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ABSTRACT

We examine two main classes of deep learning methods, patch-based convolutional neural

network (CNN) architectures and fully convolutional neural network (FCNN) approaches, for

semantic segmentation and object classification of coral reef survey images. Using image data

collected from underwater video of marine environments, we compare five common CNN archi-

tectures and observe Resnet152 [1] to achieve the highest accuracy. For our comparison of FCNN

approaches, we test three common architectures and one custom modified architecture and observe

the best performance with Deeplab v2 [2]. We expand on our initial approaches by proposing a

technique that utilizes the multi-view image data commonly extracted, yet often discarded, in video

or remote sensing domains. We examine the use of stereoscopic image data for FCNN approaches

and multi-view image data for patch-based CNN methods. Our proposed TwinNet architecture is

the top performing FCNN. Among patch-based multi-view approaches, our proposed nViewNet-8

architecture yields the highest accuracy on this task.
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CHAPTER 1

INTRODUCTION

In this thesis, we detail a variety of deep learning methods for effectively mapping coral reef

ecosystems. Traditional approaches to this task have often been limited either due to the labor-

intensive nature of manual mapping by human divers, or in the depth and scope achievable by

methods such as aerial photography. Using underwater image data, it has become possible for

experts to manually annotate images of the coral reef in order to achieve accurate classification.

This process, however, is both time consuming and labor intensive.

It is important to attempt to overcome these barriers to coral reef mapping and classification

in order to monitor the health of these marine ecosystems. There is currently a state of marine

environmental crisis brought about by major declines in coral reef ecosystems [3]. By improving

mapping and monitoring tools that can estimate the abundance of organisms in a given ecosystem,

it is possible to track the changes in the health of coral reef environments.

To automate and streamline the annotation task, we first explore the use of convolutional neural

network (CNN) architectures. We compare the accuracy of annotation completed using the fol-

lowing CNN architectures: VGG16 [4], InceptionV3 [5], InceptionResNetV2 [6], Resnet50 and

Resnet152 [1]. Next, we compare the above CNN architectures to prior methods that have been

used for semantic segmentation and object classification of underwater images of marine envi-

ronments. Among the compared architectures Resnet152 [1] performs the best on this task with

90.03% accuracy, compared to the traditional SVM and texton dictionary approach, which per-

forms with 84.80% accuracy.

We next detail the use of fully convolutional neural networks (FCNNs) on this task. FCNNs

generate a class prediction for every pixel in a given image in order to simultaneously perform
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object classification and semantic segmentation of the image. We compare FCNN models including

FCN8s [7], Dilation8 [8], and DeepLab v2 [2] to DilationMod, a custom modification of the Dila-

tion8 architecture that we designed specifically for this task. The best accuracy is observed from

the DeepLab v2 architecture with 67.70% pixelwise accuracy.

The performance results of these models demonstrate that modern deep learning architectures

can produce better results than traditional methods for the task of object classification and semantic

segmentation in underwater coral reef images.

In the third chapter we describe how these deep learning methods can be extended by utilizing

multiple viewpoints to make a more accurate prediction. Frequently, in capturing data for mapping

tasks of underwater environments, images of subjects are taken from multiple points of view. We

propose approaches that use this information in order to improve the accuracy of both FCNN and

patch-based models.

We propose a method that uses stereoscopic image pairs to improve the accuracy of FCNNs

on the task of semantic segmentation of coral reef images. Our method uses both left-perspective

and right-perspective rectified images to generate a disparity map, which is then added as a fourth

channel. Next, we propose the TwinNet architecture, which accepts stereo image pairs as inputs

and uses a weight sharing scheme similar to those seen in Siamese networks [9]. Using the left-

perspective and right-perspective images, the network is able to learn spatial features rather than

relying on hand-engineered features that are provided to the network explicitly. Our TwinNet archi-

tecture is able to perform with 66.44% pixelwise accuracy on this task.

To improve the accuracy of patch-based approaches to semantic segmentation, we explore the

use of multiple-viewpoint images for single-entity classification. To create a three-dimensional

semantic segmentation, we first create a three-dimensional mesh and then perform a classification

on each mesh face. To improve the overall accuracy of this classification, we propose different

ensemble voting schemes. We also propose the nViewNet architecture, which can receive a variable

number of images (with a specified maximum) as inputs and learn a combination of the inputs to
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output a single-entity classification. NViewNet outperforms ResNet152 [1] with a top accuracy of

94.26%.

For both FCNN and patch-based approaches, we show that utilizing image data acquired from

varying points of view can improve classification accuracy in the semantic segmentation task.
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CHAPTER 2

A COMPARISON OF DEEP LEARNING METHODS FOR SEMANTIC SEGMENTATION OF CORAL

REEF SURVEY IMAGES1

1A. King, S. M. Bhandarkar, and B. M. Hopkinson. Submitted to 2018 Computer Vision and Pattern
Recognition Workshops, March 26, 2018
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ABSTRACT

Two major deep learning methods for semantic segmentation, i.e., patch-based convolutional

neural network (CNN) approaches and fully convolutional neural network (FCNN) models, are

studied in the context of classification of regions in underwater images of coral reef ecosystems

into biologically meaningful categories. For the patch-based CNN approaches, we use image data

extracted from underwater video accompanied by individual point-wise ground truth annotations.

We show that patch-based CNN methods can outperform a previously proposed approach that

uses support vector machine (SVM)-based classifiers in conjunction with texture-based features.

We compare the results of five different CNN architectures in our formulation of patch-based CNN

methods. The Resnet152 CNN architecture is observed to perform the best on our annotated dataset

of underwater coral reef images. We also examine and compare the results of four different FCNN

models for semantic segmentation of coral reef images. We develop a tool for fast generation of

segmentation maps to serve as ground truth segmentations for our FCNN models. The FCNN archi-

tecture Deeplab v2 is observed to yield the best results for semantic segmentation of underwater

coral reef images.

2.1 INTRODUCTION

A fundamental issue limiting ecological studies in marine environments, such as coral reefs, is

the difficulty of generating accurate and repeatable maps of the underlying ecosystems. Manual

in situ mapping performed underwater by human divers is extremely time consuming, whereas

aerial photography and satellite remote sensing are both severely limited by the fact that sea-

water absorbs light strongly, thereby limiting monitoring to very shallow marine ecosystems [10].

Acoustic methods are able to map the ocean floor at a large spatial scale, but are not suitable for

mapping marine ecosystems at finer spatial scales.

This paper describes our ongoing work on the mapping and monitoring of coral reef ecosys-

tems. Coral reefs provide habitat to a wide diversity of organisms and also substantial economic and
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cultural benefits to the several million people who live in adjacent coastal communities [11]. How-

ever, coral reefs worldwide are being increasingly threatened by a variety of natural and anthro-

pogenic stressors such as global climate change, ocean acidification, sea level rise, pollutant runoff,

sedimentation, and overfishing [12, 13]. These stressors have caused coral reef ecosystems world-

wide to suffer from massive, rapid declines over the past three decades, resulting in a state of

marine environmental crisis [3]. Given their precarious state, improved mapping and monitoring

tools are urgently needed to detect and quantify the changes in coral reef ecosystems at appropriate

scales of temporal and spatial resolution.

Traditional reef surveys for mapping, classification, and enumeration of underwater taxa have

been performed in situ by scuba divers trained in marine ecology. While accurate, in situ surveys

are time consuming, expensive, and allow only limited coverage of the coral reef. With recent

advances in autonomous underwater vehicles (AUVs) equipped with high-resolution cameras, in

situ surveys are being increasingly replaced by image/video-based robotic surveys. In addition,

computer vision, pattern recognition, and machine learning techniques are enabling the genera-

tion of detailed, large-scale maps of underwater environments [14]. AUVs traveling systematically

through the coral reef environment are able to continuously acquire high-quality images of small

portions of the coral reef ecosystem. Using computer vision algorithms, the individual images are

then assembled into a large-scale, 3D reconstruction (or map) of the coral reef ecosystem accom-

panied by semantic classification of the various coral taxa, thereby permitting one to estimate the

spatial distribution of these taxa on the coral reef. Figure 3.3 depicts the 3D reconstruction of a

coral reef accompanied by the semantic classification of its constituent taxa.

Recent advances in the field of deep learning have resulted in significant progress in image

object classification and, more recently, in semantic image segmentation. The advances in deep

learning have given researchers in a variety of fields sufficient cause to reexamine traditional

methods for image segmentation and object classification to determine if deep learning approaches

can indeed improve performance. One such field is coral reef ecology, where several approaches

to assessing the ecological state of coral reef ecosystems entail analysis of data on the spatial dis-
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Figure 2.1: 3D reconstruction and annotation of a coral reef ecosystem.

tribution of sessile organisms, including hard corals, soft corals, and algae, and open space for

settlement [15, 16]. This data is commonly obtained from underwater images acquired in situ by

human divers or by autonomous or remotely operated underwater robotic vehicles.

Traditionally, overhead images of coral reef sections are manually annotated by domain

experts. During the annotation process, experts are presented with pseudorandomly generated

pixel positions in an image and are required to provide a classification label for each of these

pixels. Once a large enough pixel sample is collected, it is possible to robustly estimate the

abundance of each organism group in the coral ecosystem. A significant shortcoming of this pro-

cess is that it is labor intensive, which in turn limits the scale and frequency of coral ecosystem

assessment.

In this paper, we first examine the annotation task and show how it can be automated using

known convolutional neural network (CNN) architectures. We compare the annotation accuracy of

known CNN architectures such as VGG16 [4], InceptionV3 [5], InceptionResNetV2 [6], Resnet50

and Resnet152 [1]. We further compare these CNN architectures to previous work in the areas of

semantic segmentation and object classification in the context of analysis of underwater coral reef

images.

7



To localize the various coral taxa, we adopt a patch-based CNN approach, which first segments

the coral reef images into uniform regions, often using well known algorithms such as simple linear

iterative clustering (SLIC) [17] or graph cuts [18]. Patches from each region are then extracted and

classified, resulting in a semantic segmentation map of the original image. The patch-based CNN

approaches are typically limited by the corresponding segmentation algorithm used when trying to

localize organisms within the coral reef.

We also examine fully convolutional neural network (FCNN) models, which are capable of per-

forming simultaneous semantic segmentation and object classification by generating a class pre-

diction for each pixel in an image. We compare the performance of the following FCNN models:

FCN8s [7], Dilation8 [8], DeepLab v2 [2], and DilationMod, which is a custom modification of the

Dilation8 architecture designed by us for the specific task of semantic segmentation of underwater

coral reef images. We show that modern deep learning architectures are indeed capable of outper-

forming conventional methods for semantic segmentation and object classification in underwater

coral reef images.

2.2 BACKGROUND

2.2.1 CONVOLUTIONAL NEURAL NETWORKS (CNNS)

Convolutional neural networks (CNNs) have seen enormous success in a wide range of classifica-

tion tasks. The first CNN architecture that we consider for our implementation of a patch-based

approach to semantic image segmentation and object classification is the VGG16 architecture [4].

This architecture was proposed in 2014 by Simonyan and Zisserman [4] of the Visual Geometry

Group for the purpose of image classification. The VGG16 architecture represents a significant

improvement over previous networks by its use of small 3 × 3 kernel filters instead of the larger

kernel filters common at the time. The VGG16 CNN architecture is comprised of 13 convolu-

tional layers and three fully connected (FC) layers for a total of 16 weight layers. We also con-

sider the InceptionV3 architecture proposed by Szegedy et al. [5]. The InceptionV3 architecture
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works to improve upon previous CNN architectures through its defining contribution – the incep-

tion module. The inception module tries to approximate an optimal sparse convolutional neural

network, allowing the InceptionV3 architecture to deepen (i.e., add layers) while staying within

common GPU memory constraints.

As the CNNs grow deeper, the gradient updates become vanishingly small in the upper layers

of the network, presenting significant difficulties during the training process. This phenomenon,

termed the vanishing gradient problem, is addressed by He et al. [1] in their formulation of the

ResNet CNN architecture. ResNet makes use of residual blocks that attempt to estimate or fit a

residual mapping as opposed to a direct mapping. The ResNet residual blocks make use of a skip

connection that passes information directly from the first layer of the block to the last. The inter-

mediate layers then learn a residual from the input layer. This allows the gradient to be preserved

across several CNN layers. We consider both the 50-layer ResNet50 architecture and the 152-layer

ResNet152 architecture in this paper [1]. Finally, we also consider the Inception-ResNetV2 archi-

tecture proposed by Szegedy et al. [6], which combines the Inception architecture with the ResNet

residual block architecture.

2.2.2 FULLY CONVOLUTIONAL NEURAL NETWORK (FCNN) ARCHITECTURES

Among the fully convolutional neural network (FCNN) models for simultaneous semantic image

segmentation and object classification, we first consider the FCN8s architecture proposed by Shel-

hamer et al. [7]. The FCN8s architecture represents the first successful attempt to repurpose an

existing CNN architecture designed for image classification for the task of semantic image seg-

mentation. To repurpose a CNN-based classifier for semantic image segmentation, Shelhamer et

al. [7] use the existing VGG16 classification architecture [4] as their base model. They eliminate

the fully connected CNN layers in the VGG16 architecture, replacing them with 1-by-1 convo-

lution layers with an overall depth equal to the number of classes. This results in an end-to-end

trainable model for semantic image segmentation, eliminating the need for separate segmentation

and patch-wise classification phases. The FCN8s architecture requires whole-image ground truth
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segmentation maps for the purpose of training. The training loss is evaluated by comparing the net-

work output against the ground truth segmentation map. The segmentation map that results from

the FCN8s architecture is downsampled to 1/32 of the original size. Simple bilinear interpolation

can be used to expand the image, but this results in poor segmentation localization. To address this

problem Shelhamer et al. [7] propose a scheme to feed information from previous layers (where the

feature maps are larger and hence of higher resolution) and use transposed convolution to upsample

the final segmentation map.

Yu and Koltun [8] present a new FCNN architecture termed Dilation8. They base Dilation8 on

the FCN8s architecture [7] and improve on its results. They contend that CNN models designed

specifically for classification, such as VGG16, need to be rethought for the task of semantic seg-

mentation. Dilation8 removes some of the max pooling layers in VGG16 in order to preserve

spatial resolution. Rather than using iteratively larger kernels to maintain a large receptive field,

they modify the convolution operator itself as shown in equation (2.1).

(F ∗l k) (p) =
∑

s+lt=p

F (s)k(t) (2.1)

Yu and Koltun [8] modify the standard equation for discrete convolution where ∗ refers to the

convolution operation, F represents a discrete function, and k represents a discrete kernel. Yu and

Koltun [8] use parameter l to effectively dilate the convolution kernel by factor l. This means that

a one-dilated convolution would be equivalent to standard convolution. The use of dilation allows

the receptive field to grow while still maintaining the same number of parameters. Furthermore,

Yu and Koltun [8] also implement a context module that is layered after the network. The context

module supports an exponential expansion of the receptive field, allowing the network to exploit

contextual information at multiple scales. The approach outlined by Yu and Koltun only downsam-

ples the image to 1/8 of its original size, as opposed to 1/32 in the FCN8s architecture proposed by

Shelhamer et al. [7].

The final FCNN model that we consider in this paper is Deeplab v2, proposed by Chen et

al. [2]. Chen et al. refine previously proposed FCNN models by employing the ResNet [1] as their
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base architecture instead of VGG16. Deeplab v2 uses dilated convolution instead of traditional

convolution in its Resnet implementation, in a manner similar to Dilation8. Furthermore, Deeplab

v2 adds a post-processing step based on a conditional random field (CRF) for refinement of the

semantic segmentation map. We compare the performance of the aforementioned FCNN models

including one based on a modification of Yu and Koltun’s Dilation8 architecture [8] on our dataset

of coral reef survey images.

2.2.3 RELATED WORK

Beijbom et al. [3] investigated automated approaches to determine the spatial distribution of the

various organisms in a coral reef ecosystem using survey images. They also outlined many of

the obstacles unique to this task [3]. They noted the various challenges faced by coral reef image

analysis on account of the extreme variations in the size, color, shape, and texture of each of

the organism classes (i.e., taxa) and the organic and ambiguous nature of the class boundaries.

Furthermore, dramatic changes in water turbidity between sites due to ocean currents and the

presence of plankton and algal blooms could greatly alter the ambient lighting and image colors,

making the task of automated image analysis even more difficult [3]. Beijbom et al. [3] employed a

maximum response filter bank in conjunction with a multiscale patch and texton dictionary based

approach to characterize the features in an underwater coral reef image [19]. These features were

then input to a support vector machine (SVM) to classify the patches as belonging to the various

organism classes.

Treibitz et al. [20] present a wide field-of-view fluorescence imaging system called FluorIS

based on a consumer-grade RGB camera that is enhanced for greatly increased sensitivity to

chlorophyll-a fluorescence. Images acquired using FluorIS are shown to exhibit high spectral cor-

relation with in situ spectrometer measurements. FluorIS is shown to be capable of reliable image

acquisition during day and night under varying ambient illumination conditions. In follow-up work,

Alonso et al. [21] present a CNN-based scheme for end-to-end semantic segmentation of coral reef

11



images given sparsely or weakly labeled training data. In particular, they show how augmenta-

tion of RGB images with fluorescence data (as done by FluorIS) can be used to generate a dense

semantic labeling by fine-tuning an existing encoder-decoder CNN model. However, their scheme

is restricted to a binary labeling of images as coral or non-coral in contrast to our work, which

entails fine-grained categorization of coral reef surfaces into multiple biological classes.

In this paper, we compare the performance of the approach of Beijbom et al. [3] with that of

various deep learning approaches on our coral reef image dataset. We show the superiority of deep

learning on coral reef survey images. Given the variance that can occur between different locations

as well as over time, we propose that deep CNN-based approaches to semantic image segmentation

and object classification are particularly well suited for tasks in this problem domain.

2.3 EVALUATION OF PATCH-BASED CNN APPROACHES

2.3.1 DATA COLLECTION

The coral reef underwater image dataset was collected from coral reefs off the Florida Keys by a

team of swimmers/divers. An underwater stereo camera rig (GoPro Dual Hero system) was used

to collect the underwater video data while swimming over sections of the reef. The rig was carried

over the reef in a serpentine pattern in order to capture the entire seafloor for a given region of the

coral reef. Images were extracted from the video data at a rate of two frames per second. A subset of

the collected images were then annotated by experts to provide ground truth pixel classifications.

During the annotation process, an individual pixel in an image is selected in a pseudorandom

fashion. The pixel is shown along with its spatial context to an expert who then assigns it to one

of the following 10 classes: (1) Acropora palmata, (2) Orbicella spp., (3) Siderastrea siderea, (4)

Porites astreoides, (5) Gorgonia ventalina, (6) sea plumes, (7) sea rods, (8) algae, (9) rubble, and

(10) sand.

The first four classes, i.e., A. palmata, Orbicella spp., Siderastrea siderea, and P. astreoides,

represent the different species of coral commonly found on reefs in the Florida Keys. The

remaining single-species class, i.e., Gorgonia ventalina, represents the common sea fan. The
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Table 2.1: Results of the patch-based CNN architectures. SGD refers to the stochastic gradient
descent algorithm.

Architecture Accuracy Optimizer Batch Size
SVM and Texton Dict. 84.80
VGG16 87.34 SGD 32
InceptionResNetV2 84.79 SGD 32
InceptionV3 84.69 SGD 32
Resnet50 88.10 SGD 32
Resnet152 90.03 SGD 16

remainder of the classes are multi-species classes or general classes. A total of 9,511 pixels were

annotated among the collected 1,807 images. We extracted a square region centered around each

annotated pixel to create a dataset of 9,511 classified images.

2.3.2 METHODS

We compare five commonly used CNN architectures known to perform well on patch classification

tasks. We compare the performance of well known CNN architectures, such as VGG16 [4], Incep-

tionResNetV2 [6], InceptionV3 [5], Resnet50 and Resnet152 [1], to that of the SVM-based and

texton dictionary-based approach proposed by Beijbom et al. [3]. We initialize the aforementioned

CNN models using pretrained weights on the Imagenet dataset. The top fully connected layers of

the CNNs are removed and replaced with a customized layer, the output of which matches the

number of classes under consideration.

We employ a bottleneck approach in which features from the convolutional layers of the net-

work are saved and used to train the top layers of the CNN model before training the entire CNN

model. Training the top layers of the CNN ensures that the pretrained weights are not significantly

altered via large gradient updates. The newly created top layers have a fully connected layer with

ReLU activation functions and dropout followed by a softmax activation layer with 10 units (the
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number of classes). We use a batch size of 32 for all of the CNN models except Resnet152 (which

requires a smaller batch size of 16) in order to train them using an Nvidia GTX 1080 GPU card.

All the CNN models are trained using stochastic gradient descent (SGD) to optimize the pretrained

weights. The top layer of each CNN model is trained with a learning rate of 1× 10−3 and a weight

decay rate of 5 × 10−4, after which the entire network is trained with a learning rate of 1 × 10−4

and weight decay rate of 1 × 10−6. The networks are trained in increments of 50 epochs until the

loss function is no longer observed to be steadily decreasing.

We also replicate the support vector machine (SVM)-based approach of Beijbom et al. [3]

and test it on our dataset. We use grid search to optimize the SVM hyperparameters. To ensure

experimental validity, we separate our dataset into two sets, a testing set and a training set. We

train our models with the training set and then report the model performance on the unseen testing

set. The overall accuracy across all classes is reported.

2.3.3 PERFORMANCE OF THE CNN ARCHITECTURES

Table 2.1 summarizes the results of the comparison of the five CNN models that were considered

in our study. In general, the performance of the CNNs was quite good with an overall classification

accuracy ≈ 85% or higher in all cases. Of the CNNs that were considered, the InceptionV3 [5]

was observed to perform the worst, yielding a classification accuracy of 84.69%. Resnet152 [1]

was observed to yield the best classification accuracy, outperforming VGG16 [4] and Resnet50 [1]

by almost 2%. These results underscore the necessity of formulating deeper CNN architectures,

especially when working in this domain.

The confusion matrix for each CNN architecture is presented in Figure 3.4. Most classes are

classified with greater than 80% accuracy and several classes exceed 95% accuracy. In all CNN

models, there are errors when distinguishing between the classes sand and rubble. These classes

share several features in common, and the correct class is in some cases ambiguous. Fortunately,

the distinction between these two classes is not of great merit for our ultimate task of determining
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(a) VGG16 (b) InceptionResNetV2

(c) InceptionV3 (d) Resnet50

(e) Resnet152 (f) SVM and Texton Dictionary

Figure 2.2: Confusion matrices for various patch-based CNN architectures. We abbreviate Acro-
pora palmata as A. palm, Gorgonia ventalina as Gorg, Orbicella spp. as Orb, Porites astreoides as
P. ast, and Siderastrea siderea as S. sid.
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Table 2.2: Results of the FCNN models. SGD refers to the stochastic gradient descent algorithm.

Architecture Pixelwise Accuracy Optimizer Momentum
FCN8s 50.45 SGD 0.9
Dilation8 62.84 SGD 0.9
DilationMod 64.90 SGD 0.9
DeepLab v2 67.70 SGD 0.9

production rates in the reef. All the classes are classified correctly at least a majority of the time

among our top performing CNN models.

The SVM-based approach yields an overall accuracy of 84.8% on our dataset, lower than that

of our best performing patch-based CNN models. The SVM-based approach also tends to signifi-

cantly underperform on minority classes such as sea rods, Siderastrea siderea, sand, and Orbicella.

2.4 FULLY CONVOLUTIONAL NEURAL NETWORK (FCNN) MODELS

We have shown that patch-based CNNs can estimate the distribution of the various taxa within the

coral reefs with greater accuracy than traditional SVM-based approaches. We now focus on fully

convolutional neural network (FCNN) models, which represent modifications of the traditional

CNNs to provide full semantic segmentation of the input image at the pixel level.

2.4.1 DATA COLLECTION

FCNN models for semantic segmentation generally require dense pixelwise ground truth segmen-

tation maps for training purposes. The process of creating ground truth segmentation images for

training is often very labor intensive. This is especially true in the case of image data from under-

water environments, where corals often contain fine details and image regions are sometimes

ambiguous due to poor water clarity. To work around these problems, we created a customized

tool to expedite the process of generating ground truth training data. The custom annotation tool
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segments a provided image and the user can then annotate the segmented regions with their class

labels. Our tool offers two methods of image segmentation: one based on simple linear iterative

clustering (SLIC) superpixels [17] and the other based on efficient computation of graph cuts [18].

The program also has a tunable parameter that allows the user to either increase or decrease the

level of segmentation, resulting in an oversegmented or undersegmented image. Typically, a user

can oversegment the image, annotate its regions, and quickly generate a segmentation map for

training purposes. As a user annotates a region, the annotations are propagated to similar regions

in its spatial proximity. For instance, if the user annotates a region as sand the tool will automati-

cally propagate the label to other similar regions in its spatial proximity. The tool uses simple RGB

histograms and Gabor filter features to measure region similarity and propagates the labels using

a k-means clustering algorithm. Finally, the tool offers a manual mode for the user to enter the

annotations manually or to correct annotation errors. This tool allowed us to quickly generate 413

dense classification maps for use with our FCNN models [7].

2.4.2 DILATIONMOD

We proposed and tested a modification to the Dilation8 [8] architecture by removing a pooling

layer from the Dilation8 architecture. This means that the image is only downsampled to 1/4 of its

original size within the network (the downsampling to 1/4 is on account of the remaining two max

pooling layers) as opposed to 1/8 in Yu and Koltun’s Dilation8 model [8]. The removal of a pooling

layer allows the FCNN to preserve the finer details in the input image. This approach requires

more memory, but can be accommodated within the memory on an 8GB Nvidia GTX 1080 GPU

card when running experiments on our dataset. Furthermore, we introduce dilated convolutions one

block earlier in the network (i.e., each convolution layer in the block is dilated by two). Introducing

dilated convolution earlier in the network increases the receptive field, counteracting the increase

in resolution arising from the removal of a pooling layer. We do not make use of the context module

or skip connections. Instead, we upsample the FCNN results using bilinear interpolation. Since we
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do not use skip connections or conditional random fields (CRFs) this architecture is very easy to

implement.

2.4.3 PREPROCESSING

The collected data was preprocessed for use in the FCNN models. Since the images in our dataset

are quite large, each image had to be split into four quarters to be used on an Nvidia GTX 1080 GPU

with a batch size of one. Since the ground truth segmentation images generated by our tool were

in full color, they had to be converted so that each color channel value corresponded to the class

label number at that pixel in the image. Since our dataset has 10 classes, the preprocessing outputs

images with values 0-9 in their respective color channels. To normalize our data, we subtract the

mean RGB value of the training set from each image before passing it to the FCNN.

2.4.4 TRAINING THE FCNN MODELS

We compare the performance of FCN8s [7], Dilation8[8], DeepLab v2 [2], and our modified ver-

sion of the Dilation8 frontend (i.e., DilationMod) on the task of semantic segmentation of under-

water coral reef images. The FCNN weights are initialized using the Imagenet pretrained weights.

To retain the benefit of the pretraining, our FCNN models freeze the pretrained weights and train

on any additional layers initially with a learning rate of 1 × 10−3. We use a batch size of one

and stochastic gradient descent with a Nesterov momentum term as our optimization technique.

We then train the entire model using a learning rate of 1 × 10−4 and weight decay of 1 × 10−6.

Each FCNN model trains for 7,000 iterations to ensure convergence, and the FCNN model with

the highest validation accuracy is selected.

2.4.5 PERFORMANCE OF THE FCNN MODELS

Table 2.2 summarizes the results of our comparison of the aforementioned four models. We report

the pixelwise accuracy to compare the four methods. Corals contain fine details and consequently
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(a) Original (b) Ground Truth (c) FCN8s (d) Dilation8 (e) DilationMod (f) DeepLab v2

Figure 2.3: Outputs of multiple FCNN architectures for a given sample image.

the corresponding image regions are often very thin. Because of this, coral reef semantic segmen-

tation is far more sensitive to downsampling than many other semantic segmentation tasks. The

least accurate architecture is FCN8s [7], which only has an accuracy of 50.45%. This result is

not unexpected given the downsampling that occurs in the network. While the model makes use

of transposed convolution to upsample the image, it cannot adequately recover the fine details

required for this task. Dilation8 [8] reports far higher accuracy at 62.84%. Our modified Dilation8

network gives a modest boost to accuracy over the previous two methods, with an overall accuracy

of 64.9%. Deeplab v2 [2] is the best performing model on our dataset with an accuracy of 67.7%.

We present the semantic segmentation results of the various FCNN architectures for one of

our validation images in Figure 2.3. There is a noticeable disparity between the level of detail

preserved by FCN8s and the models that make use of dilated convolution. This is also reflected in

the activation maps for each class on this image.

2.5 CONCLUSION

In this paper, we have shown the effectiveness of deep learning approaches for semantic segmen-

tation of coral reef survey images. This research serves to automate the process of determining the
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distribution of organisms and substrates on coral reefs. We have detailed and contrasted two main

classes of semantic segmentation based on patch-based CNN models and FCNN models.

We first compared standard CNN architectures for patch-based classification from individual

point-based ground truth annotations of training images. The patch-based classification methods

can be used for the common task of determining the abundance or paucity of organisms on reefs

by leveraging existing segmentation techniques and performing patch-wise classification of each

resulting segment. Our best performing CNN model for this task was the ResNet152 [1] architec-

ture, which yielded an accuracy of 90.03%. The previous work of Beijbom et al. [3] using SVMs

and texton dictionaries yielded an accuracy of 84.8% on our dataset for this task.

It is important to note that the granularity of classification is much coarser with a patch-based

CNN model since it provides a single class label for an entire patch within an image, whereas the

FCNN models provide a classification for each individual pixel within an image. The patch-based

CNN approaches yield a higher classification accuracy overall. They are, however, limited by the

corresponding segmentation algorithm when attempting to localize specific taxa within the coral

reef image. Long et al. [7] addressed this tradeoff when proposing the FCN8s architecture, stating

that semantic segmentation poses an inherent dilemma between semantics and location in that

global information resolves the question of identity, i.e., what, whereas local information resolves

where.

Next, we examined FCNN models, which perform simultaneous segmentation and classifica-

tion by providing a class prediction at each pixel within an image. We compared four different

FCNN models, the best performing of which was the Deeplab v2 architecture, yielding an accu-

racy of 67.7% on our dense classification dataset. Unlike patch-based CNN approaches, FCNN

models do not pose limitations on localization accuracy. Due to the fine granularity of classifi-

cation, however, the classification accuracy in our tests was below that of the patch-based CNN

approaches.
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2.6 FUTURE WORK AND APPLICATIONS

Since our image data is collected in a serpentine fashion, often from multiple angles so as to

capture the entire seafloor, we are able to create semantic maps of entire regions of the coral

reef. To create two-dimensional semantic maps of the coral reef regions, each new image can

be registered with the result of all previously registered images until all images from a region

are processed/registered. The resulting mosaicked image can then be segmented into superpixels.

Patches can be extracted from each superpixel and classified using a patch-based CNN architecture.

In the case of the FCNN models, the transformation matrices of each image registration can be

saved and can then be applied to the corresponding FCNN output for that image. This will result

in a mosaicked semantic map for the entire coral reef region.

Currently, we are examining photogrammetric techniques to create a three-dimensional mesh

of coral reef regions. We classify mesh faces using the patch-based CNN approaches. The FCNN

models presented in this paper use VGG16 [4] as a base architecture that is further enhanced or

modified. Future extensions of this work could include applying similar modifications to other

network architectures, such as Resnet152 [1]. Finally, since the image data was collected with

stereo cameras, future work could look at incorporating disparity information as a channel in the

input image. Additionally, deep learning architectures could be developed for leveraging multiple

viewpoints to improve classification.
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ABSTRACT

Convolutional neural networks (CNNs) are typically used to make a single classification from a

single image or, in the case of fully convolutional neural networks (FCNNs), to generate a seman-

tically segmented output. Often, however, in mapping tasks one may obtain multiple images of a

point of interest from different vantage points, as is the case in both stereoscopic image collection

and video surveys. In the following, we propose and compare architectures capable of utilizing

information from multiple viewpoints to improve classification accuracy of semantic segmentation

models. We examine two major classes of architectures. First, we look at extending FCNNs for

stereoscopic information. Second, we examine patch-based approaches with multi-view CNNs.

The top-performing fully convolutional approach is our proposed TwinNet architecture, which

performs comparably with its baseline architecture, Dilation8 [8], when run only with a left-

perspective image, but markedly improves over Dilation8 when run with a stereo pair of images.

The top performing patch-based approach is our proposed nViewNet-8 architecture, which outper-

forms its single-image ResNet152 [1] baseline architecture by 8.72%.

3.1 INTRODUCTION

Modern deep learning approaches to semantic segmentation typically fall into one of two cate-

gories. The first major category is fully convolutional neural networks (FCNNs), which segment

and classify on a per-pixel basis in one end-to-end trainable network. Second are patch-based

approaches that classify existing segments. When semantic segmentation is used in mapping tasks,

such as in remote sensing domains or underwater imaging, the images of the underlying objects

are often captured from many points of view. In typical approaches to semantic segmentation, only

a single viewpoint is utilized to make a classification. The pipeline is typically as follows: images

are collected, cleaned, and registered, and then a composite of the images is generated to create a

full map of a region. Further analysis is done on the composite map, which has discarded all multi-

view information. In this work we propose methods for utilizing this often discarded information

with the aim of further improving model accuracy for classification and semantic segmentation.
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For FCNN approaches to semantic segmentation we examine utilizing stereoscopic image

pairs. We propose and detail a method that generates a disparity map from the left- and right-

perspective rectified images. The disparity map is added as a fourth channel, in addition to the three

color channels, to the input images to guide the semantic segmentation with three-dimensional dis-

parity information. We then propose the TwinNet architecture, roughly based on siamese networks,

which accepts both the left- and right-perspective images as inputs. From these stereo images the

network can learn disparity measures or any other spatial features that may be useful in the classi-

fication task.

For patch-based approaches to semantic segmentation we examine utilizing a variable number

of viewpoints to make a single-entity classification. We create a three-dimensional mesh and per-

form classification on each mesh face to generate a three-dimensional semantic segmentation. We

propose using different voting schemes to improve classification accuracy. Furthermore we pro-

pose the nViewNet architecture, which is capable of receiving a variable number of images (with a

set maximum number) and learning a combination to ultimately yield a single-entity classification.

We study this problem in the context of coral reef ecology, a field which is often limited by the

difficulty inherent in creating accurate maps of diverse marine ecosystems. This work is important,

however, because coral reefs across the globe are facing increasing threats, from both natural and

anthropogenic stressors. These stressors, which include climate change, ocean acidification, sea

level rise, pollutant runoff, and overfishing [12, 13] have combined during the last three decades to

cause rapid declines in coral reef ecosystems, resulting in a state of marine environmental crisis [3].

Due to the precarious state of these coral reef ecosystems, advancements in mapping and moni-

toring technologies are urgently needed to detect and quantify the changes in coral reef ecosystems

at appropriate scales of temporal and spatial resolution.

3.2 BACKGROUND AND RELATED WORK

In recent years convolutional neural networks (CNNs) have continued to push the accuracy of

image classification models and command large scale image classification tasks [1, 22, 23]. CNNs
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have grown deeper over time, which has allowed them to learn more complex patterns, but also

presents new difficulties as the gradient updates become smaller and smaller. This phenomenon,

known as the vanishing gradient problem, is addressed by He et al. [1] in their creation of the

ResNet architecture. Our previous work in this problem domain established that the ResNet152

architecture performed particularly well on this classification task [24]. We adopt it as the baseline

architecture for many of the proposed models in this work. ResNet makes use of residual convo-

lution blocks that attempt to fit a mapping of the residual as opposed to a direct mapping. This

theoretically allows the network to deepen without the gradients becoming vanishingly small.

In our fully convolutional neural network approaches we compare the performance of

FCN8s [7] and Dilation8 [8] with and without a disparity channel and further use Dilation8 as a

base architecture for TwinNet. In their work on FCN8s, Shelhamer et al. [7] repurpose the VGG16

architecture, intended for classification, for semantic image segmentation. They eliminate the

fully connected CNN layers in the VGG16 architecture, replacing them with convolution layers,

and make use of transposed convolution to upsample the output. This results in an end-to-end

trainable model for semantic image segmentation, eliminating the need for separate segmentation

and patch-wise classification phases. The FCN8s architecture requires whole-image ground truth

segmentation maps for the purpose of training. The training loss is evaluated by comparing the

network output against the ground truth segmentation map.

Yu and Koltun [8] present the Dilation8 architecture for semantic segmentation. They base

Dilation8 on the FCN8s architecture [7], but make modifications to further improve the accuracy.

Dilation8 removes many of the max pooling layers in the VGG16 base of FCN8s, which means it

does not have to rely so heavily on transposed convolution to upsample. Rather than using itera-

tively larger kernels to maintain a large receptive field, Dilation8 effectively dilates the convolution

kernel. Since the kernels still have the same number of parameters, the network maintains a similar

amount of computational requirements.

We make use of weight sharing schemes similar to those seen in siamese networks and

MVCNN. Siamese networks learn a similarity function between two inputs rather than a simple
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classification. To do this, they make use of weight sharing, in which the inputs are both fed through

the same network with the same learned weights. They make use of contrastive loss to compare

the similarity. We draw on this general idea in our work on TwinNet and nViewNet, which take

more than one image as input and shares weights for the initial base architecture.

Su et al. [25] looked at using classification networks for three-dimensional shape recognition in

their work on MVCNN. They proposed a network that took inputs from an array of 12 equidistant

cameras and pooled the views using an element-wise maximum operation. They showed that when

multiple views were pooled in this manner, accuracy increased over single view networks when

attempting to classify an image from its shape. We relax the constraints of this network setup to N

views from randomly-placed cameras.

3.3 UNDERWATER STEREOSCOPIC CORAL REEF SURVEY OF THE FLORIDA KEYS IMAGE

BANK

Our image bank was collected underwater from coral reefs off the Florida Keys by a team of

swimmers/divers. An underwater stereo camera rig (GoPro Dual Hero system) was used to collect

the underwater video data while swimming over sections of the reef. The rig was carried over

the reef in a serpentine pattern in order to capture a complete section of seafloor. Stereo pairs

were extracted from the video data at a rate of two frames per second. The resulting 2,391 stereo

pairs make up the Underwater Stereoscopic Coral Reef Survey of the Florida Keys image bank

(USCSF) and is used for the experiments in this work. This work was conducted under permits

from the Florida Keys National Marine Sanctuary (FKNMS-2016-042, FKNMS-2017-035).
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Table 3.1: Results of the FCNN stereo and disparity architectures.

Architecture Pixelwise Accuracy Input Channels
FCN8s 50.45 3 Color
Dilation8 62.84 3 Color
FCN8s 53.82 3 Color + Disparity
Dilation8 64.02 3 Color + Disparity
TwinNet-LeftOnly 61.93
TwinNet 66.44

3.4 EXTENDING FULLY CONVOLUTIONAL NEURAL NETWORKS FOR USE WITH STEREO-

SCOPIC INFORMATION

3.4.1 DATA COLLECTION

To begin the data collection process for FCNN models, it is necessary to create dense pixelwise

ground truth segmentation maps for use in training the models. Since our data is stereoscopic,

collecting both a left-perspective and right-perspective image, we create ground truths only on the

left-perspective images. The creation of these ground truth segmentations can be a time-consuming

process. This is particularly true in regard to underwater image data, which can be obscured by poor

water clarity. In order to streamline the process of creating ground truth segmentation images, we

created a customized tool.

Our annotation tool provides two image segmentation methods: simple linear iterative clus-

tering (SLIC) superpixels and graph cuts. The tool segments images, allows users to annotate

regions with class labels, has a tunable parameter to over- or undersegment, and offers a mode for

manual annotation. A user can quickly generate segmentation maps upon segmenting and anno-

tating the regions of an image. Our segmentation tool uses RGB histograms and Gabor filter fea-

tures to measure region similarity and propagates the labels using k-means clustering.
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Using this tool, we were able to quickly generate 413 dense classification maps for use with

our FCNN models [7]. Our ground truth semantic segmentations classify each pixel into one of

the following 10 classes: (1) Acropora palmata, (2) Orbicella spp., (3) Siderastrea siderea, (4)

Porites astreoides, (5) Gorgonia ventalina, (6) sea plumes, (7) sea rods, (8) algae, (9) rubble, and

(10) sand. Furthermore, we employ an ignore class for regions that do not fall into one of these

categories (such as fish) or for regions that are unclassifiable by an expert. The ignore class does

not contribute to the loss calculations and is therefore never a classification made by our networks.

Additionally, those regions are not used in calculating the accuracy on the validation set.

The first four classes, i.e., A. palmata, Orbicella spp., Siderastrea siderea, and P. astreoides,

represent the different species of coral commonly found on reefs in the Florida Keys. The

remaining single-species class, i.e., Gorgonia ventalina, represents the common sea fan. The

remainder of the classes are multi-species classes or general classes.

3.4.2 PREPROCESSING

Upon collection, the data was preprocessed for use in the FCNN models. Due to the large size

of each image (2.7k) in the dataset, it was necessary to split each into four quarters to be used

on an Nvidia GTX 1080 GPU with a batch size of one. Because the dataset contains 10 classes,

the preprocessing outputs images with values 0-9 in their respective color channels. Finally, we

subtract the mean color value of the training set from each image in order to normalize the data

before passing it to the FCNN.

3.4.3 FCNN WITH DISPARITY CHANNEL

We first examine the use of stereoscopic disparity as a means to leverage multi-view information in

fully convolutional neural networks. The images are first rectified with the parameters of our cali-

brated cameras. We create a disparity map using the semi-Global block matching disparity estima-

tion algorithm proposed by Hirschmuller [26]. We use a uniqueness threshold and block size of 15,

a contrast threshold of 0.5 and a disparity range of 64. After a disparity map is created, we inpaint
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missing regions on the disparity map using the technique proposed by Telea [27]. The resulting

disparity map is then concatenated as a fourth channel on the left-perspective image before it is

passed into the fully convolutional neural network. We compare the performance of a standard

three-channel input to this four-channel RGB plus disparity input on two models FCN8s [7] and

Dilation8 [8].

To ensure experimental validity, we separate our dataset into two sets, a training set and a

testing set with a 80-20 split, respectively. We train our models with the training set and then

report the model performance on the unseen testing set. The overall pixelwise accuracy across all

classes is reported. Since Imagenet [22] pretrained weights do not make use of a disparity channel,

we train each model from scratch. We train initially with a relatively high learning rate of 1× 10−3

to quickly learn some initial weights. We use a batch size of one and stochastic gradient descent

with a Nesterov momentum term as our optimization technique. We then train the model using a

learning rate of 1 × 10−4 and weight decay of 1 × 10−6 to refine the initial learning. Each FCNN

model trains for 15,000 iterations to ensure convergence, and the FCNN model with the highest

validation accuracy is selected.

3.4.4 TWINNET: STEREO FCNN

Rather than algorithmically deriving features from the relationship between the two stereo images

such as is the case with the disparity FCNN, we seek to create an architecture that will learn the

best relationship for use in classification. We draw inspiration from the weight sharing schemes in

siamese networks [9] and MNCNN [25]. Our base architecture is drawn from the work of Yu and

Koltun [8] and their Dilation8 frontend. This base architecture in turn is derived from VGG-16 [4],

but utilizes dilated convolutions and less max pooling. The left- and right-perspective images are

both fed through the base architecture, and the weights are shared at this point in the network. The

left and right outputs are then fed to our stereo module, which allows them to learn weights of their

own. The stereo module consists of three convolution layers. Each perspective’s stereo module

consists of three convolution layers and RELU activations with a two-dilated kernel size of three.
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(a) TwinNet Architecture

(b) nViewNet Architecture

Figure 3.1: The TwinNet and nViewNet architectures proposed in this work. Conv stands for con-
volution layer, C stands for channels, FC stands for fully connected.
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Figure 3.2: A visualization of reprojection from a mesh to multiple images.

The separated outputs of the stereo module are then concatenated on the channel axis and are fed to

a collapse module, which uses a convolution layer with a kernel size of one to reduce the number

of channels to the total number of classes. At this point, the image is upsampled iteratively through

transposed convolution and skip connections until it is returned to its original size (see Figure 3.1

for visualization).

We compare performance of our proposed architecture, TwinNet, to its base architecture, Dila-

tion8. We further compare TwinNet to itself if run with only the left-perspective input. As before,

we train our models with the training set and then report the model performance on the unseen

testing set. The overall pixelwise accuracy across all classes is reported.

The base architecture weights are initialized using the Imagenet [22] pretrained weights. To

retain the benefit of the pretraining, we freeze the base architecture weights and train the additional

modules initially with a learning rate of 1×10−3. We use a batch size of one and stochastic gradient

descent with a Nesterov momentum term as our optimization technique. We then train the entire

model using a learning rate of 1× 10−4 and weight decay of 1× 10−6. Each Stereo FCNN model
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Figure 3.3: Pipeline for 3D reconstruction and annotation of a coral reef ecosystem.

trains for 7,000 iterations to ensure convergence, and the FCNN model with the highest validation

accuracy is selected.

3.4.5 PERFORMANCE OF THE FCNN ARCHITECTURES

Table 3.1 summarizes the results of our experiments with extending fully convolutional networks

for stereoscopic information. Our disparity FCNNs each give a small boost to accuracy over their

corresponding architecture that only utilizes the three color channels. In FCN8s, we see a 3.37%

increase in accuracy and in Dilation8 [8] we see 1.18% improvement. This shows that the disparity

information may provide at least some benefit to the network in classification. Our TwinNet archi-

tecture performs comparably with Dilation8 when run with only the left-perspective image, but has

marked improvement over Dilation8 when run with both the left-perspective and right-perspective

images. It is therefore reasonable to conclude that the intermediate layers of the model are learning

better features from the combination of the two images than are present in only a single image.

Furthermore, the accuracy improves over our hand-engineered three color and disparity inputs.
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3.5 EXTENDING PATCH-BASED APPROACHES TO SEMANTIC SEGMENTATION FOR MUL-

TIPLE VIEWPOINTS

3.5.1 DATA COLLECTION

A subset of the collected images from our image bank (USCSF) were annotated by experts to

provide ground truth pixel classifications. During the annotation process, an individual pixel in an

image is selected in a pseudorandom fashion. The pixel is shown along with its spatial context to an

expert who then assigns it to one of the following 10 classes: (1) Acropora palmata, (2) Orbicella

spp., (3) Siderastrea siderea, (4) Porites astreoides, (5) Gorgonia ventalina, (6) sea plumes, (7) sea

rods, (8) algae, (9) rubble, and (10) sand.

We use a photogrammetric processing tool (Agisoft Photoscan) to generate a three-dimensional

reconstruction of the underlying coral reef from our image bank (USCSF) and to determine the

camera locations from which the images were taken. We assign an ID to each face of the mesh.

We match each pseudorandomly-annotated point with its corresponding mesh ID. Other views of

the annotated mesh face are obtained by projecting the center of the mesh face into images using

a standard projective camera model with extrinsic (camera location and orientation) and intrinsic

(focal length, camera center, and radial distortion) parameters obtained through optimization. In

short, each mesh ID is assigned a single class and associated with its corresponding location in one

or more images. Our final dataset consisted of 6,525 labeled meshes with 138,405 corresponding

patches in images.

3.5.2 VOTING NETWORKS

We propose an architecture to handle a variable number of views. Since our image bank (USCSF)

was extracted from video and was collected in a serpentine fashion, any arbitrary point on the

seafloor was likely captured in many images from many points of view. The number of views will

vary and so, too, will the camera locations with respect to the point on the seafloor. The first and

most obvious approach we compare is a simple voting scheme. We train ResNet152 [1] using a
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Table 3.2: Results of the patch-based multi-view architectures.

Architecture Accuracy Batch Size
ResNet152 85.54 32
ResNet152 with Simple Voting 90.70 32
ResNet152 with Logit Pooling 91.00 32
nViewNet-4 93.52 16
nViewNet-8 94.26 16

train/test stratification scheme where 80% of the data is used to train the model and 20% is used

to test it. Each of the images from the training set and its corresponding class is used to train

ResNet152 [1]. The base architecture weights are initialized using the Imagenet [22] pretrained

weights. We replace the last layer (the fully connected layer) with a different fully connected layer

that has a number of outputs equal to the number of classes in our dataset. To retain the benefit of

the pretraining, we freeze the base architecture weights and train the fully connected layer with a

learning rate of 1×10−3. We use a batch size of 64 and stochastic gradient descent with a Nesterov

momentum as our optimization technique. We then train the entire model using a learning rate of

1× 10−4 and weight decay of 1× 10−6.

Each image corresponding to a mesh face in the validation set is then passed through the trained

network. Each image votes on a classification for that face, and the class with the plurality of votes

is used. As an alternative, we explore a pooling method that sums the logits, which essentially

weights each vote by confidence.

3.5.3 NVIEWNET

Next we propose the nViewNet architecture to handle a variable number of viewpoint images.

nViewNet uses ResNet152 [1] (minus the last fully connected layer) as a base architecture and, in

a similar fashion to TwinNet, the base architecture weights are shared across all inputs. To keep
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memory constraints constant and for ease of training, we set a cap on the maximum number of

viewpoints to be included for classifying each mesh face. If the number of available viewpoints

exceeds our maximum the additional image views are ignored and the retained viewpoints should

be selected at random. Each viewpoint up to the set maximum is fed through the base, and the

outputs are then fed to our collapse module. The collapse module takes two images, each with

C channels, as inputs and concatenates them channel-wise. It then reduces the concatenated data,

which has 2C channels, back to C channels with a two-dimensional convolution and a kernel size

of one. Another two-dimensional convolution layer occurs after this, but with a kernel size of

three. The collapse module is called recursively to combine pairs of images in a tree-like fashion

until only a single output remains (see Figure 3.1). We use a linear transform to reduce the output

of the collapse module to a vector of logits with a length equal to the number of classes (see

Figure 3.1(b) for the full architecture). In the case where a mesh face is seen in less than the

maximum allowable number of viewpoints, we repeat any existing viewpoints until the maximum

is reached. We compare using a maximum of four viewpoints (nViewNet-4) and a maximum of

eight viewpoints (nViewNet-8) to the previous approaches.

The base architecture weights are initialized using the weights when trained on the viewpoints

individually. This initializes the base with feature outputs that are already useful for classifying

in this task. We ensure that the training and testing sets contain the same images in the individ-

ually trained model and nViewNet to maintain experimental validity. To retain the benefit of the

pretraining, we freeze the base architecture weights and train the additional modules initially with

a learning rate of 1 × 10−4. We use stochastic gradient descent with Nesterov momentum as our

optimization technique.

3.5.4 PERFORMANCE OF THE PATCH-BASED APPROACHES

Table 3.2 summarizes the results of our experiments with voting and pooling schemes along with

our nViewNet architecture. All methods are observed to greatly outperform their underlying archi-

tecture, ResNet152 [1], alone. Logit pooling was essentially tied with simple voting but did techni-
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(a) ResNet152

(b) ResNet152 with Logit Pooling

(c) nViewNet-8

Figure 3.4: Confusion matrices for three patch-based multi-view architectures. We abbreviate Acro-
pora palmata as A. palm, Gorgonia ventalina as Gorg, Orbicella spp. as Orb, Porites astreoides as
P. ast, and Siderastrea siderea as S. sid.
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cally improve on it. The best nViewNet architecture outperformed the pooling and voting schemes

with 3.26% improvement. This shows that a learned combination provides some benefit to the net-

work in classification. Even though our nViewNet architectures had a maximum cap on the number

of viewpoints, both were able to outperform the voting/pooling schemes that use every viewpoint

with no cap. The voting/pooling schemes, however, are quite a bit easier to implement and still

outperform ResNet152 [1] alone by a large margin.

3.6 CONCLUSIONS

We have shown how the often discarded varying points of view common in the data collection

for mapping tasks can be used to improve the accuracy of convolutional neural network architec-

tures. We have examined the use of stereoscopic image pairs for FCNN approaches to semantic

segmentation. We then proposed a method that uses generated disparity maps from the left- and

right-perspective rectified images and adds that disparity map as a fourth channel in addition to the

three color channels. This three-dimensional disparity information guides the semantic segmenta-

tion. We proposed the TwinNet architecture, roughly based on siamese networks, which accepts

both the left- and right-perspective images as inputs.

We have also examined utilizing a variable number of viewpoints for patch-based approaches

to semantic segmentation. We created a three-dimensional semantic segmentation by making a

three-dimensional mesh and performing classification on each face of the mesh. We proposed the

nViewNet architecture, which is capable of receiving a variable number of images (with a set

maximum number) and learning a combination to ultimately give a single classification.

Our results indicate that utilizing more than just a single viewpoint to make a classification

yields a higher accuracy. Our top-performing FCNN model was our proposed TwinNet architec-

ture, which we ran both with only a left-perspective image and with the full stereo pair. When

run with just the left-perspective image, it performed comparably to its base architecture, Dila-

tion8 [8], but when run with both the left-perspective and right-perspective images, it displayed a
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marked improvement over Dilation8. This indicates that the additional information from varying

points of view is useful in classification and can successfully be utilized to improve performance.

Our top-performing patch-based model was our proposed nViewNet-8 architecture, which uti-

lizes a maximum of eight viewpoints for each mesh face. NViewNet-8 yielded an accuracy of

94.26%, which outperformed the underlying ResNet152 [1] architecture by 8.72%. These perfor-

mance improvements are not insignificant and are discarded in mapping tasks that first composite

and then classify. By utilizing information from multiple points of view these improvements can

be realized. Future work could explore methods of utilizing a variable number of images with no

maximum cap and no image repetition. Furthermore, we would like to explore an extension of the

logit pooling schemes that would discard low confidence predictions and defer to human judgment

in such cases.
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CHAPTER 4

CONCLUSION

In this thesis, we have examined the use of deep learning methods for semantic segmentation

of images taken in underwater coral reef ecosystems. We have shown that these deep learning

methods can be an effective means to automate the object classification and semantic segmentation

process, thus determining the abundance of various organisms inhabiting a given coral reef. We

have described two major categories of semantic segmentation methods. The first of these, patch-

based CNN approaches, work by classifying existing segments. Second, we assessed the utility of

FCNN architectures. These architectures are capable of per-pixel segmentation and classification

in a single end-to-end trainable network.

Using patch-based methods, we attempted to identify the abundance of organisms on the reefs

surveyed. Upon segmentation using existing techniques, we performed a patch-wise classification

of each output segment. In our comparison of standard patch-based CNN approaches for classifi-

cation from ground truth annotations of individual points in training images, our best performing

CNN model was the ResNet152 [1] architecture. Resnet152 resulted in 90.03% classification accu-

racy, while the work of Beijbom et al. [3], using SVMs and texton dictionaries, resulted in an accu-

racy of 84.8% on the same dataset. The accuracy of Resnet152 is sufficient for use in many of our

tasks; still, higher accuracy would allow it to be robustly used with high confidence across more

tasks.

In comparing these two classes of methods, we note that the granularity of classification is

much coarser with a patch-based CNN model due to the fact that it outputs only one single class

label for a whole patch in an image. FCNN architectures, on the other hand, result in per-pixel

classification. Although the patch-based methods provide higher overall accuracy, they can often
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inherit the limitations of the segmentation algorithm used to localize specific taxa within the coral

reef image.

In our discussion of the FCNN architectures, we found that the best of the four compared

models was the Deeplab v2 [2] architecture, which yielded 67.7% accuracy on our dense classi-

fication dataset. These FCNN methods work by classifying each individual pixel throughout an

entire image. Unlike the previously discussed patch-based approaches, FCNN approaches are not

limited in terms of localization accuracy. In this specific case, the fine granularity of our classifi-

cation led to the classification accuracy of FCNN approaches being lower than the accuracy of the

selected patch-based methods.

We next examined the use of multi-view image data for improving the accuracy of both FCNN

and patch-based CNN methods for semantic segmentation. We show that this data, while typically

discarded in traditional approaches that utilize only a single viewpoint for each image, can be used

to improve classification accuracy.

For FCNN architectures, we used pairs of left-perspective and right-perspective images to gen-

erate a disparity map. This disparity map was then added as a fourth channel to the existing three

color channels. We proposed an architecture capable of utilizing stereo pairs as inputs, TwinNet,

that is also loosely based on siamese networks. The results of our comparison of TwinNet with

other FCNN architectures show that using stereo data can yield a higher classification accuracy

than traditional approaches. TwinNet was the best-performing FCNN model in the comparison.

We tested the results of TwinNet when trained on only a single left-perspective image as well as

with the full stereo pair. We note that when our custom architecture was trained and evaluated with

just the left-perspective image, it yielded comparable results to Dilation8 [8], its baseline architec-

ture. When trained and evaluated with both stereo images, however, TwinNet yielded a markedly

higher accuracy than Dilation8. These results indicate that the improvement in classification accu-

racy resulted from the additional viewpoint information utilized by TwinNet.

Next, we examined methods of improving patch-based CNN approaches using image data with

a variable number of viewpoints. Using video survey data, we generated a three-dimensional mesh
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using a Structure-from-Motion approach and classified each face of the mesh, resulting in a fin-

ished three-dimensional semantic segmentation. We proposed the nViewNet architecture, which

can receive a varying quantity (with a specific maximum number) of input images and learn a

combination to yield a single-entity classification.

Of the patch-based models, our proposed nViewNet-8 architecture, with a maximum of eight

viewpoints per mesh face, performed the best, resulting in an accuracy of 94.26%. These results

are higher than those of its baseline architecture, ResNet152 [1], which yielded 85.54% accuracy

on the mesh face classification task.

In sum, we have explored these various FCNN and patch-based CNN approaches, with and

without multi-view data, in the context of semantic segmentation and object classification of coral

reef survey images. We have proposed several new architectures to improve on previous methods

with the overall goal of mapping and monitoring coral reef ecosystems. These ecosystems provide

untold benefits to both the marine organisms that inhabit them as well as to the surrounding coastal

communities [11]. We hope that these and future deep learning methods can be used to benefit the

field of ecology in general and the health of coral reef ecosystems in particular.
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