multi-scale variant of classical Hough transform. 
The lines are encoded the same way as in CV_HOUGH_STANDARD.  

rho 
Distance resolution in pixel-related units.  

theta 
Angle resolution measured in radians.  

threshold 
Threshold parameter. A line is returned by the function if the corresponding accumulator 
value is greater than threshold.  

param1 
The first method-dependent parameter: 

• For classical Hough transform it is not used (0).  
• For probabilistic Hough transform it is the minimum line length.  
• For multi-scale Hough transform it is divisor for distance resolution rho. (The 

coarse distance resolution will be rho and the accurate resolution will be (rho / 
param1)).  

param2 
The second method-dependent parameter: 

• For classical Hough transform it is not used (0).  
• For probabilistic Hough transform it is the maximum gap between line segments 

lieing on the same line to treat them as the single line segment (i.e. to join them).  
• For multi-scale Hough transform it is divisor for angle resolution theta. (The 

coarse angle resolution will be theta and the accurate resolution will be (theta / 
param2)).  

The function cvHoughLines2 implements a few variants of Hough transform for line 
detection. 

 

 76



Threshold 
Applies fixed-level threshold to array elements 
void cvThreshold( const CvArr* src, CvArr* dst, double threshold, 
                  double max_value, int threshold_type ); 

src 
Source array (single-channel, 8-bit of 32-bit floating point).  

dst 
Destination array; must be either the same type as src or 8-bit.  

threshold 
Threshold value.  

max_value 
Maximum value to use with CV_THRESH_BINARY and CV_THRESH_BINARY_INV 
thresholding types.  

threshold_type 
Thresholding type (see the discussion)  

The function cvThreshold applies fixed-level thresholding to single-channel array. The 
function is typically used to get bi-level (binary) image out of grayscale image (cvCmpS could 
be also used for this purpose) or for removing a noise, i.e. filtering out pixels with too small or 
too large values. There are several types of thresholding the function supports that are 
determined by threshold_type: 
threshold_type=CV_THRESH_BINARY: 
dst(x,y) = max_value, if src(x,y)>threshold 
           0, otherwise 
 
threshold_type=CV_THRESH_BINARY_INV: 
dst(x,y) = 0, if src(x,y)>threshold 
           max_value, otherwise 
 
threshold_type=CV_THRESH_TRUNC: 
dst(x,y) = threshold, if src(x,y)>threshold 
           src(x,y), otherwise 
 
threshold_type=CV_THRESH_TOZERO: 
dst(x,y) = src(x,y), if src(x,y)>threshold 
           0, otherwise 
 
threshold_type=CV_THRESH_TOZERO_INV: 
dst(x,y) = 0, if src(x,y)>threshold 
           src(x,y), otherwise 

And this is the visual description of thresholding types: 

 77



 
 
 

 78


	FrontMatter
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Chapter6
	Thesis References
	Appendix_A
	Appendix_B
	PyrDown
	CvtColor
	Sobel
	Laplace
	HoughLines2
	Threshold


