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ABSTRACT

Zero-shot learning aims to classify input data into categories with zero training examples. The

classification is performed by inferring unseen categories using visual data of seen categories and

their relationships with unseen categories. Relationships are determined by using auxiliary data

pertaining to categories such as attributes and semantics. Standard zero-shot learning techniques

use a large number of seen categories to predict very few unseen categories while maintaining

unified data splits and evaluation metrics. This has enabled the research community to advance

notably towards formulating a standard benchmark zero-shot learning algorithm. However, the

most substantial impact of zero-shot learning lies in enabling the prediction of a large number

of unseen categories from very few seen categories within a specific domain. This permits the

collection of training data for only a few previously seen categories, thereby mitigating the training

data collection process significantly. In this thesis, we focus on the difficult problem of predicting

a large number of unseen object categories from very few previously seen categories. We propose

a framework that enables us to examine the limits of inferring several unseen object categories

from very few previously seen object categories, i.e., the limits of zero-shot learning. In particular,

we examine the functional dependence of the classification accuracy of unseen object classes on

the number of previously seen classes. We also determine the minimum number of previously

seen classes required to achieve pre-specified classification accuracy for the unseen classes on three

standard zero-shot learning data sets, i.e., AWA2, CUB and SUN. Additionally, we compare the

proposed framework with a prominent zero-shot learning technique on the aforementioned data

sets and find that we achieve 21% higher accuracy on the AWA2 data set, 6% higher accuracy on the

CUB data set, and comparable performance on the SUN data set while providing valuable insights

into the unseen class inference process.
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CHAPTER 1

INTRODUCTION

Advances in deep neural networks have empowered machines to achieve human level classi-

fication performance on object recognition tasks. Very powerful and robust visual classifier frame-

works have been developed, and will no doubt keep improving. In typical object recognition tasks,

it is necessary to establish a certain number of predetermined object categories so that classification

accuracy can be improved by collecting as many training image samples as possible for each object

category. Many problem domains are faced with a large and growing number of object categories.

As a consequence, it is becoming increasingly difficult to collect and annotate training data for each

object category. Moreover, these images need to capture different aspects of the objects under vari-

ous imaging conditions to account for the natural variance in appearance for each object category.

The problem thus lies in collecting and annotating training data in an efficient and reliable manner

for a wide variety of object categories. In addition, trained classifiers can only classify observed

object instances into the classes or categories covered by the training data; they lack the ability to

deal with previously unseen classes. To address this issue, zero-shot learning (ZSL) techniques

have been proposed in the research literature. ZSL frameworks are designed to tackle the problem

of learning classifiers when no explicit visual training examples are provided.

Human beings perform ZSL naturally, enabling recognition of at least 30,000 object classes [3].

When faced with a new unfamiliar object, we are, after a while, able to state what it resembles: ”A

New York City hot dog cart, with the large block being the central food storage and cooking area,

the rounded part underneath as a wheel, the large arc on the right as a handle, the funnel as an

orange juice squeezer and the various vertical pipes as vents or umbrella supports.” It is not a good

cart, but we can see how it might be related to one [3]. For humans, it is as easy as recognizing a

10-letter word with 3 wrong letters. However, in the case of machines, we need a vast number of

training images for each type of cart to learn to adapt to the naturally occurring variations in cart

appearances. In humans, the ability to understand natural variations comes from our existing and

ever evolving language knowledge base, which enables us to connect unseen categories with seen
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categories using high-level descriptions.

To emulate the ZSL process in machines, previously unseen object categories are recognized

by leveraging auxiliary information related to categories. Auxiliary information are derived from

external data sources such Wikipedia, WordNet [19] etc. which make it analogous to the human

(natural language) knowledge base. As the auxiliary inputs usually carry semantic information,

they constitute a semantic space. A typical source of semantic information used in ZSL is attribute

spaces. Attribute spaces are semantic spaces that are engineered manually for each domain or data

set. Attributes are a list of terms that describe various properties of each object class or category. For

example, an attribute could be hair color with values ”black”, ”brown”, ”white” etc. The attributes

can be either discrete or continuous. Label-embedding spaces are also often used as a source of

semantic information, where the word/label representations are obtained by employing informa-

tion retrieval techniques on large digital text corpora. Examples of widely used label-embedding

models include Word2Vec [18], GloVe [24], and FastText [4]. Hierarchical information is another

source of semantic information that can be derived from a pre-existing ontology such as WordNet

[19]. All sources of auxiliary information when combined together comprise the semantic space.

In typical ZSL frameworks, a set of previously observed classes is used to train the visual

classifier. These classes are termed as seen classes. The framework is then evaluated on another set

of previously not observed classes termed as unseen classes. While training, the classifier has access

to auxiliary information of both the seen and unseen classes. A formal definition of the ZSL task is

provided in Definition 1.1. Conventional ZSL is restrictive in its formulation since it assumes that

the input images at the time of prediction or inference can only come from the unseen classes. In

contrast, generalized ZSL addresses the more general setting where the input images at the time of

prediction or inference can come from both, the seen and unseen classes [27]. Generalized ZSL is

formally defined in Definition 1.2.

Definition 1.1 (Conventional Zero-shot Learning). Given labelled training instances Xs belonging

to seen classes Ys, zero-shot learning aims to learn a classifier that can classify testing instances Xu

belonging to the unseen classes Yu
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Definition 1.2 (Generalised Zero-shot Learning). Given labelled training instances Xs belonging

to seen classes Ys, generalised zero-shot learning aims to learn a classifier that can classify testing

instances Xu∪s belonging to the classes Yu ∪Ys

Several ZSL frameworks have been proposed in the literature, however, all of these frame-

works use a proposed split [33] of standard ZSL data sets [14, 32, 23] into seen and unseen classes.

This split is formulated in to aid uniform research towards finding a universal ZSL framework

that outperforms the existing ones. Altogether, the zero-shot learning problem has been formally

framed for each standard data set using specific categories as seen classes and the remaining as

unseen classes in a race for attaining maximum classification accuracy. Of the total object cate-

gories present in each data set, the number of seen classes has always been significantly higher than

the number of unseen classes in most ZSL frameworks. For example, the Animals-with-Attributes

(AWA2) data set [14] has a proposed 40:10 seen:unseen class split, the Caltech-USCD-Birds (CUB)

data set [32] has a 150:50 seen:unseen class split, and the large-scale Scene Understanding (SUN)

database [23] has a 645:72 seen:unseen class split. While this formulation has helped to formulate

several benchmark approaches to ZSL tasks, we notice that the original intent of mitigating the data

collection process has been skirted at a very early stage. Therefore, we aim to infer larger number

of unseen object categories using very few seen object categories. We believe this addresses the

original problem of obtaining annotated images to a greater extent.

We propose a new framework that helps us to examine the limits of inferring unseen object

categories from very few seen object categories, i.e., test the limits of ZSL. We note the functional

dependence of the classification accuracy on the number of previously seen classes across the spec-

trum of the classes on three widely used object classification data sets [14, 32, 23]. An important

contribution of the proposed approach is its ability to determine the optimal set of representa-

tive classes using which one could infer a large number of previously unseen classes with a pre-

specified measure of accuracy. We explore intuitive techniques to select a few seen classes which

would enable us to predict a larger number of unseen classes. The proposed approach also aids the

training data collection process significantly by identifying the key object categories from which the

training data collection process can be initiated and determining which object categories to stop at,
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based on an expected or pre-specified classification accuracy measure for a specific problem. We

evaluate the proposed approach in the generalized ZSL setting, thus making it very practical. We

present valuable insights into the inference process for general and specific cases where the pro-

posed approach performs exceptionally well, and also for cases where we fail to infer the correct

unseen category. We also compare the proposed approach with the well known Attribute Label

Embedding (ALE) [1] procedure, which has been shown to perform very well on the aforemen-

tioned three standard data sets as published in [33]. In comparison to ALE, we observe that the

proposed approach achieves 21% higher accuracy on the AWA2 data set, 6% higher accuracy on the

CUB data set and comparable performance on the SUN data set. We also establish the minimum

number of previously seen classes needed to obtain reasonable (or above average) generalized ZSL

performance on the AWA2 data set as 20 seen classes out of a total of 50 classes, on the CUB data

set as 80 seen classes out of a total of 200 classes and on the SUN data set as 360 seen classes out of

a total of 717 classes.

This thesis is organized into six chapters. Chapter 1 introduces the concept of zero-shot learn-

ing (ZSL) and summarizes the work done in this thesis. Chapter 2 reviews the related work in

ZSL and position our work in the overall ZSL research literature. Chapter 3 describes the various

data sets used for experiments carried out in this thesis. Chapter 4 discusses the overall methodol-

ogy underlying the proposed approach and also explains the finer details about the methods used.

Chapter 5 presents the experimental results of the proposed approach on the aforementioned three

data sets. Chapter 5 compares the proposed approach with the Attribute Label Embedding (ALE)

scheme and shows how well the proposed approach fares in comparison to the widely used ALE-

based ZSL framework. Finally, in Chapter 6, we conclude this thesis and discuss directions for

future work.
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CHAPTER 2

LITERATURE REVIEW

Zero-shot learning (ZSL) approaches can be broadly classified into two categories based on the

unseen class information the model has during the training process. In the inductive ZSL frame-

work, we have access to to labeled image data from the seen classes as well as auxiliary informa-

tion (i.e., semantic attributes/descriptions) about both, seen and unseen classes during the training

phase. In the transductive ZSL framework, we have access to auxiliary information (i.e., semantic

attributes/descriptions) about both, seen and unseen classes during the training phase as in the

case of the inductive ZSL framework. The major difference is that in the case of transductive ZSL,

we have access to labeled image data from the seen classes and unlabeled image data from the

unseen classes during the training phase which is a departure from inductive ZSL. Within both

frameworks, one can make an distinction based on the type of setting used to evaluate the model

during testing. i.e. the conventional ZSL setting and generalized ZSL setting as described in Chap-

ter 1. In this section we review work on both the inductive and transductive ZSL frameworks and

place the proposed approach within the ZSL taxonomy.

Preliminary work in inductive ZSL uses a two-stage approach to infer unseen class labels. In

the first stage, the attributes of an image are predicted. In the next stage, the class label is inferred

by searching for the class label with the most similar set of attributes. Lampert et al [13] introduced

the Directed Attribute Prediction (DAP) and Indirect Attribute Prediction (IAP) models which use

the aforementioned two-stage approach. In DAP [13], a probabilistic attribute classifier is first

learned. The class posteriors are then computed and class labels predicted via a maximum a poste-

riori (MAP) estimate. In IAP [13], a multi-class classifier is first used to predict the class posterior.

The probability of each class is then used to compute the attribute posteriors of an image. While

the DAP and IAP frameworks have historically been some of the most widely cited ZSL methods

in the literature, they suffer from the problem of domain shift [9] where the intermediate functions

learned from the auxiliary information without any adaptation to the target domain introduce an

unknown bias.
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Subsequent ZSL frameworks attempt to learn a compatibility function from image feature

space to the semantic or auxiliary space. These frameworks can be further categorized based on the

type of compatibility function that they learn. The first set of methods learn linear compatibility

functions whereas the next set of methods learn non-linear compatibility functions.

Linear Compatibility. Attribute Label Embedding (ALE) [1] learns a bi-linear compatibility func-

tion between the image space and auxiliary space using a weighted approximate ranking objective.

ALE improves upon DAP [13] significantly since it can use multiple sources of auxiliary informa-

tion such as word embeddings and class taxonomies. ALE also overcomes the drawbacks of the

two-step process used in DAP by directly predicting the class label without the need for an interme-

diate step. The Deep Visual-Semantic Embedding (DEVISE) model [8] also learns a linear mapping

between the image space and semantic space and has been shown to perform well on the large-scale

ImageNet data set. The Structured Joint Embedding (SJE) scheme [2] uses an unregularized struc-

tured SVM to learn the compatibility function coupled with the Stochastic Gradient Descent (SGD)

algorithm for optimization. The Embarrassingly Simple Zero-Shot Learning (ESZSL) scheme [25]

uses an additional regularization term to suppress noise in the auxiliary space.

Non-Linear Compatibility. The Latent Embedding (LATEM) scheme [35] extends linear compat-

ibility approaches by learning multiple mappings thereby finding a piece-wise linear compatibil-

ity function using every image-class pair. LATEM shows improved accuracy over the state-of-

art the linear compatibility-based SJE scheme [2]. The Cross-Modal Transfer (CMT) scheme [28]

uses a neural network with two hidden layers to learn non-linear projections from image space to

Word2Vec [18] space. CMT exploits only information from word embeddings and does not use

other sources of auxiliary information such as class attributes used by other methods.

Drawing from linear and non-linear compatibility approaches, hybrid models [33] learn a joint

embedding of both the image and semantic features into a combined intermediate space. The Se-

mantic Similarity Embedding (SSE) scheme [36] uses a max-margin framework to jointly optimize

domain data and semantic data. The Convex Combination of Semantic Embeddings (CONSE)

scheme [22] is inspired by DEVISE [8] and maps images into the semantic embedding space via

convex combination of the class label embedding vectors without the need for additional training.
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Synthesized Classifiers (SYNC) [5] introduces a set of “phantom” object classes whose coordinates

exist in both the semantic space and the model space which are then optimized using labeled data

such that the synthesized real object classifiers achieve optimal discriminating performance. Wang

et al. [31] use a Graph Convolution Network (GCN) and the GLoVe text embedding model [24] to

generate a knowledge graph embedding. The knowledge graph embedding exploits both, semantic

embeddings and domain relationships to predict the object classifiers.

Recently, there has been a rise in the use of generative models for ZSL that represent each class

as a probability distribution. Generative Framework for Zero-Shot Learning (GFZSL) [29] models

the class-conditional distributions of seen as well as unseen classes using a multi-variate Gaussian

distribution. Generative models such as GFZSL exhibit a significant performance boost in the trans-

ductive ZSL setting. The Feature Generating Network (FGN) [34] introduces a novel Generative

Adversarial Network (GAN) that synthesizes Convolutional Neural Network (CNN) features con-

ditioned on class-level semantic information, offering a direct shortcut from a semantic descriptor

of a class to a class-conditional feature distribution. The Leveraging the Invariant Side GAN (Lis-

GAN) approach [16] generates unseen features from random noise functions which are conditioned

by the semantic descriptions. They train a conditional Wasserstein GAN in which the generator

synthesizes fake unseen features from noises and the discriminator distinguishes the fake from real

via a minimax game. The recent approach based on leveraging the semantic relationships between

the seen and unseen object categories termed as LsrGAN [30] performs explicit knowledge trans-

fer by incorporating a novel Semantic Regularized Loss (SR-Loss) function. A Tensorflow-based

combination of a Variable Auto-Encoder (VAE) and GAN, termed as TF-vaegan [21], introduces a

feedback loop from a semantic embedding decoder, that iteratively refines the generated features

during both the training and feature synthesis stages. The synthesized features together with their

corresponding latent embeddings from the decoder are then transformed into discriminative fea-

tures and exploited during classification to reduce the ambiguities amongst the categories. The

TF-vaegan framework [21] is currently regarded as the benchmark in inductive and transductive

ZSL settings on the AWA2 [14], CUB [32], and SUN [23] data sets on the zero-shot learning and

generalized zero-shot learning settings.

7



The proposed framework draws from the two-stage approach used by the DAP and IAP ap-

proaches [13] but the problem being addressed is substantially different from the standard ZSL

problem that the aforementioned ZSL frameworks are designed for. Note that the proposed ap-

proach aims to predict a large number of unseen classes from few seen classes, and consequently,

we have far less training data compared to the conventional ZSL settings. Hence, generative-

adversarial-based and compatibility learning-based ZSL frameworks which require a lot of training

data would be expected to perform poorly in this situation. The proposed ZSL framework repre-

sents a first step towards a novel ZSL problem formulation that strives to understand how classi-

fication accuracy measures change with change in number and type of seen classes. The proposed

framework also allows for selection of an optimal number and type of seen classes based on an

expected overall classification accuracy measure which aids in the training data collection process.
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CHAPTER 3

DATA SETS

This chapter describes the three data sets used in the experiments in this thesis. Table 1 shows

the summary statistics for all three data sets.

3.1 ANIMALS WITH ATTRIBUTES-2 (AWA2)

The Animals with Attributes (AWA) data set was originally introduced by Lampert et al. [13].

Since the original images from AWA were not publicly available, Xian et al. [33] enhanced the AWA

data set and termed it as Animals with Attributes-2 (AWA2) [14], while retaining the same animal

classes and attributes as AWA. AWA2 has a total of 37,322 images compared to 30,475 images in

AWA. AWA2 is considered a coarse-grained data set that is medium-scale in terms of images and

small-scale in terms of number of classes, i.e. 50 animal classes. The data also provides 85 numeric

attribute values for each class. Using the shared attributes, it is possible to transfer information

between different classes. The AWA2 data set permits evaluation of the proposed approach in a

coarse-grained domain with a small number of classes. A few examples of animal classes in AWA2

are polar bear, zebra, otter, and tiger. Figure 1 shows a few images from the AWA2 data set where the

image data was collected from public sources, such as Flickr in 2016. Further information about the

data set can be found here 1.

3.2 CALTECH-UCSD BIRDS (CUB)

The Caltech-UCSD Birds-200-2011 (CUB) data set [32] is an image data set with 11,788 pho-

tographs of 200 bird species. Each species is associated with a Wikipedia article and organized by

its scientific classification, i.e., (order, family, genus, species). The list of species names was ob-

tained using an online field guide. Each image is annotated with a bounding box, part location,

and attribute labels, thereby providing 312 numeric attribute values for each class. CUB is consid-
1https://cvml.ist.ac.at/AwA2/
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Figure 1: A few labelled images from the Animals with Attributes-2 (AWA2) data set.

ered a fine-grained data set that is medium-scale in terms of both images and classes. This data set

allows evaluation of the proposed approach in a fine-grained domain with a moderate number of

classes. A few examples of bird species are Long tailed Jaeger, Blue-winged Warbler, American Crow,

Louisiana Waterthrush, and Herring Gull. Figure 2 shows a few images from the CUB data set where

the images were collected using Flickr image search and then filtered by showing each image to

multiple users. Further information about the data set can be found here 2.

3.3 SCENE UNDERSTANDING WITH ATTRIBUTES DATABASE (SUN)

The Scene Understanding with Attributes database (SUN) [23] is the first large-scale scene

attributes database. A crowd-sourced human study was used to establish a taxonomy of 102 dis-

criminating attributes and the SUN attributes database was built on top of the fine-grained SUN

categorical database. The SUN attributes database covers 717 categories and has 14,340 images.

SUN is considered a fine-grained data set that is of medium scale in terms of number of images but

large scale in terms of number of classes. This data set allows evaluation of the proposed approach

in a fine-grained domain with a large number of classes. Few examples of scene classes in SUN

are street, indoor brewery, valley, classroom, and supermarket. The SUN data set also provides a two-

2http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
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Figure 2: A few labelled images from the Caltech-UCSD Birds (CUB) data set.

level hierarchy for each of the 717 categories. The first level classifies scenes into broad categories

such as indoor, outdoor-natural, and outdoor-man-made. The second level further classifies each of the

first-level scenes into finer categories such as workplace, shopping, forest, sports, cultural etc. Figure

3 shows a few images from the SUN data set. The SUN data set is publicly available and further

information about the data set can be found here 3.

Table 1: Summary Statistics for all three Data Sets

Data set Detail Classes Images Attributes

AWA2 coarse 50 37,322 85
CUB fine 200 11,788 312
SUN fine 717 14,340 102

3http://cs.brown.edu/ gmpatter/sunattributes.html
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Figure 3: A few labelled images from the Scene Understanding with Attributes (SUN) data set.
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CHAPTER 4

METHODOLOGY

Broadly, the proposed framework comprises of the following components:

1. Deep feature extraction

2. Incorporation of auxiliary information

3. Clustering of auxiliary Information

4. Multi-label classification of deep features

5. Predictions of categories/classes

Generally speaking, raw input images carry excess information that is not necessary for the

purpose of discrimination and/or fine-grained analysis. Feature extraction enables us to collect

important relevant features from an image while discarding the unnecessary information. The

deep feature extraction component uses deep neural networks to extract essential information from

each image. The first section in this chapter details the feature extraction procedure. Auxiliary

information is used by ZSL techniques to learn the relationships between the seen and unseen

classes. The second section in this chapter describes the various types of auxiliary information used

within the proposed framework. In order to identify representative classes that enable us to predict

the large number of unseen classes, we cluster the auxiliary information to find representative

cluster centers. The third section in this chapter details the various clustering techniques used.

A multi-label classifier is then trained which can discriminate between the representative classes

identified in the clustering phase. The fourth section in this chapter describes the classifiers used

and their parameters. For a test sample, once the appropriate representative cluster is identified,

predictions about unseen classes are made by using a hypothesis generation procedure based on

distance measures in the auxiliary space. The fifth section in this chapter describes the distance

metrics used to generate the hypotheses from the auxiliary space. Figure 4 depicts a high-level

schematic of all the components in the proposed framework.
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4.1 DEEP FEATURE EXTRACTION

Deep neural networks (DNNs) have proven to perform well for feature extraction from images.

We use a ResNet DNN [11] with a depth of 101 layers which is pre-trained on the ImageNet data

set [6]. This reduces training time significantly and yields useful features since ImageNet consists

of over 1 million images spanning 1000 categories. We extract features from the last ResNet layer

which translates to 2048 features for each image. ResNet features for all three data sets are also

publicly available [33]. Figure 5 shows the architecture and feature extraction map for an image

using ResNet-101.

Extracted visual features are split into training and testing sets using a stratified 80:20 split.

These splits are saved separately for further use in model training and in the prediction phases.

Stratified sampling is used so that instances of seen and unseen classes are present in the test set,

thus making this a generalized zero-shot learning setting. A seed is used during the splitting phase

so that the results can be reproduced. Table 2 shows a summary of training and testing splits for

each data set.

Table 2: Training and testing splits for each data set

Data Set Classes Total Images Training Set Images Testing Set Images

AWA2 50 37,322 29,857 7,465
CUB 200 11,788 9,430 2,358
SUN 717 14,340 11,472 2,868

4.2 AUXILIARY INFORMATION

Since instances of unseen classes are unavailable during the training process, auxiliary infor-

mation is needed to establish semantic relationships between seen and unseen classes, which in

turn helps address the ZSL problem. In this framework, we use three sources of auxiliary informa-

tion for each of the three data sets.

Attributes. Humans can naturally perform zero-shot learning with the help of semantic back-
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Figure 5: ResNet-101 feature extraction map [12]. Each image passes through the network and a
feature vector is extracted from the last layer.

ground information. For instance, knowing that ”a zebra looks like a horse with stripes” allows us

to recognize a zebra without having seen one before, as long as we know what a horse looks like

and what the pattern ”stripe” looks like [10]. All three data sets that are used in this experiment

have labelled attribute information for each of their classes. The AWA2 data set [14] includes at-

tributes such as black, small, walks, smart etc. with 85 such attributes for each class. The CUB data set

[32] includes attributes such as primary color, wing color, wing shape, size etc. with 312 such attributes

for each class. The SUN data set [23] includes attributes such as man-made, natural light, medical

activity, diving etc. with 102 such attributes for each class.

Text Embeddings. A popular idea in modern machine learning is to represent words by vec-

tors that capture hidden information about a language. The learned vector representations for

words (i.e., word/text embeddings) from a large general text corpus can help to construct semantic

relationships between the seen and unseen class labels. There are three widely used word em-

beddings in the research literature: Word2Vec [18], GloVe [24], and FastText [4]. FastText has been
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shown to perform better than the others since it treats each word as composed of character n-grams.

In FastText the vector for each word is composed as the sum of its character n-grams whereas, in

Word2Vec and GloVe each word in the corpus is treated as an atomic entity and a unique vector is

generated for each word. As a result, FastText can also generate vectors for a combination of words.

For instance, ”polar bear” has a unique FastText vector representation. FastText has been trained

on a very large Wikipedia corpus and is publicly available. In this work, we extract FastText word

representations for each class label resulting in a 300-dimensional vector for each class label.

Hierarchy Embeddings. Creating a hierarchy of categories present in a data set allows us to

derive taxonomy-based relationships between the classes and improve ZSL performance. For the

AWA2 and CUB data sets, Lee et al. [15] propose a two-stage approach for generating hierarchy

embeddings where they first derive a top-down hierarchy using WordNet [19] and then create a

flattened hierarchy by representing the probabilities of all the leaf nodes as a single probability

vector. Figure 6 illustrates how hierarchy embeddings are generated for each leaf class in the clas-

sification tree. In the case of the AWA2 data set, this results in a 61-dimensional vector and in the

case of the CUB data set a 193-dimensional vector. The SUN data set provides its own two-level

hierarchy information for each of its 717 categories resulting in a 19-dimensional vector.

Combined Semantic Space. The vector spaces of attributes, text embeddings, and hierarchy

embeddings are combined into a unified space with reduced dimensions, while retaining the most

important information. The dimensionality reduction of the semantic space reduces the computa-

tional complexity of the clustering phase and creates robust clusters. We use Principal Component

Analysis (PCA) for dimensionality reduction since it retains the variance in the input data while

reducing the data dimensionality resulting in a compact combined semantic space. PCA achieves

dimensionality reduction by re-projecting the original data along the principal component axes

where the principal components are determined via eigenvalue decomposition of the data covari-

ance matrix. The combined, reduced-dimensional semantic space for each data set is computed and

retained for use in the clustering and prediction phases. Figures 7, 8, and 9 show the t-distributed

stochastic neighbour embedding (t-SNE) plots [17] of the combined semantic space for the AWA2,

CUB, and SUN data sets respectively. The t-SNE [17] is a non-linear dimensionality reduction
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Figure 6: An illustration of hierarchy embedding [1].

technique that embeds high-dimensional data into a low-dimensional space to aid in data visual-

ization. Specifically, it models each high-dimensional vector as a two- or three-dimensional vector

such that similar objects are closer and dissimilar objects are farther apart in the resulting two- or

three-dimensional space. In the t-SNE plots for the CUB and SUN data sets, in Figures 8 and 9

respectively, 50 random classes are depicted in the interest of readability. In the t-SNE plots, we

observe that classes in the CUB and SUN data set group closer to each other compared to those in

the AWA2 data set. This is because AWA2 is a coarse-grained data set whereas CUB and SUN are

fine-grained data sets.

4.3 CLUSTERING OF AUXILIARY INFORMATION

The goal of the clustering stage is to identify object categories that are good representatives

for a large number of similar object categories. The underlying idea is that these cluster centers

would have a strong relationship with its cluster members, thus aiding us to infer cluster members

using the cluster centers alone. We use two clustering techniques, i.e., the Gaussian Mixture Model
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Figure 7: t-SNE plot of the combined semantic space in the AWA2 data set with all classes.

Figure 8: t-SNE plot of the combined semantic space in the CUB data set with 10 classes.

(GMM) [20] and Affinity Propagation (AP) [7], to identify the clusters and representative classes

for the clusters. Clustering is performed in the combined reduced-dimensional semantic space for

each data set mentioned in the previous section. The clusters centers are noted for further use in

the classifier stage.
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Figure 9: t-SNE plot of the combined semantic space in the SUN data set with 10 classes.

The Gaussian Mixture Model (GMM) can accommodate clusters that have different sizes and

correlation structures within them, as opposed to k-means clustering. The GMM allows for flexible

clustering or soft clustering of the input data. Soft clustering methods assign a score to a data point

with respect to each cluster. The value of the score indicates the association strength of the data

point to the cluster; in our case the relationship of the data point to the cluster of object categories.

We denote the number of clusters by the variable k. GMM-based clustering requires us to specify

the number of clusters k before fitting the model. The number of clusters k determines the number

of components in the GMM. In our experiments, k starts with a value 5 and ends with a value that

equals the total number of classes for a given data set in steps of 5. After identifying all the clusters,

the silhouette score [26] is used to find the optimal value of k for the GMM.

Affinity Propagation (AP) is a clustering algorithm based on concept of ”message passing”

between data points. Unlike the GMM, AP does not require us to specify in advance the number

of clusters k to be determined, the algorithm itself provides the optimal number of clusters, i.e., the

value of k. AP discovers ”exemplars” that are members of the input set that are representative of

the clusters.
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The optimal number of clusters for each data set using both clustering techniques is shown in

Table 3. It should be noted that since GMM-based clustering was performed using a step size of 5

for k, these results may not be the true optimal values for k. In this work, we focus primarily on

the GMM-based clustering technique since we would like to study how changing number of seen

classes i.e. the value of k, impacts the classification accuracy.

Table 3: Optimal number of clusters (k value) for each clustering technique.

Data Set k-GMM k-AP Total Classes
AWA2 15 15 50
CUB 25 24 200
SUN 35 31 717

4.4 MULTI-LABEL CLASSIFICATION OF DEEP FEATURES

After determining the clusters and the representative object for each cluster for different values

of k, the next step is to train visual classifiers for each cluster center or representative object. A

trained visual classifier is used to classify each new test image into one of the representative objects

corresponding to the clusters.

For each value of k, the training set is filtered for the class labels associated with the cluster

centers. For example, in the AWA2 data set, for k = 5, we have class labels chimpanzee, hamster,

humpback whale, bobcat, and ox as the cluster centers. The image features associated with the class

labels of cluster centers alone are considered as the training set and a multi-class visual classifier

is trained using this training set. Thus, for each value of k, a multi-class classifier is trained, with

the training data increasing with increasing number of clusters k. Algorithm 1 shows the steps

involved in clustering and training process.

Visual Classifier. There are a number of machine learning techniques one can employ to de-

sign a multi-class visual classifier such as logistic regression, decision tree, support vector machine

(SVM), and neural network. In this work we use a Random Forest (RF) classifier. The RF classifier

builds an ensemble of decision trees using a bagging ensemble technique. Simply put, RF builds
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multiple decision trees and then merges them together to get a more accurate and stable predic-

tion. We use an RF classifier since it is highly scalable for a large number of classes and yields good

results. Since we have to train multiple classifiers for varying values of k, when using GMM-based

clustering, it is difficult to train a neural network or an SVM because of the time complexity and pa-

rameter tuning involved. The parameters used in the training of the RF are mentioned in Appendix

A.

Algorithm 1: Clustering of semantic space and training of visual classifiers. Here, clus-
teringTechnique denotes the type of clustering technique used. The visual classifier used
is a random forest.

Data: Combined semantic space, Training set of image features
Result: Cluster centers and a Trained visual classifier

1 initialization;
2 N← Total number of classes in data set;
3 if clusteringTechnique = GMM then
4 for k in 1 to N with increments of 5 do
5 Perform GMM clustering on combined semantic space using k = k;
6 Seen classes← List of cluster centers;
7 Training subset← Subset entire training set for Seen classes alone;
8 Train visual classifier using Training subset;
9 Save classifier

10 end
11 end
12 if clusteringTechnique = AF then
13 Perform AF clustering on combined semantic space;
14 Seen classes← List of cluster centers;
15 Training subset← Subset entire training set for Seen classes alone;
16 Train visual classifier using Training subset;
17 Save classifier
18 end

4.5 GENERATION OF PREDICTIONS OR ALTERNATIVE HYPOTHESES

Once visual classifiers are trained, each test instance is classified into one of the representative

clusters for a given value of k. Alternative hypotheses or predictions are then generated using a

similarity measure within the combined semantic space.

Similarity measures. In machine learning, a similarity measure is an inverse distance metric

with dimensionality determined the class feature space. If the distance between two data points
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is small then there is a high degree of similarity between the classes and vice versa. There are a

number of similarity measures using in machine learning such as ones based on Euclidean dis-

tance, Manhattan distance, Jaccard distance, and cosine similarity. In this work, we use the cosine

similarity measure which computes the cosine of the angle between two vectors as shown in Equa-

tion (1). Cosine similarity is advantageous because even if the two classes are far apart based on a

standard distance metric, it may be possible for their corresponding vectors to be oriented closer

together in terms of their angular separation. The smaller the angular separation between the two

vectors, the higher the cosine similarity measure.

cos(a, b) =
ab

‖a‖‖b‖ =
∑n

i=1 aibi√
∑n

i=1 (ai)2
√

∑n
i=1 (bi)2

(1)

Testing. Algorithm 2 shows the steps involved in the prediction phase. The test set is split

into two subsets. The first subset denotes the seen classes, comprising of data pertaining to class

labels that are present in the training set. The second subset denotes the unseen classes, comprising

of data pertaining to class labels that are absent from the training set. For each of these subsets,

we determine top prediction using the trained visual classifier and then find the closest class label

in the combined semantic space using the cosine similarity measure. Classification accuracy is

computed for each subset separately followed by the computation of the harmonic score (H-score)

using Equation (2).

H − score =
2 ∗ (SeenClassAccuracy) ∗ (UnseenClassAccuracy)
(SeenClassAccuracy) + (UnseenClassAccuracy)

(2)

We choose the harmonic mean as the performance metric instead of the arithmetic mean be-

cause in the case of the latter, if the seen class accuracy is much higher than the unseen class ac-

curacy, the overall arithmetic mean is significantly skewed towards the seen class accuracy [33].

However, since our aim is to attain high classification accuracy on both the seen and unseen classes,

the harmonic mean is a better quantifier of overall classification accuracy.
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Algorithm 2: Prediction phase algorithm. Here, clusteringTechnique denotes the type of
clustering technique used.

Data: Combined semantic space, Trained Classifiers, Trained Clusters, Testing set of image
features

Result: Overall H-Score on the test set
1 initialization;
2 N← Total number of classes in data set;
3 C← List of all class labels in data set;
4 if clusteringTechnique = GMM then
5 for k in 1 to N with increments of 5 do
6 Cluster centers← List of cluster centers from clusters trained using k = k;
7 Seen classes← Subset test set for Cluster centers alone;
8 Unseen classes← Subset test set for [C - Cluster centers];
9 Use classifier trained for k=k to predict on seen and unseen classes;

10 Use cosine similarity to find closest neighbour in Combined semantic space;
11 Calculate accuracy;
12 Calculate H-Score;
13 end
14 end
15 if clusteringTechnique = AF then
16 Cluster centers← List of cluster centers from clusters trained using k = k;
17 Seen classes← Subset test set for Cluster centers alone;
18 Unseen classes← Subset test set for [C - Cluster centers];
19 Use classifier trained for k=k to predict on seen and unseen classes;
20 Use cosine similarity to find closest neighbour in Combined semantic space;
21 Calculate accuracy;
22 Calculate H-Score;
23 end
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CHAPTER 5

EXPERIMENTAL RESULTS AND DISCUSSION

As stated in Chapters 1 and 2, the experimental setup in the proposed approach differs from

the standard ZSL setup. The proposed approach aims to minimize the number of seen classes

within a data set while delivering reasonable performance on the unseen classes. This makes it hard

to compare our results with those of other ZSL frameworks mentioned in the research literature.

In order to achieve a fair comparison of the proposed framework with other ZSL approaches, we

modify a well known ZSL framework to work with our experiment setup.

Attribute Label Embedding (ALE) [1] uses a bi-linear compatibility function to associate vi-

sual and auxiliary information. It embeds each class in the space of attribute vectors. The approach

also generalizes to any type of auxiliary information that can be encoded in matrix form such as

word embeddings. A comparison study performed in [33] shows that ALE outperforms other ZSL

frameworks in the generalized ZSL setting. Recent generative methods described in the literature

could potentially perform better than ALE but such a comparison study using same data sets, ex-

perimental conditions, and evaluation metrics has not been performed yet. Hence, we chose to

compare the proposed approach with the ALE framework. A working implementation of the ALE

framework was obtained from a recent GitHub repository 4 and modified to work within our ex-

perimental setting. Once the clusters centers are determined for each value of k, the ALE procedure

is performed on the appropriate training and testing sets. Table 4 and Table 5 show a summary

of the comparison between the proposed approach and ALE using both clustering techniques, i.e.,

GMM-based clustering and AP-based clustering. Table 6 in Appendix B provides comprehensive

results on all three data sets when using GMM-based clustering.

Results on the AWA2 data set. The AWA2 data set has 50 classes and the training set consists of 560

images per class on average with the category horse having the highest number of images (1316),

and the category mole having the least number of images (80).

4https://github.com/cetinsamet/attribute-label-embedding
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We study performance of the proposed approach for k = 25 which renders half the classes as

seen and half the classes as unseen for the model. The seen classes exhibit an average classification

accuracy of 85% whereas the unseen classes exhibit an average classification accuracy of 27% on

the test set.

Among the seen classes, we find there are three cases:

Seen Case: 1 Seen classes exhibiting ≥ 90% classification accuracy on the test set. In the AWA2 data set,

16 of 25 seen classes fall in this category and are expected to aid very well in the inference of

unseen classes related to these seen classes. These seen classes have a good number of images

to train on and the classifier is able to clearly identify distinguishing features for each class.

For example, humpback whale is a seen class that exhibits 100% classification accuracy on the

test set. Ideally, we would want all seen classes to fall into this category.

Seen Case: 2 Seen classes exhibiting classification accuracy ≥ 60% but < 90% on the test set. In the AWA2

data set, 7 of 25 seen classes fall in this category and are expected to aid reasonably in the

inference of unseen classes. Although these classes have a reasonable number of images to

train on, these classes fall into a case where the classes are very close to each other but are still

seen classes. For example, ox, moose, and cow fall in this category. It is understandable why

the visual classifier would not be able to clearly distinguish between these categories, they

are quite similar compared to other categories in this data set.

Seen Case: 3 Seen classes exhibiting classification accuracy < 60% on the test set. In the AWA2 data set, 2

of 25 seen classes fall in this category and are expected to negatively impact the unseen class

inference process. These 2 classes have only an average of 160 images in the training set, hence

the visual classifiers were not be trained enough on these classes to learn the discriminating

features.

Among the unseen classes also we find three cases:

Unseen Case: 1 Unseen classes exhibiting > 60% classification accuracy on the test set. In the AWA2 data set,

6 of 25 unseen classes fall in this category. These are cases when a particular unseen class is
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inferred from a seen class falling in Case 1 of seen classes. For example, blue whale is an unseen

class that exhibits 100% accuracy on the test set, and it is inferred from humpback whale which

falls under Case 1 of the seen classes.

Unseen Case: 2 Unseen classes exhibiting classification accuracy≥ 1% but≤ 60% on the test set. In the AWA2

data set, 6 of 25 unseen classes fall in this category. These are cases where the unseen classes

are inferred from the seen classes falling in Case 2 and Case 3 of seen classes. These unseen

classes exhibit poor performance since the seen classes they are inferred from are not clearly

distinguishable by the visual classifier. For example, deer is an unseen class that is inferred

from the seen class moose which falls in Case 2 of the seen classes.

Unseen Case: 3 Unseen classes that exhibit 0% accuracy on the test set. In the AWA2 data set, 12 of 25 unseen

classes fall in this category. Since our inference process only allows for guessing 1 unseen

class per seen class, unseen classes that are farther away from seen classes cannot be inferred

and fall in this category. For example, antelope is an unseen class that falls in the cluster of

moose, but only deer can be inferred from moose since it is the closest neighbor to moose based

on the cosine similarity measure.

The proposed model performs well when a seen class has a sufficient number of images to train

on and the unseen class being inferred from it is proximal to the seen class and it performs poorly

when the unseen class being inferred is distant from any of the representative classes. Ideally, the

proposed model would perform best when there are clusters of size 2 and the representative object

for the cluster has clear discriminating features, while the unseen class in the cluster is also closer

to the representative class than any other class. Figure 10 shows a comparison of the H-scores

obtained on the AWA2 data set by the proposed model and ALE for all values of k. As seen from

the graph, our model performs significantly better than ALE for all values of k on this data set. The

H-score keeps increasing as the value of k increases which is expected since the number of seen

classes increase which enables more unseen classes to be inferred more accurately.

In order to determine the optimal numbers of classes required to achieve reasonable perfor-

mance, we choose a k value for which we achieve a greater than average H-score performance with
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the proposed model. For k = 20, we achieve a H-score of 46% with the proposed model whereas

the average H-score on the AWA2 data set is 45% across all categories. Thus, on the AWA2 data set,

we need to have at least 20 categories as seen classes to reasonably infer the unseen classes with

greater than average accuracy with the proposed model.

Figure 10: H-score comparison between the proposed model and ALE on AWA2 data set when
using GMM-based clustering.

Results on the CUB data set. The CUB data set has 200 classes with 47 images per class on average

in the training set. This is a small number of images to train on for each seen class. However, the

proposed model still performs well on this data set.

Figure 11 shows a comparison of H-scores obtained on the CUB data set using the proposed

model and ALE for all values of k. As seen from the graph, the proposed model performs better

than ALE for values of k ≤ 65. For 65 < k ≤ 115, the proposed model and ALE exhibit comparable

performance and for k > 115, the proposed model significantly outperforms ALE on the CUB data

set. Thus, across a large range of k values, the proposed model performs better than ALE on the

CUB data set.
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For k = 80, we achieve a H-score of 33.5% with the proposed model whereas the average H-

score on the CUB data set is 33% across all categories. Thus, on the CUB data set, we need to use at

least 80 categories as seen classes to reasonably infer the unseen classes with higher than average

accuracy with the proposed model.

Figure 11: H-score comparison between the proposed model and ALE on CUB data set when using
GMM-based clustering.

Results on the SUN data set. The SUN data set has 717 classes with 16 images per class on aver-

age in the training set. This makes it hard for the visual classifier to learn distinguishing features

for each class because of the large number of classes and small number of images for each class.

Nevertheless, the proposed model exhibits performance that is comparable to ALE on this data set.

Figure 12 shows a comparison of H-scores obtained on the SUN data set using the proposed model

and ALE for all values of k. As seen from the graph, ALE performs better than the proposed model

for values of k ≤ 560 and the proposed model performs better than ALE for values of k beyond 560.

For k = 360, we achieve a H-score of 22% with the proposed model and the average H-score

on the CUB data set is 21.6% across all categories. Thus, on the SUN data set, we need to use at
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least 360 categories as seen classes to reasonably infer the unseen classes with greater than average

accuracy with the proposed model.

Figure 12: H-score comparison between the proposed model and ALE on SUN data set when using
GMM-based clustering.

Table 4: Comparison of average classification accuracy across k values between the proposed model
and ALE when using GMM-based clustering.

Proposed Model ALE

Data Set Avg. Seen Avg. Unseen Avg. H-Score Avg. Seen Avg. Unseen Avg. H-Score
AWA2 94% 32% 45% 90% 14% 24%
CUB 78% 22.86% 33% 70% 17.50% 27.19%
SUN 58.20% 15% 21.60% 41.50% 17.80% 25%

Hardware Specifications. All the experiments were performed on an Intel I7 6850K CPU with

128GB RAM. For the AWA2 data set, it takes ≈ 20 minutes to train visual classifiers for all values

of k. Likewise, for the CUB and SUN data sets, it takes ≈ 2.5 hours and ≈ 40 hours, respectively, to

train visual classifiers for all values of k.
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Table 5: Comparison of average classification accuracy between the proposed model and ALE when
using AP-based clustering.

Proposed Model ALE

Data Set Seen Unseen H-Score Seen Unseen H-Score
AWA2 96.44% 23.43% 37.7% 83.40% 10% 17.50%
CUB 91% 9.70% 17.50% 55% 8.33% 14.40%
SUN 83.10% 4.30% 8.20% 24.40% 8.20% 12.30%
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we propose a framework for generalized zero-shot learning (ZSL) that is simple

yet very effective. The proposed framework offers an intuitive approach to aid in the training data

collection process for image recognition tasks by identifying representative classes using various

clustering techniques. It also provides a method to infer unseen classes using cosine similarity mea-

sure. The proposed framework achieves accuracy figures that are 21% greater on the AWA2 data

set and 6% greater on the CUB data set when compared to the well known Attribute Label Em-

bedding (ALE) scheme for GZSL. On the SUN data set, the proposed model exhibits performance

that is comparable to that of ALE. We also determine the minimum number of categories needed to

considered as seen classes to achieve reasonable classification accuracy results on all the three data

sets using the proposed model.

One of the drawbacks of the proposed framework is the inability to infer unseen classes that

are distant from the representative classes in the semantic space. There is significant scope for

future improvement of the proposed framework in this aspect. A potential solution could be a

scheme to map the distance between each unseen class and representative class in a cluster to the

classification probabilities obtained from the visual classifier. In this way, the framework would be

able to infer all unseen classes, regardless of the distance, with some non-zero probability.

Another important future task is the evaluation of the proposed framework on a very large

data set such as ImageNet. ImageNet spans more than 1000 classes and has several images in each

class unlike the SUN data set which while having over 700 classes, has very few images per class.
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APPENDIX A

MODEL PARAMETERS

A.1 Random Forest

• AWA2 n estimators : 1000, max depth : 60, n jobs : -1, min samples split : 2, min samples leaf : 1,

max features : ’auto’, bootstrap : ’False’

• CUB n estimators : 1000, max depth : 60, n jobs : -1, min samples split : 2, min samples leaf : 1,

max features : ’auto’, bootstrap : ’False’

• SUN n estimators : 500, max depth : 60, n jobs : -1, min samples split : 2, min samples leaf : 1,

max features : ’auto’, bootstrap : ’False’

A.2 GMM Clustering

• AWA2 k : 5 to 45 with steps of 5

• CUB k : 5 to 195 with steps of 5

• SUN k : 5 to 715 with steps of 5

A.3 Principal Component Analysis

• AWA2 explained variance : 0.70

• CUB explained variance : 0.40

• SUN explained variance : 0.60
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APPENDIX B

COMPLETE MODEL RESULTS

Table 6: Results on all data sets when using GMM-based clustering

AWA2 CUB SUN

Model Seen Unseen H score Seen Unseen H score Seen Unseen H score

model5 96.72% 11.93% 21.24% 100.00% 2.52% 4.92% 90.00% 0.67% 1.33%

model10 96.82% 14.55% 25.30% 97.50% 4.96% 9.44% 100.00% 1.20% 2.37%

model15 95.97% 23.75% 38.08% 93.82% 7.11% 13.22% 93.33% 1.57% 3.09%

model20 94.10% 31.13% 46.78% 92.80% 9.00% 16.41% 87.50% 2.33% 4.54%

model25 93.57% 31.66% 47.31% 86.82% 9.65% 17.37% 93.00% 2.64% 5.13%

model30 92.82% 24.13% 38.30% 86.16% 11.83% 20.80% 90.83% 3.64% 7.00%

model35 92.36% 31.31% 46.77% 85.71% 13.93% 23.97% 87.86% 3.34% 6.44%

model40 92.07% 39.65% 55.43% 84.86% 14.61% 24.93% 83.75% 3.51% 6.74%

model45 90.76% 78.41% 84.13% 86.33% 15.90% 26.85% 80.00% 4.20% 7.98%

model50 81.49% 14.41% 24.49% 81.00% 3.97% 7.57%

model55 80.19% 13.67% 23.36% 79.55% 4.38% 8.30%

model60 81.95% 16.62% 27.64% 80.42% 4.34% 8.24%

model65 81.82% 18.26% 29.86% 78.46% 5.90% 10.97%

model70 81.71% 17.36% 28.64% 79.29% 5.02% 9.44%

model75 78.71% 17.76% 28.98% 77.00% 5.72% 10.65%

model80 81.66% 20.72% 33.05% 76.25% 5.30% 9.91%

model85 80.08% 19.28% 31.08% 73.24% 6.17% 11.38%

model90 78.79% 20.66% 32.74% 73.33% 5.58% 10.37%

model95 79.80% 20.02% 32.01% 73.68% 6.15% 11.35%

model100 77.65% 21.84% 34.09% 71.50% 6.00% 11.07%

model105 75.20% 21.79% 33.79% 69.52% 6.25% 11.47%

model110 76.23% 24.29% 36.84% 65.45% 6.05% 11.08%
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AWA2 CUB SUN

model115 76.27% 23.08% 35.44% 69.13% 5.86% 10.80%

model120 75.09% 28.03% 40.82% 68.33% 7.41% 13.37%

model125 74.76% 25.00% 37.47% 67.80% 6.88% 12.49%

model130 75.36% 29.59% 42.49% 65.77% 6.94% 12.56%

model135 74.64% 28.46% 41.21% 70.56% 7.17% 13.02%

model140 73.50% 27.63% 40.16% 68.57% 6.89% 12.52%

model145 72.26% 28.02% 40.38% 65.17% 6.64% 12.05%

model150 71.66% 30.68% 42.97% 62.33% 7.10% 12.75%

model155 70.08% 32.08% 44.01% 65.81% 7.34% 13.21%

model160 68.40% 31.57% 43.20% 62.81% 7.85% 13.96%

model165 69.84% 34.71% 46.37% 61.67% 6.88% 12.38%

model170 69.36% 31.36% 43.19% 63.68% 7.68% 13.71%

model175 68.66% 30.33% 42.07% 61.71% 6.96% 12.51%

model180 68.11% 33.61% 45.01% 62.50% 8.33% 14.70%

model185 67.45% 42.78% 52.35% 61.89% 8.60% 15.10%

model190 66.26% 41.67% 51.16% 61.84% 8.06% 14.26%

model195 64.58% 56.67% 60.37% 61.28% 8.19% 14.45%

model200 62.38% 7.79% 13.85%

model205 62.32% 8.45% 14.88%

model210 59.88% 8.58% 15.01%

model215 60.35% 8.12% 14.31%

model220 59.43% 9.26% 16.02%

model225 60.56% 9.15% 15.90%

model230 59.89% 8.73% 15.24%

model235 58.51% 9.13% 15.80%

model240 58.96% 9.07% 15.72%

model245 56.94% 9.32% 16.02%

model250 57.80% 8.83% 15.32%
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AWA2 CUB SUN

model255 54.80% 8.66% 14.96%

model260 57.40% 9.08% 15.68%

model265 55.94% 9.24% 15.86%

model270 55.56% 8.22% 14.32%

model275 58.45% 9.28% 16.02%

model280 56.52% 8.58% 14.90%

model285 57.54% 9.72% 16.63%

model290 55.26% 10.60% 17.79%

model295 54.41% 10.07% 16.99%

model300 55.08% 10.07% 17.03%

model305 55.41% 9.71% 16.52%

model310 54.68% 9.58% 16.30%

model315 53.49% 10.82% 18.00%

model320 53.20% 10.26% 17.20%

model325 54.31% 10.65% 17.81%

model330 51.97% 10.40% 17.33%

model335 52.99% 10.73% 17.85%

model340 52.06% 10.94% 18.08%

model345 51.88% 10.82% 17.91%

model350 53.07% 11.31% 18.65%

model355 51.27% 10.64% 17.62%

model360 51.04% 10.29% 17.13%

model365 50.62% 10.80% 17.80%

model370 52.16% 10.59% 17.61%

model375 51.20% 10.96% 18.06%

model380 51.51% 11.72% 19.10%

model385 49.81% 10.92% 17.91%

model390 48.85% 11.62% 18.77%
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AWA2 CUB SUN

model395 50.38% 11.72% 19.02%

model400 49.69% 13.56% 21.31%

model405 49.07% 12.82% 20.33%

model410 50.43% 11.89% 19.24%

model415 49.88% 12.75% 20.31%

model420 49.52% 11.36% 18.48%

model425 48.41% 12.59% 19.98%

model430 48.84% 13.07% 20.62%

model435 48.33% 14.36% 22.14%

model440 48.47% 12.00% 19.24%

model445 49.33% 13.69% 21.43%

model450 48.06% 13.67% 21.29%

model455 47.36% 13.45% 20.95%

model460 48.10% 14.69% 22.51%

model465 47.31% 13.10% 20.52%

model470 47.07% 12.25% 19.44%

model475 46.37% 14.67% 22.29%

model480 46.41% 15.19% 22.89%

model485 45.77% 14.12% 21.58%

model490 46.84% 14.32% 21.93%

model495 47.53% 14.19% 21.86%

model500 47.50% 15.78% 23.69%

model505 45.45% 14.50% 21.99%

model510 46.86% 15.82% 23.65%

model515 46.65% 14.85% 22.53%

model520 45.91% 14.97% 22.58%

model525 45.48% 16.28% 23.98%

model530 45.90% 14.71% 22.28%
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AWA2 CUB SUN

model535 44.53% 15.25% 22.72%

model540 44.72% 16.67% 24.29%

model545 44.63% 15.84% 23.38%

model550 44.73% 15.57% 23.10%

model555 44.55% 16.82% 24.42%

model560 44.15% 16.56% 24.09%

model565 43.36% 16.28% 23.67%

model570 43.86% 19.39% 26.89%

model575 43.57% 16.02% 23.43%

model580 43.23% 17.52% 24.93%

model585 43.03% 16.86% 24.23%

model590 43.98% 17.91% 25.45%

model595 42.73% 19.26% 26.55%

model600 42.63% 18.38% 25.69%

model605 42.77% 18.08% 25.42%

model610 43.36% 21.03% 28.32%

model615 42.80% 19.36% 26.66%

model620 42.82% 19.59% 26.88%

model625 41.76% 19.29% 26.39%

model630 41.31% 19.25% 26.26%

model635 40.83% 20.43% 27.23%

model640 41.41% 21.75% 28.52%

model645 41.40% 20.83% 27.72%

model650 40.08% 23.88% 29.93%

model655 40.76% 20.16% 26.98%

model660 40.00% 25.00% 30.77%

model665 40.15% 25.00% 30.81%

model670 40.63% 24.47% 30.54%
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AWA2 CUB SUN

model675 38.93% 30.36% 34.12%

model680 39.85% 25.00% 30.72%

model685 39.45% 26.56% 31.75%

model690 40.04% 34.26% 36.93%

model695 40.22% 31.82% 35.53%

model700 39.14% 30.88% 34.52%

model705 39.18% 39.58% 39.38%

model710 38.66% 35.71% 37.13%

model715 37.97% 75.00% 50.42%
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