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ABSTRACT

Segmenting an entire 3D image often has high computational complexity and requires large memory

consumption; by contrast, performing volumetric segmentation in a slice-by-slice manner is efficient

but does not fully leverage the 3D data. To address this challenge, we propose a multi-dimensional

attention network (MDA-Net) to efficiently integrate slice-wise, spatial, and channel-wise attention

into a U-Net based network, which results in high segmentation accuracy with a low computational

cost. We evaluate our model on the MICCAI iSeg and IBSR datasets, and the experimental results

demonstrate consistent improvements over existing methods. For the IBSR dataset, we report

an average dice score of 95.12%, 97.27%, 95.04% on the Sagittal view, 94.89%, 95.31%, 92.01% on

Axial and 94.52%, 91.45%, 92.22% Coronal for the cerebrospinal fluid, white matter and gray matter

respectively.
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CHAPTER 1

INTRODUCTION

Image segmentation is a fundamental task in image understanding, which distinguishes regions

of interest from image background for further analysis. Recently, deep segmentation networks, e.g.,

fully convolutional networks (FCN) introduced by Long et al. [17], U-Net by Ronnenberger et al. [24],

tackle the 2D image segmentation problem and outperform conventional approaches. However,

segmenting 3D image volume like brain MRI scans is still challenging, especially in medical image

analysis.

Models extended from FCNs and U-Nets have been proposed to handle the 3D image segmen-

tation, e.g., V-Net by Milletari et al. [19]. Due to the high-dimensional nature of image data, most

existing models have a high demand for computational resources, especially the GPU memory, and

often have a large number of parameters to estimate. Upon trying some 3D segmentation models,

the limited GPU memory that we had available could not fit the entire 3D dataset at once. Another

solution that similar papers talk about as we’ll see in the literature review is to chunk the 3D vol-

umes, perform image segmentation on the chunks independently and then combine the results back

into the whole volumes. This method fails to fully leverage the 3rd dimension.

The 2D counterparts of the above image segmentation models have lower memory consumption

since they slice the 3D data and look at each slice individually but this again results in not leveraging

the 3rd-dimensional information.

In this thesis, we propose an economical solution for segmenting 3D image volume, which roots

on a 2D network and handles 2.5D data by augmenting a 2D image slice with an additional image

condensed from the third dimension with attention. To integrate the information across slices of

an image volume, we propose a compression technique based on the squeeze and excitation (SE)

technique proposed by Hu et al. [8] to concisely abstract multiple neighboring slices of a volume into

a single slice. Apart from the augmented input for the 2D backbone network, we also augment the

network with spatial and channel-wise attention by upgrading the concurrent SE block proposed by
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Roy et al. [25]. The resulting network benefits from both the low computation cost of the 2D network

and enriched information from image volumes and learned features with attention. Figure 8 depicts

the overall architecture of our multi-dimensional attention network (MDA-Net) for segmenting 3D

images. The MDA-Net is an end-to-end solution and can automatically learn how to compress

volumetric image information and extract useful features in an attention scheme.

In particular, our MDA-Net aims to mimic the process of the manual segmentation for a 3D

image. When handling an image volume, we often select one main view to sequentially segment

2D slices and check the third dimension across slices occasionally to obtain additional information.

To integrate the information among image slices, we condense the ordered slice difference computed

with respect to the current main slice. This compression step allows us to collect extra information,

i.e., image residuals, to assist the segmentation. Another benefit of using our model is increased

data samples. If we have p slices in one view, we can convert one 3D volume into at most p samples,

and each sample contains a 2D slice and another slice compressed from the original volume. This

compression is achieved by using slice-wise attention. We also have the spatial and channel-wise

attention used in the image segmentation network, resulting in our multi-dimensional attention

network. The attention is automatically estimated via modified squeeze and excitation (MSE)

blocks, which improve segmentation performance over the original SE block and concurrent scSE

block.

1.1 MAIN CONTRIBUTIONS

The main contributions of this paper are as follows:

• Modified SE (MSE) Block: We upgrade the way channel attention mechanism in the concurrent

scSE and replace the sigmoid function with softmax to ensure the weights for measuring the

attention to be normalized.

• Slice-wise condensing module: We propose a compression module that uses slice-wise attention

to extract residual information in the third dimension.

• Multi-Dimension Attention Network (MDA-Net): We propose an efficient 3D image segmen-

tation network, which fully leverages the 3D data with a balanced computational cost.
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1.2 PERFORMANCE METRICS

We evaluate our MDA-Net on the MICCAI iSeg dataset published by Wang et al. [30] and the

IBSR dataset published by Rohl et al. [23] through segmenting 3D brain scans. The segmentation

results on both datasets show the improvement over previous methods with five-fold cross-validation.

For the iSeg dataset, we report an average dice score of 95.12%, 97.27%, 95.04% respectively for

cerebrospinal fluid, gray matter, white matter on the Sagittal view of our model, 94.89%, 95.31%,

92.01% respectively on the Axial View and 94.52%, 91.45%, 92.22% respectively on the Coronal

View. Along with the region-wise dice scores, we also compare the number of trainable parameters

that each model has. We see that replacing the global average pooling and dense layers of the

cscSE architecture results in a drop in the number of parameters while still maintaining comparable

performance. We further see that even though the MDA-Net is a 2.5D model the number of trainable

parameters it has is equivalent to 2D architectures like the plain UNet, cscSE, and 2D attention-

augmented net.

We further compare the inference times in seconds to make sure that our model even while

using data from all three dimensions is not significantly increasing it. Upon comparing we see that

the 2D baseline models and our model have comparable inference times.

3



CHAPTER 2

LITERATURE REVIEW

The 3D variants of the U-Net by Milletari e al. [19] and Cicek et al. [19, 3] were proposed to

handle volumetric images. Compared to a 2D U-Net working slice by slice, its 3D version fully

uses the data in all dimensions. However, 3D models face two main challenges in segmenting the

entire high-dimensional image volume. We often have limited computational resources, especially

limited GPU memory, to handle the whole image volume. Compared to a greatly increased number

of model parameters when switching from a 2D network to 3D, we have a reduced number of data

samples since a 2D slice sequence becomes one sample in a 3D U-Net. Existing approaches to address

these challenges include downsampling the 3D images to fit in memory [3], assembling multiple 2D

networks for accepting different image views proposed by Chlebus et al. [4], working on 3D image

patches proposed by Liu et al. [16], modifying the existing segmentation architectures proposed by

Lucas et al. [18] and Brugger et al. [18, 2] or combining 2D slices with 3D patches proposed by Dey

and Hong [6].

Unlike previous approaches, we segment an image volume in the slice-to-slice fashion while

integrating the residuals across slices. Work related to ours is the volumetric attention Mask-RCNN

proposed by Wang et al. [31], which considers three adjacent slices when calculating attention. Our

attention model is built based on the SE block, which is not limited to three slices and provides the

first-order statistic across slices.

The following subsections talk about the different aspects of our model and relevant previous

work. We conclude each subsection by stating how the multidimensional attention net (MDA-

Net) compares with these previous architectures and their pros over them. We start off with 3D

segmentation architectures followed by fully connected CNN models, models that use spatial squeeze

and excite block, other attention and gating mechanisms used similarly concluding with architectures

that were introduced to perform model acceleration.
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2.1 3D SEGMENTATION

As introduced above, 3D variants of the UNet [19, 3] have been popularly used to perform 3D

image segmentation. Even though they fully leverage information from all three dimensions, this

property of theirs hurts their resource friendliness and these models often run into some critical

issues as discussed below.

LIMITED GPU RESOURCES. We often have limited computational resources, especially

limited GPU memory, to handle the whole image volume. Working with high-resolution image

volumes particularly increases the resources required. To get around this, one might expect to

consider images of lower resolution but this is problematic since it may give rise to problems of

low-precision and miss detection especially when it comes to tissue segmentation. This would lead

to a need to trade-off spatial resolution with the number of 2D slices used. This would further mean

that there would a trade-off between the precision with which segmentation is performed and the

amount of contextual information in the z dimension.

MODEL PARAMETERS VS NUMBER OF SAMPLES. Compared to a greatly in-

creased number of model parameters when switching from a 2D network to 3D, we have a reduced

number of data samples since a 2D slice sequence becomes one sample in a 3D U-Net. Existing

approaches to address these challenges include downsampling the 3D images to fit in memory [3],

assembling multiple 2D networks for accepting different image views [4], working on 3D image

patches proposed by Howard et al. [7], or combining 2D slices with 3D patches [6].

Different works introduced ways to combat these shortcomings of the 3D models. Cicek et al. [3]

as shown in Figure 1 introduced a model that only needs data with sparse annotations to train on

and it outputs the corresponding dense annotations. Coupe et al. [5] as shown in Figure 2 proposed a

patch based segmentation model to reduce the amount of computational resources required. Brugger

et al. [2] as shown in Figure 3 proposed ways to modify the architecture of models. Liu et al. [16]

as shown in Figure 4 proposed hierarchical architectures to perform coarse-grained and then fine-

grained segmentation.
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Figure 1: Sparse anotation as introduced by Cicek et al. [3] to combat the resource constraint
problem faced in 3D segmentation.

Unlike previous approaches, we segment an image volume in the slice-to-slice fashion while

integrating the residuals across slices. Work related to ours is the volumetric attention Mask-

RCNN [31], which considers three adjacent slices when calculating attention. Our attention model

is built based on the SE block, which is not limited to three slices and provides the first-order

statistic across slices.

2.2 FULLY CONNECTED CNN ARCHITECTURES

FCNNs have been popularly used in biomedical images for precise segmentation. The UNet

proposed by Ronnenberger et al. [24]. Figure 5 taken from the research is shown below. The

DenseNet proposed by Iandola et al. [9] is another such state-of-the-art model that implements

efficient convnet descriptor pyramids. For 3D volumes, though, they make 2D slices and segment

each slice independently

2.3 USING SPATIAL AND CHANNEL SQUEEZE AND EXCITE

CNNs have been popularly used to tackle various tasks in the field of computer vision. The

central building block of CNNs is the convolution operator that enables networks to construct

informative features by fusing both spatial and channel-wise information within local receptive fields

at each layer. CNNs interleave a series of convolution layers, activation layers and downsampling

layers to produce image representation and global theoretical receptive fields. One of the goals of

6



Figure 2: Patch based segmentation introduced in Coupe et al. [5]

computer vision has been to make these representations more powerful and in turn increase the

performance and efficiency of the network. Recent research has focused on introducing learning

mechanisms for the spatial correlation in images. One such research is the Inception net proposed

by Szegedy et al. [28] which introduces multi-scale processes in the model to increase performance.

Further works have focused on spatial attention by Bell et al. [1], Newell et al. [21].

The Squeeze and excite net by Hu et al. [8] changed the direction of network design by focusing

on channel attention instead. They introduced the Squeeze and excite block that learns the channel

inter-dependencies. This block explicitly models these dependencies between the channels of the

convolution layer. They introduce the mechanism of feature recalibration that learns to use global

information to selectively emphasize important features and suppress less useful ones. For every

convolution block, they introduce a corresponding squeeze and excite block. The feature maps U

outputted by a convolution block are first passed through a squeeze operation which aggregates

the spatial information of a channel and produces a corresponding channel descriptor. The excite

operation acts like a gating mechanism that takes in the channel descriptor array and outputs a

collection of per-channel output weights. These weights are applied to the feature maps U.
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Figure 3: Modified structures introduced in Brugger et al. [2]. Top row: features extracted from
coarse-grained voxel-based branch. Bottom row: features extracted from fine-grained pixel-based
branch.

Figure 4: Liu et al. assemble different networks to deal with different views [16]

A convolution network with SE block won first place in the ILSVRC 2017 classification compe-

tition in the ImageNet dataset indicating its effectiveness.

The SE blocks were further modified to be used in image segmentation while focusing on the

fully connected CNNs by Roy et al. [25]. In this work, the previous SE blocks are referred to as

channel SE (cSE) blocks since they only excite in the channel dimension. They introduce two new

versions of the SE block namely:

8



Figure 5: U-Net as introduced in [24]

1. spatial SE which squeezes along the channels and excites spatially;

2. concurrent spatial and channel SE which recalibrates the features along the spatial and channel

dimension separately and then combines the output.

Roy et al. [25] explore an alternate direction of recalibrating the feature maps adaptively, to

boost meaningful features, while suppressing weak ones. They concurrently perform channel squeeze,

spatial excitation and channel excitation and spatial squeeze to achieve this. The model uses global

pooling to perform spatial squeeze i.e. the 3D volume UH×W×C to a vector of dimension C. In our

model, We break this transition into two steps. First a depthwise layer with kernel size H × 1 is

applied to UH×W×C giving UW × C. This is followed by another depthwise layer with kernel size

1 ×W to further reduce this to a vector of size C. The advantage of doing this is that the height

dimension is considered separately followed by then considering the width dimension to get features

of importance.

9



Figure 6: Squeeze and excite network as introduced in [8]

Keeping in mind that this modified way would introduce more parameters, in this paper, we

introduce a further resource-constrained architecture as explained in the attention-augmented net.

A similar argument can be made while comparing [31] to our work. They have an architecture

inspired by [25] and [8] i.e. global pooling is used to summarize spatial information.

2.4 ATTENTION AND GATING MECHANISMS

Attention mechanisms are means of biasing the use of available computational resources towards

features that are more important. Olshausen et al. [22] discuss a position and scale-invariant neuro-

biological model for attention. The representations of the object in the real world in this mechanism

do not depend on its position and relative scale. This model relies on control neurons that strengthen

the intracortical connections so that information from a particular viewing window is forwarded to

higher cortical areas. Local spatial relationships are maintained as this transfer occurs. This allows

the representations to be object-centered thus making them position and scale-invariant.

Itti et al. [12] present a model that combines multiscale image features into a single saliency

map. A dynamic neural network then selects in order of decreasing saliency the attended locations.

This system breaks down the problem of scene understanding by selecting conspicuous regions that

need to be attended with greater detail thus increasing the computational efficiency.
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Figure 7: Plain inception architecture (left) inception architecture with squeeze and excite block
(right) as introduced in [8]

Itti et al. [13] outline the trends that have emerged from computational literature. First, the

saliency of stimuli depends on the context of the object in its surrounding. If the surrounding changes

or the way that the object appears changes with respect to other objects, the saliency is bound to

change. Computationally, this means that the contextual influence must be included in models. The

second is a bottom-up control strategy which generates a saliency map that topographically encodes

over the visual scene. Third, inhibition-of-return (IOR), the process in which the currently attended

location is inhibited transiently. IOR implements a memory of the most recently visited locations.

Without this attention would endlessly be attracted towards the most salient areas. Fourth, there is

a strong interconnection between attention and eye movements. For models concerned with visual

search, it is particularly important to study the interaction between overt and covert attention. Last,

scene understanding and object recognition tend to keep attended locations constrained.
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Larochelle et al. [15] introduce a third-order restricted Boltzman machine (RBM) that has the

ability to gather information about shape over several fixations. The model decides a sequence of

fixations that cover only a small area of the image since the available resolution is relatively low.

It then combines the glimpse with the location of the fixation and integrates this information with

other glimpses of the same object.

Recurrent models for visual attention introduced by Mnih et al. [20] extend the convolutional

neural networks. The objective of the model is to tackle the problem of the linear increase in

computational complexity of convolutional neural networks with the increase in the number of pixels

that is the image size. Their model is capable of extracting information from an image or video.

This it does by taking into a sequence of regions but only processing some selected regions at a high

resolution. The model, like CNNs, has a translation-invariance built-in. Unlike the CNNs, though

the computational complexity is not linearly dependent on the size of the image. The model is

non-differentiable and can be trained using reinforcement learning to learn task-specific policies.

Vaswani et al. [29] present a novel model called the Transformer that completely gets rid of

recurrence and convolutional layers. These models are proven to be more parallelizable and require

significantly lesser time to train. To draw global dependencies between input and output, this model

completely relies on attention mechanisms.

2.5 MODEL ACCELERATION

SqueezeNet proposed by Iandola et al. [10] reduces computation and parameters significantly

while maintaining accuracy. SENet [8] boosts performance by introducing an architectural unit

with slight computational cost. Mobilenet [7] utilizes the depthwise separable convolutions to reduce

the computation and make the model lightweight while maintaining state-of-the-art performance.

Recurrent models look at the symbol positions in the input and output and factor computation

along them. A sequence of hidden states ht that is a function of the previous hidden state ht−1 and

the input for position t is generated by aligning the position to steps in computation time. This

sequential nature prevents parallelization within training samples. At long sequence lengths, this

becomes troublesome since memory constraints may start creeping in. Recent research has been

12



able to achieve parallelization using conditional computation proposed by Shazeer et al. [26] and

factorization tricks proposed by Kuchaiev et al. [14]. Two factorization tricks are presented here:

first, they talk about a method where the matrix is factorized by design where the LSTM matrix is

represented as the product of two smaller matrices. The second factorization method partitions the

matrix into the input and its states. Here we use the depthwise convolution in a way that flattens

the 3D volume it is operating on in order to apply the same filter on all slices of the volume. This

significantly reduces the number of trainable parameters.
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CHAPTER 3

PROPOSED MODEL: MDA-NET

To provide an economical solution for 3D image segmentation, we adhere to treat the 3D

data as a sequence of 2D image slices, which allows us to work in a lower-dimensional space with

relatively low demand in computational resources. For a specific 2D slice, we augment it with

the first-order information in the third dimension, which is achieved by condensing ordered image

differences in its neighborhood into one slice. As shown in Fig. 8, our model has an image dimension

reduction component using an ordering-based image difference compression. The resulting slice is

concatenated with the associated 2D slice as inputs for an attention-augmented 2D U-Net. We stack

the 2D segmentation masks back to form the segmentation mask for an image volume.

3.1 MDA-NET ARCHITECTURE

Figure 8 shows how all modules introduced above work together. The gray module shows the

difference and order operation and how the right branch of the MSE block is used to compress its

output, the blue module shows the attention-augmented UNet and the pink one shows the Modified

SE Block. The following sub-chapters discuss these different components of the model followed by

some important characteristics.

3.2 SLICE-WISE COMPRESSION

Assume we segment the i-th image slice, e.g., I
(i)
m×n, of an image volume Im×n×p, i = 1, · · · , p.

Besides the 2D slice, i.e., I
(i)
m×n, we prepare an additional slice Ī

(i)
m×n that associates with I

(i)
m×n

and contains information across the slices. The concatenation, I
(i)
m×n ∪ Ī

(i)
m×n, is the input of our

attention-augmented U-Net. This new presentation allows us to take full use of the data in all three

dimensions when segmenting one 2D slice of the 3D image volume.
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A typical way to compress the data from 3D to 2D is by performing a weighted average over the

third dimension. Instead of directly compressing the original image volume, we choose to compress

the difference images I
(j+i)
m×n − I

(i)
m×n, j ∈ [−r, · · · ,−1, 1, · · · , r]. Here, 2r images in the 2D slice

neighborhood are selected in the compression phase. A weighted average of these difference images

is the condensed slice Ī
(i)
m×n, and the weights are estimated using the right branch of our MSE block,

as described in the next paragraph. As the center image I
(j)
m×n changes, the difference images will

change accordingly, and their contributions in the estimated condensed image, which are measured

by their weights, vary as well. However, once the network is trained, the weights for the difference

images are fixed. To make sure the weights are consistently associated with the difference images,

we order the difference images based on the sum of their absolute values. That is, the compressed

slice Ī
(j)
m×n is the weighted average of the ordered difference images, as shown in Figure 8.

To estimate the weights for the ordered difference images, we follow the spatial squeeze and

channel excitation idea Hu et al. [8] but with some modifications on channel-wise SE block. Firstly,

the original SE block squeezes the spatial domain using the global average pooling. That is, the SE

block summarizes each channel using its average over pixels with equal weights. The foreground’s

pixels are often sparse in the difference images, and nearly-zero pixels dominate in the background.

Therefore, we need the flexibility in spatial squeeze and adopt convolution filters to average over

pixels with learned weights. A simple way to get a weight for each difference image (or a channel

used later) is to use a filter of size m×n. To reduce the number of parameters, we decompose this 2D

filter into two 1D filters, i.e., one with size m×1 and the other with size n×1, and apply depth-wise

convolutions. In this way, we can reduce the number of parameters from mn to m + n. Since we

expect to summarize the information in each channel independently, we need to reshape the input

of each depth-wise convolution accordingly, as shown in Figure 8. As a result, we obtain a vector

z ∈ Rp as the unnormalized weights for difference images. Also, instead of using Sigmoid in [8], which

normalizes each weight independently into the range [0, 1], we choose the Softmax function, which

counts the correlation among weights and enforces their sum to be 1. The normalized weights are

used to rescale the ordered difference images, and then a weighted average results in the compressed

slice Ī
(i)
m×n.
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Figure 8: Overview of our proposed multi-dimensional attention network (MDA-Net) for 3D image
segmentation. It consists of a third-dimensional compression and an attention-augmented U-Net
with modified squeeze and excitation (MSE) blocks.

3.3 MODIFIED SE BLOCK

The Squeeze and Excite block (SE block) [8] performs a squeeze operation that performs global

information embedding. Global average pooling is used to aggregate feature maps in their spatial

dimension (H×W ). This aggregated information is called the channel descriptor. If z is the channel

descriptor also referred to as the channel-wise statistic, the cth element of z is the following:

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (1)

where Fsq represents the squeeze operation, uc is the cth feature map of U ∈ RH×W×C . The

global average pooling layer was originally designed to replace the dense layer at the end of a CNN

architecture. It outputs one average value for the H×W dimension of the feature map. [8] mention

that this is the simplest averaging technique and can be replaced by something more sophisticated.
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We propose a modified way to aggregate the spatial information. Our idea is to break it down

into steps where each step captures the aggregate information in one dimension. Instead of the

feature map reducing from H ×W to one channel descriptor (which is a single value), it would first

reduce to H × 1, getting the average in the W dimension and then into a single value, getting the

average in the H dimension.

We further modify the MSE block by making use of the depthwise convolution operation for

the Spatial Squeeze and Channel Excitation. This block is explained in detail in Chapter 3.

3.4 DEPTHWISE SEPARABLE CONVOLUTIONS

Depthwise separable convolutions were first introduced by Sifre et al. [27] and were subsequently

used in the Inception family of networks proposed by Ioffe et al. [11] and the MobileNet architecture

proposed by Howard et al. [7]. This operation factorizes the standard convolution into two steps: the

depthwise convolution and the pointwise convolution. The depthwise convolution applies a different

filter on each channel of the input and thus outputs a map with the same number of channels. The

pointwise operation then combines the channels of this output into one by using a 1×1 convolution.

A standard convolution performs the filtering and combining operations in one shot. There is a

drastic reduction in computation and model size due to this. The input to the standard convolution

is a DF × DF ×M feature map F as explained in [7] and the output is a DG × DG × N feature

map G. Here, DF is the height and width of each channel, M is the number of input channels, N is

the number of output channels. The convolution kernel K would then be DK ×DK ×M ×N . The

standard convolution thus has a computational cost of:

DF ×DF ×M ×N ×DG ×DG (2)

And it can be formalized as follows:

Gk,l,n =
∑
i,j,m

Ki,j,m,n · Fk+i−1,l+j−1,m (3)
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Thus, the computational cost multiplicatively depends on the number of input channels, number

of output channels, the size of the kernel and the size of the feature map. This operation can be

factorized into two steps, filtering and combining. The depthwise separable convolution has two

steps that respectively perform these two operations.

The depthwise convolutions use one filter per input channel. This can be formalized as:

Gk,l,m =
∑
i,j

Ki,j,m · Fk+i−1,l+j−1,m (4)

The overall computation cost of the depthwise separable layer is:

DF ×DF ×M ×DG ×DG +M ×N ×DF ×DF (5)

3.5 2D ATTENTION-AUGMENTED NET

After compressing the residual information in the third dimension, we represent a 3D volume

as a pair of 2D slices, i.e., the current 2D slice I
(j)
m×n and the slice-wise compression Ī

(j)
m×n. A 2D

U-Net takes our 2D slice pairs as a two-channel input for segmenting the current 2D image. Using

a similar approach in the slice-wise compression, which offers us the third dimension’s attention, we

add MSE blocks to a plain 2D UNet, which provides both spatial and channel-wise attention on its

input and extracted feature maps.

Like the concurrent SE block in [25], we add both channel squeeze and spatial excitation branch

(sSE) and spatial squeeze and channel excitation branch (cSE), as shown in Fig. 9. But, different

from [25], we use the Softmax operator instead of Sigmoid to normalize the spatial or channel-wise

weights in both branches. We consider the attention depends on the space and the channels, and

the separated weights allow us to treat spatial pixels or channels differently. In particular, the sSE

branch uses a pixel-wise convolution to summarize the input feature maps across channels, which

is then normalized over the spatial domain using Softmax to ensure the weights’ sum is 1. The

cSE branch is the same as introduced in [25]. In particular, given an input feature map UH×W×C
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(H×W is the spatial size of the feature map and C is the number of channels), we apply depth-wise

convolution with an H × 1 filter followed by a W × 1 filter. The resulting C× 1 vector is normalized

using Softmax to rescale the channels before taking their average. Reshaping the feature maps from

3D to 2D or from 1D to 2D is required before applying the depth-wise convolutions. The addition

of these two branches gives us the output of the MSE block. Each MSE block is used after the

convolution pair at each resolution of the U-Net.

3.6 SOFTMAX VS SIGMOID

As discussed above, we replace the Sigmoid operator of the original SE block with a Softmax

operator. Apart from having the advantage of ensuring the sum of the weights is 1, another advan-

tage this provides is stability during training. The Softmax activation distributes the probability

throughout each output node. This makes it easier for the model to converge.

3.7 DROP IN THE NUMBER OF PARAMETERS

The concurrent SE block, along with global average pooling uses fully connected layers to

squeeze in the spatial dimension. Fully connected layers perform a linear operation in which every

input is connected to every output by a weight. This results in

total parameters = number of inputs× number of output weights (6)

This causes significant increases in the total number of trainable parameters in the model. Our

MSE block completely abandons the need to use Fully Connected layers since depthwise convolution

layers are being used to extract information from the spatial dimension.
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Figure 9: Modified SE Block where the channel squeeze and spatial excite branch is the same as the
SE Block but the spatial squeeze and channel excite branch is made more efficient with the help of
depthwise convolution layers
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Figure 10: The above shown attention-augmented 2D UNet uses the modified SE block in place of
the purple arrows shown above.
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CHAPTER 4

EXPERIMENTAL SETUP AND RESULTS

4.1 DATASETS AND EXPERIMENTAL SETTINGS

iSeg Dataset: We evaluate our model on the dataset provided by the MICCAI iSeg challenge

published by Wang et al. [30], which aims to segment the brain MRI scans into the cerebrospinal

fluid (CSF), white matter (WM), gray matter (GM), and the background. The dataset consists of

T1-weighted brain MRI scans collected from 10 6-month infants. Each scan has an image dimension

of 144× 256× 192 with a spatial resolution of 1× 1× 1mm3.

IBSR Dataset: We use the IBSR dataset published by Rohlfing et al. [23] to further demonstrate

the performance improvement of our model over other approaches. The MR images provided in

this dataset is a T1-weighted three-dimensional coronal brain scan preprocessed with a positional

normalization and a skull-stripping step. It contains 18 Subjects with an image dimension of 512×

128× 256 and a spatial resolution of 1.5mm in each dimension.

Ablation Study: The backbone network of our method is the 2D U-Net [24], which is augmented

by our MSE blocks. In the ablation study, we compare our MSE-UNet with both the plain UNet

and the concurrent scSE-UNet [25](cscSE-UNet) as discussed in Chapter 3. These three models take

only a single 2D slice of a 3D image scan to perform the 3D segmentation task in a slice-by-slice

manner. Our whole model (MDA-UNet) is also reported to demonstrate the performance gain by

including the slice-wise compression component into the MSE-UNet.

We examine three views for both datasets, i.e., Sagittal, Axial, and Coronal, respectively. Take

the iSeg dataset for instance, we have 1152 samples (including a 2D slice and a sequence of difference

images) in the Sagittal view, 2048 samples in the axial view, and 1536 samples in the coronal view.

22



The plain U-Net, concurrent scSE-UNet, our modified scSE-UNet and our MDA-Net are com-

pared by performing 5-fold cross validation on each of the three views: Sagittal, Axial and Coronal

for each of the 4 above-mentioned models. Tables 4, 5, 6 reports the average over the 5 folds.

For the iSeg dataset, the 10 subjects are randomly shuffled and split into training and test sets

to perform five-fold cross validation. For the IBSR dataset, the cross-validation is performed in a

similar way on the 18 subjects. Table 7, 8, 9 reports the results for IBSR.

OPTIMIZATION. We use Adam optimizer which is a combination of the AdaGrad and

RMSProp optimizers. The AdaGrad optimizer performs well on convex optimizations, however, the

accumulation of squared gradients that it performs from the start of training can result in premature

decrease in the effective learning rate. The RMSProp, as we know, modifies AdaGrad to work well

on non-convex optimization by modifying the gradient accumulation into an exponential moving

average. The drawback of the RMSProp is that its second order moment estimate may have high

bias early in training. The Adam optimizer overcomes this disadvantage and additionally adds

momentum to RMSProp. It is particularly efficient on problems with sparse gradients and noisy

datasets. We use it with a learning rate of 5e−5.

REGULARIZATION STRATEGIES. Early stopping is one of the regularization strategies

we used here. We know that models with sufficient representational capacity to overfit the task,

we often see that at one point, the training error decreases steadily but the validation error begins

to rise again. Early stopping helps us combat this by remembering the point where the lowest

validation error was recorder and only updates it if there is a further decrease. The maximum

number of epochs required using this strategy approximately is 300. Early stopping is one of the

most simple and effective regularization methods. One of the common strategies used in machine

learning for regularization is bagging and ensemble methods. Dropout is a kind of bagging that is

popularly used for neural networks. Dropout generates an ensemble of sub-neuralnets that can be

generated by removing non-output units from the base network. Dropout and bagging have one

major difference - in bagging, the networks are all independent of each other whereas in dropout the

models share parameters and each model inherits a different subset of parameters.
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We use a dropout of 0.3 and the L2 regularizer. We perform 5 fold cross-validation. The dice

score is used during training and evaluation. All models were trained on one NVIDIA GeForce 1080

8GB GPU. We use the five-fold cross-validation on the subjects for both datasets. We implement

our model using Keras and the Tensorflow backend.

4.2 PREPROCESSING

The first step is to get a general idea of the quality of the datasets. This was done by making

sure the data didn’t have any obvious artifacts (completely black images). We also make sure all

the image files are readable so that the training is not interrupted midway. The datasets were in the

nifti datatype so we used the nibabel package to convert them into numpy arrays. Next we inspect

the image sizes and aspect ratios and get a distribution of APR to classify which of the following 3

categories it belongs to- uniform distribution that is most images are of the same dimension, bimodal

distribution that is most images have APR between 0.7 and 1.5 and dataset with a lot of extreme

values. We found that both the iSeg and IBSR datasets belong to the first category i.e. uniformly

distributed. Hence, no major changes in the dimensions of the images was required. Thirdly, we

studied if there was an imbalance in the regions.

The image volume data has pixel intensity values ranging from 0 to 1000. As we know that

normalization of the data is important for neural netwroks. This ensures that each input parameter

(here image pixels) has a similar data distribution. The training of the network becomes easier and

it converges faster once this operation is performed. We use min-max normalization shown by the

equation below:

value−min
max−min

(7)

4.3 EXPERIMENTAL SETUP

Since this module works on 2D data, we considered 2D slices of the 3D volumes. We started of

with a plain 2D UNet as proposed by Ronnenberger et al.[24] as a baseline. Secondly, we considered

a concurrent spatial and channel squeeze and excitation network as introduced by Roy et al.[25] that
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Sagittal (%)
CSF GM WM

Plain UNet [24] 91.41±1.12 81.54±1.37 75.13±1.19

cscSE-UNet [25] 92.71±1.74 85.56±1.14 79.14±1.11

MSE-UNet (Ours) 93.11±1.34 87.21±1.54 81.13±2.34

Table 1: Segmentation comparison (measured in dice score) among the 2D baselines and the proposed
2D model applied on the Sagittal view of the MICCAI iSeg dataset.

Axial (%)
CSF GM WM

Plain UNet [24] 95.22±1.01 92.33±1.18 89.51±2.16

cscSE-UNet [25] 96.47±1.01 92.38±1.18 89.83±2.13

MSE-UNet (Ours) 96.27±1.01 92.62±1.18 89.89±2.13

Table 2: Segmentation comparison (measured in dice score) among the 2D baselines and the proposed
2D model applied on the Axial view of the MICCAI iSeg dataset.

Coronal (%)
CSF GM WM

Plain UNet [24] 92.48±2.34 84.36±1.16 80.24±2.35

cscSE-UNet [25] 92.11±1.45 87.12±1.09 82.15±1.42

MSE-UNet (Ours) 93.91±2.34 88.25±2.16 84.23±2.65

Table 3: Segmentation comparison (measured in dice score) among the 2D baselines and the proposed
2D model applied on the Coronal view of MICCAI iSeg dataset.

is the extension of the original squeeze and excitation net introduced by Hu et al.[8]. As introduced

above, we compared the results of the above two models our 2D modified squeeze and excite net.

We perform experiments on two datasets - the MICCAI Iseg dataset and the IBSR dataset. The

details for each of these are provided in the ablation study section of Chapter 4. Along with the dice

scores we also compared these models based on the number of parameters and the inference time.

4.4 EXPERIMENTAL RESULTS

Tables 1, 2, 3 compare the dice scores for the CSF, WM and GM for the Sagittal, Axial and

Coronal views respectively for the Iseg dataset. It compares all the 2D baseline models - plain UNet,

cscSE Net and the 2D attention-augmented net (also called the MSE-Net). The results show that

the MSE-Net performs better than the other 2D models in every region. Thus, by performing this

comparison on this model that is a submodule of the our MDA-Net, we see that each individual

submodule has significance. Similar comparisons were made for the second dataset the results for

which can be seen in Tables 7, 8, 9.
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Sagittal (%)
CSF GM WM

Plain UNet [24] 91.41±1.12 81.54±1.37 75.13±1.19

cscSE-UNet [25] 92.71±1.74 85.56±1.14 79.14±1.11

MSE-UNet (Ours) 93.11±1.34 87.21 ±1.54 81.13 ±2.34

MDA-Net (Ours) 93.46±1.05 87.23±2.64 82.79±2.55

Table 4: Segmentation comparison (measured in dice score) among different approaches applied on
the Sagittal view of the MICCAI iSeg dataset.

Axial (%)
CSF GM WM

Plain UNet [24] 95.22±1.01 92.33±1.18 89.51±2.16

cscSE-UNet [25] 96.47±1.01 92.38±1.18 89.83±2.13

MSE-UNet (Ours) 96.27 ±1.01 92.62±1.18 89.89 ±2.13

MDA-Net (Ours) 96.81±1.15 94.32±2.13 90.01±1.24

Table 5: Segmentation comparison (measured in dice score) among different approaches applied on
the Axial view of the MICCAI iSeg dataset.

Coronal (%)
CSF GM WM

Plain UNet [24] 92.48±2.34 84.36±1.16 80.24±2.35

cscSE-UNet [25] 92.11±1.45 87.12±1.09 82.15±1.42

MSE-UNet (Ours) 93.91±2.34 88.25±2.16 84.23 ±2.65

MDA-Net (Ours) 94.28±2.01 88.44±1.45 85.23±1.67

Table 6: Segmentation comparison (measured in dice score) among different approaches applied on
the Coronal view of MICCAI iSeg dataset.

Now we add our 2.5D model the MDA-Net to the experiments. Tables 4, 5, 6 report the

segmentation results for the MICCAI iSeg dataset. Tables 7, 8, 9 report the segmentation results

for the IBSR dataset. The brain segmentation performance for both datasets is steadily improved

from plain U-Net, to cscSE-UNet, to MSE-UNet, and then to MDA-Net for each image view. The

improved performance of MSE-UNet over the cscSE-UNet demonstrates the effectiveness of using

MSE-Blocks in the U-Net, and the improved performance of MDA-Net over the MSE-UNet demon-

strates the effectiveness of using the slice-wise compression. We also observed that replacing Sigmoid

with Softmax makes the network training more stable and easier to converge. Figure 11 shows qual-

itative results sampled from the iSeg dataset. Figure 12 shows the graphical representation of the

dice score comparisons for iSeg and Figure 13 for IBSR.

Table 10 reports the computational cost of the above four models. Compared to cscSE-UNet,

our models have a reduced number of parameters and a reduced amount of training time but

slightly increased inference time. The graphical representation of this comparisons are shown in
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tables 14, 15, 16. Our proposed model’s maximum training time was around six hours, and the

inference time is within seconds for a subject. We tried experiments with a 3D U-Net and a con-

volutional LSTM; however, we met memory difficulties on our machine, which drives MDA-Net’s

development.

Sagittal (%)
CSF GM WM

Plain UNet [24] 90.81±1.85 95.91±2.24 92.92±1.55

cscSE-UNet [25] 92.41±1.15 96.06±2.14 93.61±2.55

MSE-UNet (Ours) 94.01±1.95 96.96±2.14 94.79±3.55

MDA-Net (Ours) 95.12±1.00 97.27±2.14 95.04±1.15

Table 7: Segmentation comparison (measured in dice score) among different approaches applied on
the Sagittal view of the IBSR dataset.

Axial (%)
CSF GM WM

Plain UNet [24] 91.24±1.15 90.33±2.16 88.38±1.84

cscSE-UNet [25] 91.42±2.15 91.17±2.10 88.81±1.04

MSE-UNet (Ours) 92.23±1.25 92.65±2.14 89.82±1.64

MDA-Net (Ours) 94.89±1.05 95.31±2.73 92.01±2.24

Table 8: Segmentation comparison (measured in dice score) among different approaches applied on
the Axial view of the IBSR dataset.

Coronal (%)
CSF GM WM

Plain UNet [24] 91.45±2.08 87.30±1.46 89.22±2.67

cscSE-UNet [25] 92.15±1.01 88.12±1.95 89.82±1.27

MSE-UNet (Ours) 93.93±2.01 89.21±1.15 90.58±1.60

MDA-Net (Ours) 94.52±2.31 91.45±1.35 92.22±1.67

Table 9: Segmentation comparison (measured in dice score) among different approaches applied on
the Coronal view of the IBSR dataset.

#Param.
Training time Inference time
(per epoch) (per patient)

Plain UNet 7.775M 30s 1.565s
cscSE-UNet 7.958M 59s 1.575s
MSE-UNet 7,823M 57s 2.285s
MDA-Net 7.825M 58s 2.795s

Table 10: Model comparison on the number of model parameters and the training and testing time
for the iSeg dataset.
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Figure 11: Qualitative iSeg sample results (from left to right: Ground-Truth, cscSE-UNet, and our
MDA-Net. Blue: cerebrospinal fluid, yellow: gray matter, red: white matter.

Figure 12: This graph depicts that our models outperform the others in all 3 views of the iSeg
dataset. The y-axis shows the dice scores in percentage and the x-axis shows the scores for the
3 regions CSF, GM and WM of the 3 views Sagittal, Axial and Coronal along with the standard
deviation.
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Figure 13: This graph depicts that our models outperform the others in all 3 views of the IBSR
dataset. The y-axis shows the dice scores in percentage and the x-axis shows the scores for the
3 regions CSF, GM and WM of the 3 views Sagittal, Axial and Coronal alongwith the standard
deviation.

Figure 14: This graph depicts that our 2.5D model has number of trainable parameters comparable
to the Plain Unet which is a pure 2D model and does not use data from the 3rd dimension. The
y-axis shows number of parameters in millions.
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Figure 15: This graph depicts that our models have comparable training times to the baseline 2D
models

Figure 16: This graph depicts that our models have comparable inference times to the baseline 2D
models
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CHAPTER 5

CONCLUSION & FUTURE DIRECTIONS

This paper investigated the 3D image segmentation problem and proposed an efficient solution

using a multi-dimensional attention network. The objective of the thesis was to reduce the com-

putational resources required to perform 3D semantic segmentation while at the same time using

information available from all three dimensions.

To this end, we firstly introduce a difference and order operation that, for every slice of the

3D volume, summarizes information from r of its neighbors to efficiently take advantage of the

3rd dimension as well. The r here was chosen as 5 experimentally. This operation provides an

independent difference and ordered volume for each slice respectively. These volumes are compressed

as described in the following paragraphs.

Secondly, we designed a modified version of the concurrent spatial and channel squeeze and

excite block (MSE block) which replaces global average pooling and fully connected Layers with

depthwise convolution layers to abstract information from the spatial dimension with a reduction

in the number of parameters. The global average pooling layer summarizes the entire spatial infor-

mation using an average over pixels with equal weights. Since the output volumes obtained have

sparse non-zero values, the convolution layers provide flexibility while summarizing in the spatial

dimension and an average over pixels is taken with learned weights. This modified spatial squeeze

and channel excite branch of the block is used to compress the volumes obtained from the difference

and order operation and create a 2D slice that is associated with the 2D slice that was used to obtain

the volume.

Thirdly, we design an attention-augmented 2D UNet that takes 2D slices of the 3D volume

as input. The UNet is called attention-augmented because each convolution block is followed by

the entire MSE block. At this point, MSE simultaneously performs spatial and channel squeeze

and excite and learns weights for spatial dimension and channels of the outputs obtained from

the convolution layers. Performing this kind of weight reassignment allows the model to focus on
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regions of importance thus leading to a drop in the computational resources required for training.

We perform comparisons of this 2D submodule of our module MSE-Net with the plain UNet and the

csSE-Net as baselines. The region-wise dice scores, number of trainable parameters and inference

time are used to make these comparisons. The conclusion here is that the MSE blocks cause a

reduction in the number of parameters and an increase in the dice scores of each of the individual

regions.

Finally, we put all our modules together to form the ultimate model - the MDA-Net. Here,

the input to the MSE-Net discussed above is now a set of two 2D slices, one the original slice and

the other its differenced, ordered, and compressed counterpart that summarizes the information in

its neighborhood. We continue our comparison now including this MDA-Net to it. Our observation

is that even after adding the extra contextual information, this model still has lesser trainable

parameters compared to its 2D counterparts mentioned above. Thus we achieve our objective of

using the 3rd dimension efficiently.

We perform our experiments on two 3D image volume datasets namely the MICCAI iSeg and

IBSR. Each of them has three regions and our models outperform others in the individual dice scores

of all three regions of both datasets.

A limitation worth noting is that there is an added hyperparameter (r) as discussed above

which stands for the number of neighbors before and after the current slice that should be taken

into consideration while forming the compressed slice with information from the 3rd dimension. We

found out experimentally that r = 5 works best in our case. Taking lesser r values reduced the

dice score and increasing it did not add significant value. However, for different datasets, this value

could change and needs to be decided experimentally keeping in mind the trade-off between the

computational complexity and evaluation metrics.

We tested the network on image volumes; however, it could be extended to handle spatiotempo-

ral data like videos or longitudinal images. We will apply our model to other segmentation tasks with

different image types in the future. For multi-modality image scans, we could explore image-wise

attention, that is, measuring the contributions of each modality to the segmentation task.
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APPENDIX A

MODEL HYPERPARAMETERS

A.1 Plain UNet2D

• Learning rate

5e−5 with Adam optimizer

• Epochs

300 with early stopping

• Hidden Layers

4 downsampling (DS) UNnet blocks, 4 upsampling and 1 bottom layer. Number of units

in convolution layers: 32, 64, 128, 256, 512, 256, 128, 32

• Activation function

ReLU

• Dropout

Dropout rate: 0.3

• Network initialization

Weight initializer for convolution layers: ’glorot uniform’ Bias initializer for convolution

layers: ’zeros’

• Momentum

No momentum added explicitly. The Adam optimizer adds momentum by default.

• Kernel regularizer

Regularizer for convolution layers: l2 with λ = 0.0002
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A.2 Concurrent Spatial and Channel Squeeze and Excite Net

• Learning rate

5e−5 with Adam optimizer

• Epochs

300 with early stopping

• Hidden Layers

4 downsampling (DS) UNnet blocks, 4 upsampling and 1 bottom layer. Number of units

in convolution layers: 32, 64, 128, 256, 512, 256, 128, 32

• Activation function

ReLU for first convolution layer of each block and Sigmoid for second

• Dropout

Dropout rate: 0.3

• Network initialization

Weight initializer for convolution layers: ’glorot uniform’ Bias initializer for convolution

layers: ’zeros’

• Momentum

No momentum added explicitly. The Adam optimizer adds momentum by default.

• Kernel regularizer

Regularizer for convolution layers: l2 with λ = 0.0002

• SE block

Reduction ratio r = 2
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A.3 Attention-Augmented 2D UNet

• Learning rate

5e−5 with Adam optimizer

• Epochs

300 with early stopping

• Hidden Layers

4 downsampling (DS) UNnet blocks, 4 upsampling and 1 bottom layer. Number of units

in convolution layers: 32, 64, 128, 256, 512, 256, 128, 32

• Activation function

ReLU for first convolution layer of each block and Softmax for second

• Dropout

Dropout rate: 0.3

• Network initialization

Weight initializer for convolution layers: ’glorot uniform’ Bias initializer for convolution

layers: ’zeros’

• Momentum

No momentum added explicitly. The Adam optimizer adds momentum by default.

• Kernel regularizer

Regularizer for convolution layers: l2 with λ = 0.0002
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A.4 MDA-Net

• Learning rate

5e−5 with Adam optimizer

• Epochs

300 with early stopping

• Hidden Layers

4 downsampling (DS) UNnet blocks, 4 upsampling and 1 bottom layer. Number of units

in convolution layers: 32, 64, 128, 256, 512, 256, 128, 32

• Activation function

ReLU for first convolution layer of each block and Softmax for second

• Dropout

Dropout rate: 0.3

• Network initialization

Weight initializer for convolution layers: ’glorot uniform’ Bias initializer for convolution

layers: ’zeros’

• Momentum

No momentum added explicitly. The Adam optimizer adds momentum by default.

• Kernel regularizer

Regularizer for convolution layers: l2 with λ = 0.0002

• Difference and order block

Number of neighbors r = ±5
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