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Abstract

The aim of this research work is predicting undergraduate student dropout in a public post-secondary
education institution in the Southeast United States. The main sources of data are college database storage
and National Student Clearinghouse. Datasets DS-57, DS-11 and DS-101 are created from those sources.
All datasets are trained using suitable classi�cation machine learning models. Agile practices are followed
to perform experiments. From the results, it is observed that important features predictive of dropouts
are related to academic performance and �nancial aid. Models are evaluated on percent accuracy and
F-measure. Random Forest performed with 0.86 F-measure and 87.04 percent classi�cation accuracy.
Further training with ensemble machine learning techniques improved F-measure to 0.903 and classi�ca-
tion accuracy to 90.8 percent.
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Chapter 1

Introduction

While stories of Steve Jobs, Mark Zuckerberg, or Larry Ellison dropping out of college are inspiring, the
United States has the highest dropout rate of any developed country for kids who start a higher-education
program. And that has a huge impact on their ability to build a career and earn a good living.(Christenson
et al., 2000)

Students dropping out of college, high school is a worldwide problem. It impacts people’s lives by
limiting their potential to get more opportunities. It creates a shortage of skilled employees for businesses
seeking to expand. Policymakers, parents, and the academic community are seriously concerned about
trying to mitigate this problem for many years. Research has been studied in this regard in various countries
dating back to 40 years. Every year 30% of students in the US do not return to �nish their second year. A
calculated cost of 9 billion is spent on educating these students. Uncalculated costs for society are estimated
in billions of dollars in lost revenues, welfare programs, unemployment programs, underemployment,
and crime prevention and prosecution (Christenson et al., 2000).

In Figure: 1.1 (Hanson, 2021) The chances of dropping out of College is less in the age group of 19 or
younger. But dropout is high after age 20. Students once leave college due to personal reasons, or �nancial
reasons, or health reasons often never return to complete education. Much of research work on student
dropout is theoretical .

Most of the dropout studies are restricted to institutions or classes. This makes it di�cult to have an
empirical understanding of what causes student dropout. To address this challenge German Centre for
Higher Education Research and Science Studies (DZHW) conducted studies (Heublein, 2014) from 2007
to 2008. 87 German institutions are surveyed across the country. 4500 deregistered(dropout students)
took part in the survey. The study gives a national picture of dropout patterns. Some of the key �ndings
from this study are seen in Figure: 1.2. With the rise in information technology and the internet, there is
a boom in e-learning, MOOC, and online courses. This boom has opened data analytics opportunities to
study student learning patterns across the globe. Major e-commerce retailers like Amazon, Walmart, and
eBay have already started using big data to learn customer behavior, so they can increase cart-to-purchase
conversion rates. On the other hand, companies like Facebook, Google have also relied on a similar data-
driven approach to learn user behavior to increase engagement metrics that would result in increased ad
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Figure 1.1: Percentage of Student dropout in 4- year and 2-year institutions across age
groups.(Source:Hanson, 2021)

revenue. All these trends have converged to drive innovation in AI/ML space resulting in technologies like
Keras, TensorFlow, cloud, and PyTorch. The boom in MOOC big-data and open-source ML software
from big-tech has led to multiple studies in student completion rates of MOOC online courses.S Whitehill
et al., 2017 is one such example. In this paper, the researchers use the HarvardX MOOC platform. Over
80% of students approximately still enroll in college and take classes in a physical classroom setting. At
the writing of this thesis, due to COVID-19 classes have shifted online. With students taking classes in
ZOOM video conferences. However, the focus of current research is purely on data collected on students
who pursue education in a real class setting in a real college and classroom.

1.1 Literature Review
Research work in this regard is rare to �nd. After exhaustive search research resembling similar classroom
setting environment are listed below:

1. Predicting University Students’ Academic Success and Major Using Random Forests (Beaulac &
Rosenthal, 2019)

2



Figure 1.2: Most crucial motives of student dropout in DZHW studies.(percentages) (Source:Heublein,
2021)

2. Predicting Student Dropout in Higher Education (Aulck et al., 2017)

3. Predicting student dropout: A machine learning approach (Kemper et al., 2020)

In the above three papers, the student dropout problem is studied in an actual class setting. In the �rst
paper, data is used from the University of Toronto, in second paper, data is used from the University of
Washington, and in the third paper, the data is used from the Karlsruhe Institute of Technology. While the
third publication is an interesting one, it does not match with the current study as education in Germany
is free. In current work, apart from academic indicators like GPA; �nancial indicators like grant money,
�nancial aid money are also taken into consideration while training the models. Of all the publications out
on the internet, �rst two papers(Toronto and Washington) come close to current research in environment
setting and data collection. Percentage Classi�cation accuracy from these publications is from 53% to 78%.
For the current study, the data used is heterogeneous. It is collected from several sources. Data collected
is from a major public college generated over 12 years (2006-2018).

1.2 Background motivation of Research
In 2018 a public post-secondary education institution in the southeastern United States of America ap-
proached the Carl Vinson Institute of Government with the student dropout problem. Due to the data
share agreement, the education Institution’s name is kept con�dential. In this research, it will be referred
to as a public postsecondary education institution in the Southeast United States or just simply a southeast
college. The student dropout problem is framed as a supervised classi�cation problem.
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1.3 Structuring of Thesis
The thesis paper is organized as follows: chapter 2 describes data, software, and hardware used. In chapter 3
methods, environments, machine learning theory are discussed. In chapter 4, data sets, Features, Features
selection methods used and Feature importance of select models are shown. Chapter 5 presents a detailed
discussion on experiments. AutoGluon results are also discussed. Finally, chapter 6 o�ers a conclusion
and future work.
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Chapter 2

Data Collection, Software, And
Hardware

2.1 Data Collection
Our main goal is to organize data into a useful structure, run machine learning algorithms on them to
uncover hidden patterns, and �nally build a model that would make a prediction. We used college data
obtained from Banner tables for the years 2006 to 2018. An important decision is taken from the beginning
of this study to de-identify data and apply innovative ways to gather data that give a clear picture of a
student’s academic outcome.

Initially, the dataset is designed to be consumed by ML models that predict in a supervised multi-
label classi�cation problem. In this dataset, there were four labels- graduated, continuing, dropout, and
transferred. A major part of student data is extracted from an education enterprise resource planning
(ERP) system called Ellucian’s Banner. This system has labels related to continuing or graduated. Labels
of students who left college are acquired from The National Student Clearinghouse. It is the source
for degree veri�cation and enrollment veri�cation and student educational outcomes research. Driving
distance and driving data are created using contact addresses and college addresses. This is achieved by
using ESRI’s ArcGIS Pro(“ArcGIS Pro”, 2020) which geocoded (e.g., Latitude and longitude) the current
address of students. An API to Google Maps is then utilized to calculate the drive distance and drive
duration.

To summarize, data is collected �rst from college, second from the national database to capture student
outcomes, after the person left college. Finally, location information is considered to study if there is any
correlation to student outcome.

Data from di�erent sources is piped to the local My SQL server. SQL queries are run to extract
custom �elds and further saved as CSV �les. These CSV �les are further processed, analyzed using python
packages such as PANDAS, NUMPY. WEKA is also used to preprocess and create di�erent datasets. The
overall data used during this study was 4266543 data points, consisting of 42243 rows and 101 columns.
The dataset is imbalanced.
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Table 2.1: Dataset Rows, Columns And Datapoints
Dataset Rows Columns Datapoints (R*C)
DS-101 42243 101 4266543
DS-57 29203 57 1664571
DS-11 29203 11 321233

Table 2.2: Dataset Class labels
Dataset Class Labels Labels
DS-101 4 Dropout, Transferred, Continuing, Graduated
DS-57 2 Dropout, Non-Dropout
DS-11 2 Dropout, Non-Dropout

Few techniques are explored to balance the four label datasets. One such technique is SMOTE. Even
after treating the data with imbalance no improvement in performance is observed. Hence, we explored
additional options. During experimentation and feedback, the idea to create a dataset with two labels is
imagined. This led to the exploration of ideas on new datasets. This time the dropout problem is framed as
a binary classi�cation problem. From the perspective of college, predicting the dropout student label with
high accuracy is more important than making predictions on graduated, transferred, or continuing labels.
With this newly revised vision and further preprocessing, datasets with two labels, dropout, and non-
dropout are created. It was done by basically, renaming three labels graduated, transfered and continuing
in to one label called Non-Dropout. One of the �rst datasets had 57 columns and 29203 rows, with 1664571
cells. Imbalance is also addressed with this new two-label con�guration. The results on this dataset were
in line with published study research and pointing towards the random forest as an ideal model.

2.2 Software
Given the heterogeneous landscape of IT systems and limitations of legacy systems; a collection of tools
and software are used to �nd high-performing models while operating within the constraints of available
data, computational power, and regulations. The exhaustive list of software used is as follows-

1. WEKA

2. ESRI’s ArcGIS Pro

3. MySQL

4. Python packages

5. Conda framework

6. WinSCP

6



Figure 2.1: Class Label Distribution in DS-101

7. Xming

8. Putty

9. AutoGluon

10. Jupyter Notebooks.

2.3 Hardware
Georgia Advanced Computing Resource Center provided High Performance Computing(HPC) clusters
and High-Performance Storage. The HPC cluster is called the Sapelo2 Cluster. It runs CentOS Linux
distribution. The cluster currently has

7



1. More than 16,000 cores.

2. general purpose compute nodes (128GB, 192GB RAM).

3. high-memory nodes (256GB, 512GB & 1TB RAM).

4. CPU/GPU hybrid nodes(NVidia K20X, K40 & P100 GPUs).

5. High-Performance Storage- DDN SFA14KX.

6. Lustre appliance (1.50PB).

7. ZFS storage chains (100TB).

8



Chapter 3

Methods

In this section experimental setup is discussed. The environments used for research. A brief background
on selected machine learning algorithms, and few ensemble machine learning models.

3.1 Environments
This research uses two environments. WEKA(Frank et al., 2005) and Anaconda distribution (“Anaconda
Software Distribution”, 2020). WEKA is a GUI based data mining tool. Anaconda is a scienti�c comput-
ing distribution; it has a rich set of machine libraries and wide support of programming languages.

3.1.1 Anaconda Environment
Anaconda is maintained by Anaconda Inc. It is a distribution of Python and R languages. It is free for
individual use. A popular distribution for scienti�c computing. Some of its bene�ts include simpli�ed
package management and deployment. Package versions are managed by the package management system
Conda. Conda was critical while setting up virtual environments and installing dependent libraries in
HPC without admin access. To run experiments, virtual python environments are created in the Sapelo2
cluster. All relevant and latest packages are installed. These are then loaded in Jupyter notebooks to be
used in code. The Anaconda distribution is supported on Windows, Linux, and macOS. The default
installation comes with the following applications:

• JupyterLab

• Jupyter Notebook

• QtConsole

• Spyder

• Glue
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• Orange

• RStudio

• Visual Studio Code

We used Jupyter notebooks extensively to run all experiments, for which code is written in python v3.
Jupyter Notebooks is a web-based interactive computational environment. It can be run with di�erent
kernels, but by default it supports python. At the time of this research, it supports 49 language kernels.
Jupyter notebooks have a “.ipynb” extension. It has become popular in the industry as well. A derivative
of Jupyter notebooks is present across major cloud vendors- Amazon’s SageMaker Notebooks, Google’s
Colaboratory, and Microsoft’s Azure Notebook. Jupyter notebooks are used to process raw scienti�c
data, during the �rst observation of gravitational waves by LIGO.

3.1.2 WEKA environment
WEKA stands for Waikato Environment for Knowledge Analysis. The Machine Learning Group at
the University of Waikato started developing WEKA data science software in 1993. Ian H. Witten, a
famous computer scientist is the creator of this tool. It is an open-source tool. Currently provides a
vast collection of machine learning algorithms that could be easily applied to data sets. It evolved over
time and currently, WEKA implements various machine learning classi�cation methods, algorithms for
regression and clustering along with several visualization tools. Using package manager, we can further
install additional packages developed by the WEKA community. It is widely accepted across the academic
community. For several years it was a preferred environment for research work and data mining tasks.
Some commercial and enterprise-grade GUI data mining tools have been derived from WEKA, these
include H2O, Rapid Miner. The main advantages of WEKA are free availability, portability, a wide
collection of machine learning techniques, and ease of use.

3.2 Background Theory on Machine Learning
The entire collection of machine learning algorithms available in WEKA and Anaconda Python distri-
bution are used in building models for every created dataset. In this thesis, only the top-performing
experiments are discussed. We started with Zero R (Table 4.2) as the baseline model. The models used for
comparison and analysis are listed below:

• Logistic

• NaiveBayes

• BayesNet

• J48 Decision Tree

10



• RandomForest

• RBFClassi�er

• ZeroR

3.2.1 Logistic Regression
Logistic regression (Cox, 1958) is also known as logit model. It is a statistical model like linear regression.
A linear regression (Barnard, 1989) �ts a straight line or hyperplane to data points, but Logistic regression
squeezes output values using a logit function between 0 and 1. It predicts the probability of a label. Logit
function is de�ned as:

logistic(η) =
1

1 + exp(η)

Logit Function looks like below in Figure 3.1 .

Figure 3.1: A Logit Function

3.2.2 Naïve Bayes
Naives Bayes classi�er (Vikramkumar et al., 2014) is based on Bayes Theorem (Stone, 2013). It is easy to
build compared to other models. Despite its simplicity, it is famous for performing better than complex
models. NB classi�er assumes that the e�ect of features(x-value) on a given class (y-value) is independent
of other features(x-values). This assumption is called Class Conditional Independence. In simple terms,
Naive Bayes updates prior belief of an event given new information. Spam detection in emails is one of
the famous applications for the Naïve Bayes classi�er.
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P (class/features) =
P (class) ∗ P (features/class)

P (features)

• P(class/features) : Posterior Probability

• P(class) : Class Prior Probability

• P(features/class) : Likelihood

• P(features) : Predictor Prior Probability

3.2.3 BayesNet
Bayes Net (Friedman et al., 1997) is also known as Bayesian Network, Belief Network, or Decision Net-
work. They are directed acyclic graphs (DAGs). Graphs are made of nodes and edges. Nodes represent
random variables in the Bayesian sense. Edges between pairs of nodes represent the causal relationship
and conditional probability distribution of each node. It is essentially a compact representation of joint
probability distribution. In practice these networks get complex. They have a strong ability to capture
causality. They are widely used in the health �eld. Just like Naïve Bayes, Bayes net is based on the Bayes
theorem. A simple Bayes Net is shown with an example scenario in Figure 3.2.

Figure 3.2: A simple Bayesian network with conditional probability tables.(Source-AnAj, 2006)

3.2.4 Decision Trees
Ross Quinlan developed the C4.5 algorithm (Quinlan, 1993). It is an extension of the ID3 algorithm(Quinlan,
1986). A decision tree has root nodes, internal nodes, leaf nodes. Below in Figure 3.3 is an example deci-
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sion tree that helps us decide whether to walk or take a bus; based on weather. Weather is the root node,
Time and Hungry are Internal nodes. Orange-colored boxes are leaf nodes. Concepts of entropy and
information gain are used to construct a decision tree. The tree is built top-down. In WEKA, the decision
tree is known by the name J48.

Figure 3.3: A simple decision tree.(Source-Hoare, 2021)

3.2.5 Random forest
The �rst algorithm of Random Forest was developed by Tin Kam Ho(Ho, 1995). Random forests (Breiman,
2001) are also called Random decision trees. It is an ensemble method. Multitudes of decision trees are
constructed during training. Each tree predicts a class label. The Majority vote of labels is taken as the
�nal label. The process is illustrated in Figure 3.4. Generally speaking, Random forests attain higher
accuracies than decision trees. But perform lower than gradient boosted trees (which are discussed in
further sections). Easy interpretability of decision trees is lost in random forests because of an increase in
complex tree formations.

3.2.6 ZeroR
ZeroR is the simplest classi�cation method. It stands for zero rules. The classi�er simply predicts the
majority category and does not have any predictive power. But is used to establish baseline performance
and used as a benchmark for comparing other classi�cation models. It is a frequency table-based model.
The performance of the baseline model is the least or worst metric. Any trained model with metrics lower

13



Figure 3.4: A simpli�ed diagram of random decision forest(Source-Jagannath, 2017)

than ZeroR value or baseline performance can be con�dently removed from future experiments. This
baseline helps us narrow down the list of machine learning models. Saves time by only focusing on models
that are showing results above baseline. ZeroR does not use features for making a prediction, it uses a
frequency of classes from the frequency table.

3.3 Ensemble Machine Learning Models
“Ensemble” is derived from the word musical ensemble. Just like a group of musicians plays together with
a musical piece, an ensemble machine learning algorithm combines a collection of ML models to predict
a label. The performance of an ensemble is better than individual models. They are also referred to as
meta-algorithms. Bagging, boosting, and stacking are di�erent ensemble techniques.

3.3.1 LightGBM
LightGBM (Ke et al., 2017) stands for Light Gradient Boosting Machine and is developed by Microsoft
Corporation. It is a gradient boosting framework that uses a tree-based learning algorithm. Advantages
include:
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• Faster training speed and higher e�ciency.

• Lower memory usage.

• Better accuracy.

• Support of parallel, distributed, and GPU learning.

• Capable of handling large-scale data.

It uses histogram-based algorithms for decision tree learning, which reduces memory usage and in-
creases training speeds. Generally, trees are grown level(depth) wise, but LightGBM grows trees leaf-
wise(best-�rst). Leaf-wise tree growth as mentioned on its webpage is shown in Figure 3.5 .

Figure 3.5: Leaf-wise Tree Growth(Source-LightGBM, 2021)

3.3.2 XGBoost
XGboost stands for eXtreme Gradient Boosting (Chen & Guestrin, 2016). It has dominated Kaggle
competitions. This belongs to the family of Gradient boosting frameworks. It is designed by Tainqi
Chen as part of the DMLC (distributed Machine Learning Community) group. It uses a pre-sort-based
algorithm for decision tree learning. Some of the important features of XG boost as listed on the website-

• Flexible- Supports both regression and classi�cation problems.

• Portable- supports Windows, Linux and OSX

• Multiple Languages- C++, python, R, Java, Julia, Scala

• Battle Tested- Won most Kaggle competitions and highly cited in publications.

• Distributed on Cloud- Supports distributed training on the cloud.

• Performance- High performance due to distributed load. And can be trained on billions of records.
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3.3.3 CatBoost
The CatBoost (Prokhorenkova et al., 2018) is developed by Yandex. It is the successor of the MatrixNet
algorithm, used widely by Yandex to rank “search results”. It is the latest in the family of Gradient boost-
ing Framework algorithms. It often outperforms other boosting algorithms. It is free and open-source.
Ordered boosting, native handling of categorical attributes, and usage of symmetric trees are its main fea-
tures. It was initially launched in 2017. Given dataset is divided into random permutations and boosting is
applied to them. Reduces the need for hyper-parameter tuning. It is used in many tasks like weather predic-
tion, music, or shopping recommendations. It complements deep learning by integrating deep learning
models on homogenous datasets and combining them to make predictions. It is even implemented in
Apple CoreML.
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Chapter 4

Datasets and Features

Before we dive into experiments and discussion, initial e�orts of building models were not fruitful. Early
classi�cation models often resulted in performance accuracies as low as 60%. The large data set size, missing
values, high dimensionality, and labeling of data are some of the challenges speci�c to education data
mining. These challenges coupled with limited resources gave rise to a host of issues. Getting around these
issues or unblocking obstacles is key to making progress. Some of the major issues include memory issues,
high latency issues while reading/querying data through SQL, and lack of skill in certain technologies that
had a high learning curve. Weka is a great tool to run on small data sets on a laptop. To consume a large
dataset addressing memory issues is key. Hence, we ran Weka on the HPC cluster with a maxheap value
of 250GB to 800GB. This approach gave signi�cant velocity in trying out all the algorithms. It enabled
us to rapidly build and test prototypes of datasets con�gurations and identify relevant algorithms. And
led us to di�erentiate between algorithms with good performance and algorithms with low performance.

Jupyter notebooks are run on the same cluster with GPU RAM of 990 GB. We used this approach to
build neural networks and test out AutoML packages. Handling of missing values and labeling of data
was solved by a hybrid approach. This approach involved using a combination of manual work and relying
on python packages- PANDAS, NUMPY. In short, numerous sets of CSVs or ARFF �les are created then
processed by ML algorithms. Using trial and error, di�erent data sets are trained and tested. In this thesis
work, we mainly focus our discussion only on three data sets. In further sections selected experiments
with respective datasets are discussed in detail. All trial-and-error methods followed the process as shown
in Figure: 4.1 .

4.1 Datasets
Collected raw data is passed through three preprocessing stages: a) data transformation, b) data cleaning
and c) attribute selection. This ensured that the resulting dataset was suitable for algorithmic consump-
tion.
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Figure 4.1: Process Flow Diagram

In data transformation, creating a general structure of the dataset with attributes and labels is done. For
example- labels are converted from multiclass four labels (dropout, continuing, transferred, and graduated)
set to a binary class form of Dropout and non-dropout.

This dataset is later passed to the Data cleaning phase, which deals with handling missing values and
duplicate values. The duplicates are �ltered using preprocessing functions in WEKA. The missing values
are replaced with “-1”. Manually the data was analyzed to look at columns with high missing values and
very few distinct values. These columns are checked for Cramér’s V coe�cient. All dataset con�gurations
are veri�ed for the presence of columns with Cramer’s V coe�cient closer to 1. We did not identify any
columns that had coe�cients closer to 1. This can imply that the common problem of y-value leakage into
predictions is highly unlikely. Columns with coe�cient values closer to 0 are selected. These columns are
marked and removed when several datasets are created with various con�gurations.

At any given point, an experiment consisted of a combination of a dataset, technology, algorithm,
and hyperparameters. As we conducted experiments, we learned along the way that the search space
of experiments was getting exponentially high. So once the results proved to be ine�ective, the phase
of research was dialed back to the initial stage, and a search for a new con�guration of attributes and
labels was initiated. We used an approach of inspecting, adapting, and continuously iterating. This
approach is borrowed from agile methodologies prevalent in technology �rms like Google, IBM, Amazon,
or Facebook. Stacey matrix model(Figure: 4.2(Source-d Stacey, 1996)). Cyne�n framework is also (Figure:
4.3(Source-Dave Snowden, 2003)) widely used in industry for identifying the need for agile methodologies.
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Table 4.1: Dataset rows, columns, and data points
Dataset Rows Columns Datapoints
DS-101 42243 101 4266543
DS-57 29203 57 1664571
DS-11 29203 11 642466

When we break down the research problem, we can see that student dropout project requirements
are highly unclear, and technology to implement conceived solutions is constantly evolving. For example-
a laptop would be su�cient to train a model for a small dataset related to the semester. But as we scaled
up to include over 10 years of data, complexity grew and turned quickly to a big data problem. A team
of Ph.D. students with di�erent skill sets and resource constraints has added another layer of complexity.
When we weigh in all these variables, the research problem can be positioned into a Complex zone ( Figure:
4.2 ). When in a complex zone, the agile method is an e�cient way to drive a research project. Hence, a
deliberate choice was made early on to structure research experiments using agile.

Figure 4.2: Stacey matrix model(Source-Stacey, 1996)

Each category of experiments would begin with wrangling and manipulating raw data to form a dataset.
Then technology would be used for early rapid training, with the �rst choice as WEKA. If the results are
not promising, the dataset would be discarded. The research project is pushed back to the drawing board
and started from the beginning. If the results are promising, then the experiments are pushed forward to
use advanced libraries o�ered by SCI-KIT learn. More analysis is performed by pushing the experiments
to search for the entire search space of hyperparameters. This agile iteration has resulted in many discarded
datasets and low-performing experiments but created a streamline of the process that saved time and led
us to three promising datasets, refer to Table-4.1. It can be noted that DS-101 has the highest number of
rows, columns, and data points.
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Figure 4.3: Cyne�n framework(Source-Snowden and Boone, 2003Snowden and Kurtz, 2003)

Table 4.2: Baseline accuracy-ZeroR on all three datasets
Dataset DS101 DS57 DS11
Classi�er Model name ZERO-R ZERO-R ZERO-R
Baseline Accuracy 25.8 52.3 52.3

Baseline results from the ZeroR algorithm on all datasets are shown in the table below. Baseline results
can be used as a measure of progress to measure improvements. Any model that performs worse than
baseline results can be identi�ed and removed in future experiments.

4.2 Features
Few features are listed and described below:

1. Grants All- This attribute includes the sum of all �nancial aid received by students. Pell Grant,
HOPE Scholarship, Zell Miller Scholarship are some of the types of �nancial aid a student can
receive.

2. COMM- Applicants whose GPA is below the minimum for college level placement are encouraged
to submit SAT/ACT or complete the ACCUPLACER test series. ACCUPLACER test series are
also called COMPASS. COMM indicates grade in COMPASS ALGEBRA/MATH.

20



3. COME- COME indicates grade in COMPASS Writing English.

4. COMR- COMR indicates grade in COMPASS Reading English.

5. CROW_DISTANCE-The direct distance between points- students place and college.

6. DRIVE_DISTANCE Actual Driving distance between students place to college

7. DRIVE_DURATION Indicate driving time from leaving students place to college

The OVERALL attribute is a combination of Transferred(TRANSFER) and institutional(INST)
values. A student is transferred from another institution to the current institution. These persons- transfer
gpa, hours and points are captured into the college system. Institutional values gpa , hours and quality
points are recorded when the student is the current institution. Overall, Transferred and Institutional
values are listed below:

1. OVERALL_LGPA_GPA- Total combined GPA.

2. OVERALL_LGPA_HOURS_ATTEMPTED- Total combined attempted hours

3. OVERALL_LGPA_HOURS_EARNED- Total combined earned hours

4. OVERALL_LGPA_HOURS_PASSED- Total combined passed hours

5. OVERALL_LGPA_GPA_HOURS- Total combined hours

6. OVERALL_LGPA_QUALITY_POINTS-Total combined quality points.

7. INST_LGPA_GPA- -Total institutional GPA.

8. INST_LGPA_HOURS_ATTEMPTED-Total institutional hours attempted.

9. INST_LGPA_HOURS_EARNED–Total institutional hours earned.

10. INST_LGPA_HOURS_PASSED-Total institutional hours passed

11. INST_LGPA_GPA_HOURS-Total institutional hours.

12. INST_LGPA_QUALITY_POINTS- Total institutional quality points.

13. TRANSFER_LGPA_GPA- Total transferred GPA.

14. TRANSFER_LGPA_HOURS_ATTEMPTED-Total transferred attempted hours.

15. TRANSFER_LGPA_HOURS_EARNED-Total transferred earned hours.

16. TRANSFER_LGPA_HOURS_PASSED- Total transferred passed hours.
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17. TRANSFER_LGPA_GPA_HOURS- Total transferred hours.

18. TRANSFER_LGPA_QUALITY_POINTS- Total transferred quality points.

�nal label is listed below:

1. Outcome- Class label incase of two labels it is Dropout and Non-Dropout and incase of four labels,
the values are Dropout, Graduated, Transferred and continuing.

All Features cannot be discussed due to proprietary reasons. DS-11 is the �nal dataset with eleven
features which has good performance and consumes a small feature set for training. All the features in
DS-11 are elaborated along with few additional related features.

4.3 Feature Selection
Attribute selection or feature selection is a method by which one can select the best subset of attributes/features
in a dataset. Some of the bene�ts of this method are: reducing over�tting, improves accuracy and reduces
training time. Weka is used to perform feature selection. Some of the Attribute evaluation methods used
are:

1. CfsSubsetEval - This method selects a subset of features which are highly correlated with the class
attribute and have low correlation with each other.

2. Classi�erSubsetEval- This method estimates the merit of a subset of features using a classi�er.

3. WrapperSubsetEval- This method evaluates subsets of features by using a learning scheme. Cross
validation is used to estimate the accuracy of the learning scheme for a set of attributes.

4. CorrelationAttributeEval - Correlation also referred to as Pearson’s correlation coe�cient in statis-
tics. Weka implements this technique but requires use of a Ranker search method.

5. InfoGainAttributeEval-Information Gain Based Feature Selection.Features that contribute more
information will have a higher information gain value and will be selected, whereas those that do not
add much information will have a lower score and will be removed. Like the correlation technique
above, the Ranker Search Method must be used.

Sometimes the selection method would return irrelevant attributes and leave out most important
attributes. This was taken care of by reviewing the selected attributes with domain experts. A hybrid
approach, in which automation of feature selection is later complemented by domain expert review. The
main DS_57, DS_11 are created by hybrid approach.
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4.4 Feature Importance
From the feature importance map, we can note that the most important features are related to personal
academic performance and �nancial aid. The speci�c details on importance can be seen in data set DS-11(
Figure: 4.4 ) This importance is calculated using sci-kit library packages on Random Forest.

Figure 4.4: Feature importance in DS-11
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Chapter 5

Experiments and Discussion

In this chapter details of experiments are discussed. Each experiment is a permutation of the machine
learning algorithm, its hyperparameters, dataset, technology, and attribute selection methods. Over 300
experiments are performed. Discussing every experiment would be ine�cient and verbose. Hence only
a few sets of important experiments that led to major performance breakthroughs are described. These
experiments can be primarily categorized based on datasets. There are three categories of experiments
based on the dataset, namely DS-101, DS-57, DS-11. The �rst section examines classi�cation models used,
performance metrics, frameworks, and common experimental setup. The next three sections talk about
results from DS-57, DS-11, and Auto Gluon. The last section further explains and investigates the results
and predictive power of various attributes.

5.1 DS-101
DS-101 is initially split into 80% train set, 20% test set. Weka is used to train the models. The list of model
and evaluation metrics are listed in table -ds-101-split. No new preprocessing steps have been applied to
the data. This is the only dataset with four labels. This is a multilabel classi�cation problem. Hence the
appropriate metric to utilize is F-score. The trends are plotted in Figure : 5.1.

Table 5.1: DS-101 Evaluation metrics on test set in split mode.
Model= Split Precision Recall F-Measure MCC
RBFClassi�er 0.578 0.543 0.56 0.342
J48 0.569 0.559 0.564 0.34
BayesNet 0.612 0.539 0.573 0.373
NaiveBayes 0.565 0.636 0.598 0.371
Logistic 0.619 0.598 0.608 0.41
RandomForest 0.629 0.615 0.622 0.429
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Figure 5.1: DS-101 Evaluation metrics trends in Split mode

One thing to note about the RBF classi�er here is- it uses the BFGS(Broyden–Fletcher–Goldfarb–Shanno)
optimization algorithm to minimize the cost function. The learning rate is automatically picked for this
algorithm, due to which arriving at convergence is faster, compared to the gradient descent optimization
method. There is an option to use conjugate gradient descent instead of BFGS for faster training, but
because the training was being performed on a high performing cluster, we chose BFGS. These algo-
rithms are beyond the scope for discussion, they are often debated in the context of advanced numerical
computing. Hyperparameter settings for the RBF classi�er are shown in Figure: 5.2.

It took 160.9 seconds to train the model on 33794 instances, and 0.16 seconds to test on 8449 in-
stances. We tried changing the poolsize hyper-parameter to 30 threads, the training speed increased to
180.16 seconds.

J4.8 generates a pruned C4 decision tree. The setting unpruned is set to false, and 0.25 is selected as a
con�dence factor which will incur more pruning. CollapseTree is set to True. It will remove parts of the
tree if the training error is not reduced. An overview of hyper-parameters for J4.8 is shown in Figure: 5.3.
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Similarly, other model hyperparameters are tweaked and tuned to get better F-scores. It can be noted
that there is a vast search space for hyperparameters. This will pose an obstacle and increase time and
resources exponentially if we were to try all hyperparameters manually. To address this challenge Auto
ML is utilized, results of which are discussed in later sections.

From preliminary results, we can infer that RBF Classi�er and J48 show similar f-score. In other
models, the F-score follows an upward trend starting with Bayes net, Naïve Bayes, Logistic. The highest
metric of performance is achieved by Random Forest, with 0.622. It can be also noted that the selected
con�guration of the experimental setup has the lowest F-score of 0.622. Initially to save time we used the
split mode or hold out method. DS-101 is further investigated with a cross-validation approach as well.
The results are shown in ds-101-cv.

In both cases, trained models are as good as a coin toss. The current con�guration does not suit
the practical application. From this batch of experiments, we got the below insights. We are presented
with three di�erent choices 1- to gather more data 2- Maybe class labels need to be balanced to reduce the
error rate. 3- Discard the dataset and proceed with a di�erent con�guration. We had done a couple of
data gathering studies and understood that the cost of collecting more data is high, hence the �rst choice
is dropped. We moved to the next option, addressing the class imbalance. Class balancing techniques
like SMOTE (Synthetic Minority Oversampling Technique), and others are applied to the dataset and
then more experiments are done. After a few experiments, the pattern in results emerged, most of the
experiments ended with low-performance metrics. This led us to a third option to rethink our approach
and create another dataset.

After the decision is made on the third approach, brainstorming sessions are conducted with subject
matter experts or advisors. From the feedback of advisors, reducing class labels from four to two are
conceived. The main class label “Dropout”, which is the focus of the study, is retained. Other class labels,
graduated, transferred, continuing, are diluted, and merged to form a super class-label named- “Non-
Dropout” This approach gave several bene�ts- without increasing rows, more data is distributed evenly
among two classes, thereby mitigating class imbalance. Ensured maximum usage of existing data, which
gives the model more chance to train. It has also reduced development time associated with constructing
new datasets as we can rely on existing python code and just replace labels with a new name. We call this
con�guration of data as DS-57.

5.2 DS-57
DS-57 is created by using attribute selection methods over 100 attributes, ranking them, and manually
evaluating them for relevance. After vetting all attributes, 57 attributes are selected to a dataset. This is
imported in WEKA and trained on several models. The �rst batch of training is accomplished in split
mode with 80% train, 20% test. The results are summarized in below table

For Visualization purposes, DS-57 Evaluation metrics with split mode are shown in Figure: 5.5.
Similar hyperparameters from the DS-101 batch are used for all the models. For RBF and J4.8 hyper-

parameters are already discussed in the DS-101 section. Hyperparameters for Random Forest are shown
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Table 5.2: DS-57 Evaluation metrics on test set in split mode.
Model= Split Precision Recall F-Measure MCC
RandomForest 0.896 0.873 0.884 0.784
J48 0.855 0.849 0.852 0.72
RBFClassi�er 0.867 0.837 0.852 0.723
Logistic 0.866 0.855 0.86 0.737
NaiveBayes 0.709 0.834 0.766 0.529
BayesNet 0.782 0.784 0.783 0.587

Table 5.3: Random Forest maxDepth hyperparameter
tree depth f-measure accuracy
1 0.779 80.458
2 0.791 81.54
3 0.822 83.92
7 0.86 87.09
14 0.88 89.16
57 0.88 89.21
0 0.88 89.21

in Figure: 5.6. maxDepth hyperparameter signi�es maximum tree depth. If the value is set to 0, the
training can grow a tree to unlimited depth. We tested with varying depths of 1,2,7,14 and 57. The values
of F-measure vs tree depth are shown in the table below.

As the depth increased, results improved. A depth of 57 was set due to the number of features in the
data set is also 57. Also, it can be noted that results at 57 value and unlimited depth (maxDepth==0) are
similar. Depth hyperparameter is tested with similar values in the remaining datasets. No major deviations
are observed in the results. If there are limitations in computing capacity, it is recommended to select
lower values of maxDepth. In the HPC cluster, we can train fast on maxDepth value set at 0, which will
enable Random Forest to grow to unlimited depth.

Moving on to the discussion of results on DS-57; signi�cant improvement is achieved over the previous
ds-101 con�guration. Random forest performed better compared to other models in both dS-101 and ds-57
based on F-scores for dropout labels. Let us have a closer look at the F-score on both classes-Dropout and
Non-dropout depicted in Figure: 5.7.

Hold out the approach or split approach is a su�cient and fast way to train the model. Even though
cross-validation is not necessary once the hold-out approach is used. We went ahead with the cross-
validation approach to know training times for di�erent models, especially the lazy learning algorithms.
SVM took the longest time on cross-validation. Experiments are repeated with cross-validation to observe
training times. We can also note similarities in the results of split mode. Cross-Validation results are shared
below table.

27



Table 5.4: DS-57 Evaluation metrics on test set in Cross-validation mode
Model= CrossValidation -10 Precision Recall F-Measure MCC
RandomForest 0.9 0.863 0.881 0.775
J48 0.881 0.845 0.863 0.741
Logistic 0.868 0.846 0.857 0.727
RBFClassi�er 0.866 0.827 0.846 0.709
BayesNet 0.776 0.781 0.779 0.572
NaiveBayes 0.703 0.833 0.762 0.511

For Visualization purposes, DS-57 Evaluation metrics with Cross-validation mode are shown in Figure:
5.8.For easy visualization and analysis, the plot is also shown in the �gure. The F-score for both classes is
shown in the next Figure: 5.9 .

It can be summarized that so far, the highest accuracy was above 80%. Let us continue with additional
experiments to maximize F-score and accuracy beyond 95% accuracy or .95 f- score, respectively. We tried
further con�gurations by reducing the feature set, mixing, and matching models, and their hyperparame-
ters. In this process, we created the DS-11 dataset. Let us discuss the results in the next section.

5.3 DS-11
With the dataset DS-11 results, we can observe a decreasing trend in F-score. Random forests remains the
strong candidate in the set of models tested. Between DS-57 and DS-11, we have tried other con�gurations
of data sets but at DS-11, we have seen a decreasing trend in performance. For Visualization purposes,
DS-11 Evaluation metrics with split mode are shown in Figure: 5.10.

For Visualization purposes, DS-11 Evaluation metrics with Cross-Validation mode are shown in Figure:
5.11.

We have progressively elaborated data con�gurations through trial and error. The best candidates
with the right �t between model performance and attributes are identi�ed to be DS-57 and DS-11. We
have approximately found three possible candidates of datasets that show a varying degree of performance
in student dropout. Accuracy with DS-101 is low, with DS-57 it was high, and ds-11 it started to decrease
again.

5.4 AutoGluon
We continue the journey of experimentation with a prime focus of improving F- score and accuracy.
WEKA has served the purpose of narrowing down the feature set and generating possible datasets from
raw data. We now shift to the Anaconda framework, to take advantage of a wide collection of libraries
and advanced functionalities. From previous experiments, we can say that optimizing hyperparameters is
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a tiresome process. Oftentimes optimizing for hyperparameters can be di�cult to debug and implement.
With these constraints in mind, we started exploring AutoML solutions. After considerable experimenta-
tion with a few solutions, we chose AutoGluon (Erickson et al., 2020) as the main candidate for our task.
From the citation, AutoGluon boasts better results compared to other solutions.

AutoGluon is run on Jupyter Notebooks in the HPC cluster at 990 GB Ram and 48 CPU cores.
Experiments are executed on two viable datasets(DS-57, DS-11) in AutoGluon. Results are presented
below. Figure: 5.12 and Figure: 5.13. Let us further analyze the results. The highest accuracy on DS-57
is achieved by the WeightedEnsemble_L2 model, which is .90. And very close are a list of ensemble-tree-
based models and neural-network-based models. It is also observed that a new group of ensemble models
performs better than Random Forest. Random Forest ranks 6th position from top in DS-57 category
and 7th position in DS-11 category. If we compare results for DS-11, we note that there is no signi�cant
di�erence from classical machine learning model results.

5.5 Results Discussion
Results presented in this study di�er from research work discussed in earlier sections. It is hard to compare
student data analyses from institutions of Seattle or Toronto or Karlsruhe. The collection of data, localiza-
tion of features, and various other hosts of reasons add to the complexity. Hence results are not compared
with similar research work. It should be referred to and viewed as an independent study. Summary of best
performing models on three data sets from over 50 experiments in three di�erent frameworks is presented
in the table.

Based on the below results, how do we choose the best model? In pure computer science terminology,
Random Forest wins the performance race. Other similar tree-based ensemble models also yield better
results. But the best model implementation is the one that serves the real goal of addressing the student
dropout problem, in a real-world setting. To answer this question, we need to take additional factors into
consideration like the e�ort of collecting data, training model, and deploying in the right environment
(either mobile or web service or even a secure workstation). In terms of collecting data, DS-11 wins over
DS-57 due to fewer attributes. This will play a signi�cant role when student data is collected to check for
data drift in the inference model. The prediction service can be made accessible to di�erent users, like
students, university administrators, or even guardians. Based on the appropriate use case, it will either
be deployed in the mobile app or as a web service. If it is a mobile app, it should be a lightweight model
�le. To serve this purpose, further load testing and performance testing should be done. Weka would
not be a great �t for deployment. But it o�ers signi�cant advantages for early-stage exploration. For
practical production deployment applications, using sci-kit learn, AutoGluon, or heterogeneous cloud
environment as deployment options are e�ective. Based on individual institution needs, a suitable option
can be selected. In this research, we have demonstrated models that �t real-world implementations.
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Table 5.5: Results on DS-101
S.no Model Name Framework F-score
1 Random Forest Weka-split 0.622
2 Random Forest Weka-CV 0.622

Table 5.6: Results on DS-57
S.no Model Name Framework F-score Accuracy
1 Random Forest Weka-split 0.884 89.2123
2 Random Forest Weka-CV 0.881 88.7724

Table 5.7: Results on DS-11
S.no Model Name Framework F-score Accuracy
1 Random Forest Weka-split 0.864 87.1361
2 Random Forest Weka-CV 0.863 87.0473

Table 5.8: AutoGluon Models on DS-57 in 80/20 split mode
S.no Model Name Accuracy
1 CatBoost 0.902243
2 RandomForestEntr 0.902756
3 LightGBMLarge 0.903784
4 XGBoost 0.904811
5 LightGBM 0.904982
6 NeuralNetFastAI 0.907892
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Figure 5.2: RBF hyperparameters
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Figure 5.3: J4.8 Hyper-parameters
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Figure 5.4: DS-101 Evaluation metrics trends with Cross-Validation mode

Figure 5.5: DS-57 Evaluation metrics trends with Split mode
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Figure 5.6: Random Forest hyperparameters
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Figure 5.7: F-scores on DS-57 on both classes- Dropout and Non-Dropout in split-mode
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Figure 5.8: DS-57 Evaluation metrics trends with Cross-validation mode
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Figure 5.9: F-scores on DS-57 on both classes- Dropout and Non-Dropout in Cross-Validation mode

Figure 5.10: DS-11 Evaluation metrics trends with Split mode
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Figure 5.11: DS-11 Evaluation metrics trends with Cross Validation mode
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Figure 5.12: AutoGluon best performing model accuracies and trends on DS-57
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Figure 5.13: AutoGluon best performing model accuracies and trends on DS-11
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Chapter 6

Conclusion

With a dramatic increase in student dropout in America, the mounting debt of student loans, and in-
creasing unemployment due to a paradigm shift in automation, there is an urgent need for �xing the
crisis of student dropout before it escalates into a humanitarian crisis. Current studies related to student
dropout are done using empirical research, theoretical approach, or socio-economic approach based on
racial/ethnic backgrounds. In this research, we used machine learning, data, and arti�cial intelligence to
build models that perform student dropout prediction. We have built these models in di�erent packages-
WEKA, Conda Framework, and AutoGluon in the high-performance computing platform. We have pre-
sented several models with good performance and these models developed in a wide variety of computing
platforms, have the potential to easily �t the budget of any IT department in any college.

Instead of treating the student dropout crisis as a natural process and logical consequence of social
strati�cation resulting from socio-economic factors, we built a student dropout predictive tool that has a
high potential of working outside the con�nes of a lab environment. This tool can further be polished
and vigorously tested before integrating into the student services of the university, and report �ndings to
the university governance team. This can shift focus from searching for answers to the question – “what
socio-economic or racial background a�ected student dropout?” to problem-solving approach- “We have
now identi�ed students who can dropout in our college – what can we do about it, with all our resources
and strengths? “. We intend this tool to �nd answers to the latter question. We have faith in the academic
community. We believe they will innovate novel methods to target these students with tailored solutions
like personal counseling services, additional tutoring classes in weak subjects, or personalized �nancial
support to convert the dropout risk students to graduate.

While this tool can only work as a generalized university-wide prediction model, it can predict dropout
outcomes for a university-wide student population with 85-90% accuracy. It is well-known that college
administration is interested in underlying factors that contributed to dropout. Due to the heterogeneous
nature of data, we could not address this research problem. For future work, more homogeneous data can
be built, such as student data with only the chemistry department and predict dropout in the chemistry
department. Research can further explore which chemistry courses are causing students to drop out
and in which semester students are at high risk of dropout. Details like these can be explored by diving
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deep into a speci�c group of homogeneous data of the student population (for example- The chemistry
department). Instead of a university-wide parent model, several speci�c child models can be built for
various departments. These models can later be used as an ensemble voting model and when combined
will form a new suite of analytic tools designed to assist the university governance team to proactively
monitor student graduation health.

We are con�dent that, in time with improved identi�cation of dropout students, university adminis-
tration will plan and implement prevention strategies. Over time, it should help learn strategies that work
and strategies that will not work. This will create a new knowledge base that can be shared among other
universities. In the future, as more strategies are discovered and applied to �x student dropout, gradually,
we should see positive results. We should see dropout population decreasing. This phenomenon will lead
to data drift. The current models will no longer serve future contexts. With a decreasing student dropout
population, problem de�nition will slowly migrate from binary classi�cation to anomaly detection. New
raw data collected from data- drift will have fewer samples of student dropout. In this scenario, student
dropout is not a crisis but an anomaly. Hence, classi�cation algorithms will not be suitable anymore. We
should shift the goalpost from classi�cation to anomaly detection, thus a new chapter will begin to focus
on state-of-the-art anomaly detection machine learning models.
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Appendix A

Summary of results

Figure A.1: Summary of Results
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Appendix B

Class Distributions of Datasets

Figure B.1: Class Label Distribution in DS-101
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Figure B.2: Class Label Distribution in DS-11 and DS-57
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Appendix C

Detailed view of DS-1 1

Figure C.1: List of Attributes in DS-11 and descriptions
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Figure C.2: Feature Importance map of DS-11
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Figure C.3: Attribute Distribution in DS-11

Figure C.4: List of Attributes in DS-11 and additional stats as seen in WEKA
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Appendix D

Paired T-test

Random forest is the baseline model compared to remaining models in this Paired T -test. The "*" symbol
next to the remaining models in the image below indicates that they are signi�cantly weaker than Random
Forest.

Figure D.1: Paired T test Results on F-Measure with 10 fold Cross validation and 10 repetitions

49



Figure D.2: Paired T test Results on Percent Accuracy with 10 fold Cross validation and 10 repetitions
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Appendix E

ROC Curves

The AUC-ROC curve for Random Forest is more compared to remaining models. The Higher the AUC,
the better the model is at distinguishing between Dropout and non-dropout students.

Figure E.1: ROC curve for selected models on DS-57
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