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ABSTRACT 

Machine Learning (ML) methods have been increasingly employed in the genetics 

domain. ML methods have shown promise in the field of characterizing genetic mutations. 

Mutations can have significant impact on the activity of the Human Epidermal Growth Factor 

Receptor (EGFR), a protein instrumental in cell proliferation. Over-activation of EGFR is a major 

cause of tumor growth. Although many computational methods have been proposed to identify 

disease causing mutations, these methods are not designed to predict mutation impact on protein 

activity. We explored feature selection strategies suitable for the small, complex data within this 

domain and tested a variety of machine learning algorithms. We generated a model achieving 

85.9% accuracy and an F-Measure of 0.70 with a Support Vector Machine with a Gaussian radial 

basis function kernel using a set of 6 features. This classifier combined with others using weighted 

probability voting achieved an area under the ROC curve of 0.83. 
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CHAPTER 1 

INTRODUCTION 

Computational methods have shown promise in combating the challenges of big data in 

the post-genomic era. The field of characterizing mutation effects has benefited greatly from work 

such as the development of tools for specifically managing and analyzing mutation data (Cario 

and Witte 2018), deep learning of mutational relations in scientific literature (Pan et al. 2017), and 

expanding online databases (Yi et al. 2017). In an attempt to harness this big data, general 

classifiers for point mutation-disease relatedness have become a popular topic of investigation. 

Early algorithms attempted to create classifiers by accounting for individual factors such as 

sequence conservation (Vaser et al. 2016), mutation frequency (Puente et al. 2011), and structural 

impact (Shi and Moult 2011). While achieving modest performance, it eventually became apparent 

that inferring a deleterious mutation could not be accomplished by one factor alone. 

To account for more factors, a systems biology approach to predicting mutation impact 

became increasingly popular. Recent classifiers of deleterious mutations include FunSeq2 (Fu et 

al. 2014), PredSAV (Pan et al. 2017), PON-PS (Niroula et al. 2017), SusPect (Yates et al. 2014), 

ELAPSIC (Berliner et al. 2014), STRUM (Quan et al. 2016), and PolyPhen-2 (Adzhubei et al. 

2010). This new set of classifiers commonly take into account a wide variety of features such as 

sequence conservation, structural properties, interaction networks, and gene ontology annotations. 

The classifiers implement algorithms such as support vector machine (Yates et al. 2014), Bayesian 

methods (Adzhubei et al. 2010), Random Forest (Niroula and Vihinen 2017)(Pons et al. 2016), 
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and a variety of ensemble methods that implement either weighted or unweighted voting from 

multiple classifiers (Quan et al. 2016)(Berliner et al. 2014)(U et al. 2014)(Pan et al. 2017). 

However, the dimensionality of the dataset may be too large. Furthermore, the concept of whether 

a mutation is deleterious may be too abstract and broad for the current classifiers. Classifiers 

trained to predict mutation-disease relationship tend to over-fit the training set and may not 

perform as well when classifying new data (Gnad et al. 2013). 

Narrowing the scope of prediction, some classifiers focus on subsets of mutations such as 

those in kinases which are frequently observed in cancer. Recent work includes KinMutRF (Pons 

et al. 2016) predicting deleterious kinase mutations and predicting cancer driver mutations (U et 

al. 2014). Feature selection in both studies revealed that kinase-specific features are potentially 

more important than generalizable features. This observation suggests an advantage in using 

specialized classifiers that take into account kinase-specific features which are missed in genome-

wide datasets. This allows the classifier to be more generalizable to unseen data (U et al. 2014). 

 Computational methods have also been applied in predicting concrete measures 

such as biochemical features. Recent works in mutational impact have produced statistical and 

machine learning models that predict change in protein folding free energy (ΔΔG) (Giollo et al. 

2014)(Quan et al. 2016), changes in free energy of binding (ΔΔGbinding) (Dehouck et al. 2013), and 

thermal stability (ΔTm) (Pucci et al. 2016). A predictor for mutation impact on kinase-substrate 

phosphorylation has also been developed (Wagih et al. 2015). Many predictors of biochemical 

property usually involve fitting a customized statistical model onto concrete experimental data. 

The predicted values may, in turn, be used to infer potential deleterious effects in the context of 

larger biological systems. 
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 Avoiding the pitfalls in predicting disease-related mutations, we recently 

established a machine learning classifier for identifying kinase-activating mutations in human 

EGFR. These are commonly observed in lung cancers amongst other phenotypes. As a member of 

the tyrosine kinase family, EGFR is frequently mutated in many different cancer patients making 

it a useful target of study. As a side note, there has recently been a high throughput experimental 

method of characterizing the effects of EGFR mutations on cell growth (Kohsaka et al. 2017). 

 In this study, we seek to develop classifiers for mutations on EGFR-ligand 

independent activity. We manually curated a list of 77 distinct mutations in the EGFR kinase 

domain from published literature. Each mutation was classified as either “activating” denoting 

increased ligand-independent (EGF-independent) phosphorylation activity relative to the wild type 

(WT) or “non-activating” denoting either similar or decreased activity relative to the wild type. 

The acquisition of activating EGFR mutations often results in aberrant cell growth. We developed 

a novel and extensive feature set that includes the physicochemical properties of residues, various 

empirical energy functions, kinase-specific evolutionarily conserved residues, EGFR-specific 

assembly interface, and kinase conformation-specific structural properties. Iterative feature 

selection identified six most informative features in predicting activating mutations: (1) the 

difference in Rosetta energy (O’Meara et al. 2015) between the wild type and mutant protein whilst 

in the inactive of EGFR (diff_relax_inactive), (2) the difference in accessible surface area between 

the wild type and mutant protein whilst in the active state of EGFR (diff_asa_active), (3) the 

entropy of the mutation site when aligned to all members of the tyrosine kinase family 

(conservation_tk), (4) whether the mutation localizes in the EGFR asymmetric dimer interface 

(active_dimer), (5) the entropy of the mutation site when aligned to all EGFR kinases 

(conservation_egfr), and (6) the difference in the residue distance network closeness-centrality as 
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calculated by NetworkX (Hagberg et al. 2008) between the wild type and mutant residue in the 

active conformation of EGFR (diff_active_network_closeness). The support vector machine yields 

an accuracy of 82.7% with an F-Measure of 0.615 based on the 10-fold cross-validation and is the 

most effective model from our study. 
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CHAPTER 2 

MATERIALS AND METHODS 

Data source 

The ligand-independent autophosphorylation activity of EGFR is typically measured by 

cell-based western blot assay. By mining the existing literature, we manually quantified the relative 

activity level of 77 different EGFR point mutations in the kinase domain using digital densitometry 

(ImageJ) from 8 different published studies (Zhang et al. 2006)(Jura et al. 2009)(U et al. 

2014)(Ruan et al. 2017)(Chen et al. 2005)(Choi et al. 2006)(Kancha et al. 2009)(Mcskimming et 

al. 2015). The ratio between tyrosine phosphorylation and the total expression level of EGFR is 

taken as the numerical activity score for a given mutation. In order to form two discrete classes a 

threshold of 1.5 was chosen after which any mutation with a score below that threshold was labeled 

as Non-Activating and those with scores greater than or equal to it were labeled as Activating. The 

list of EGFR mutations and corresponding references can be found in the S1 Table in Supporting 

Information. 
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Figure 1. Mutations of Protein Structure: Locations and counts of point mutations within the 

dataset shown on the reference PDBs for the active and inactive conformation. 

 

Training Features 

Our training features can be broadly classified into several categories which will be 

described in Table 1 below. The label “2 conformations” denotes that the feature is calculated for 

the both active and inactive conformation.(Velankar 2013) 

Table 1. Descriptions of Categories of Training Features 

Structure Difference in b-factor compared to WT (2 conformations) 
Difference in surface area compared to WT (2 conformations) 
Whether the mutation localizes in the EGFR dimer interface 

Biochemical Difference in polarity, hydropathy, volume, charge, and molecular weight compared 

to WT. 

Conservation The mutation’s position-wise entropy when aligned to: all eukaryotic protein 

kinases, tyrosine kinases, EGFR family kinases, and EGFR kinases. 

Energy Difference in Rosetta energy compared to WT (2 conformations) 
Difference in Rosetta pmut scan score compared to WT (2 conformations) 
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Structural 

Network 
Difference in network betweenness compared to WT (2 conformations) 
Difference in network closeness compared to WT (2 conformations) 

Others Frequency of the point mutation in the COSMIC database 

 

Preprocessing 

After the data collect described above, we had curated a set of 77 mutations. The 

resulting Activating class contained 21 mutations whereas the Non-Activating contained 56, 

making it 2.67 times the size of the Activating class. Due to this imbalance between the 

Activating and Non-Activating class, class-weighting was used in all feature section and model 

training (Gustavo et al. 2004). A set of 35 features was then defined and calculated for each 

mutation (see Table 1.). Some of the features within our dataset had a much larger range of 

values than other features and as such could potentially bias the model to favor them over the 

smaller value features.  In order to solve this problem, we used standardization, a data scaling 

technique that transforms each feature to have a mean of 0 and unit-variance (Shanker et al. 

1996).   

There were a few cases in which certain features were not able to be calculated for certain 

mutations however this was uncommon and the resulting dataset was ~96% dense.(Wilson et. Al 

2003) In order to address the missing values, several approaches were considered. Due to the 

limited size of our dataset, we decided against discarding those mutations which had missing 

values. Therefore, a method of imputation had to be chosen and employed. We experimented 

with several approaches that calculate artificial values for those missing by using the values that 

are available. These include techniques such as Mean Substitution and Expectation 

Maximization.(Gold and Bentler 2000) The issue with using these techniques is the small size of 

our dataset compared to its high dimensionality and feature complexity hinders these imputation 
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algorithms from effectively calculating meaningful artificial feature values, causing them to 

instead inject noise into the data. In the end, we found that the imputation technique that 

maximized the performance of our models was simply filling in all missing values with 0’s. 

Feature selection 

Ideally feature selection would be performed on a separate set entirely than the training 

and testing sets, (Blum and Langley 1997) due to the extremely limited size of our dataset we had 

no choice but to perform feature selection on the same set we would later classify on. Additionally, 

our dataset has a very high degree of dimensionality relative to its size. As such, great care had to 

be employed to avoid data leakage or over-fitting of our model. (Ye and Wang 2006) Data leakage 

is when a model receives extra information for training than what is contained in the training data 

which may bias its performance and allow it to perform unrealistically well. In our case, 

performing feature selection on the same set as model training/validation allows the best features 

for validation to leak into selection, biasing the model. Over-fitting is when a model learns a 

training set overly-well, making it perform highly on that specific data but poorly on data it did 

not train on. (Ye and Wang 2006) In our data, the high degrees of freedom potentially allowed to 

our models could easily over-fit such a small dataset. Feature selection had to be performed in 

such a manner such that dimensionality reduction could be performed on our limited data whilst 

minimizing the potential for overfitting and data leakage during training/validation.(Arlot and 

Celisse 2010) 

We determined that the most effective approach would be to integrate feature selection into 

our experiments’ 10-fold cross-validation. 10-fold cross-validation is a method which pseudo-

randomly partitions the data into 10 sets of roughly equal size, wherein each set it then used as a 

validation set for the remainder of the data. This prevents the leakage of validation data into the 
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training set. (Martens and Dardenne 1998)(Arlot and Celisse 2010) Then within each fold, our 

feature selection technique was applied. The advantage of this approach is features are never 

chosen from the same data that will be used to validate the model, preventing any data leakage. A 

disadvantage however is due to feature selection being performed for each fold it will be run 10 

times per experiment, drastically increasing the time taken for experimentation. Additionally, it is 

possible each fold may choose a completely distinct feature set from the others, making post-

experiment analysis of each features’ predictive power more difficult. Despite these limitations we 

found this approach to be highly effective in combating the issues that arise from small but 

complex data such as ours.  

The feature selection technique used within each fold is described as follows. Sampling 

with replacement was done to produce a sample set s that is 75% the size of the original. Then 

Correlation-based Attribute Evaluation (Hall 1999) was used as a feature selection metric. This 

method determines the merit of feature subsets for classification by measuring their member 

features correlation to each class as well as lack of correlation to each other. The merit for each 

feature set is defined by the following formula (Hall 1999): 

𝑀𝑠 =  
𝑘𝑟𝑐𝑓

√𝑘+𝑘(𝑘−1)𝑟𝑓𝑓

  (1) 

Where M is the merit of subset s with k features, 𝑟𝑐𝑓 is the mean correlation of the features 

to the classes and 𝑟𝑓𝑓 is the mean of the features’ correlation to other features. This method was 

used in conjunction with Best First Search. Best First Search starts with an empty set of features 

then adds one feature at a time, evaluating each resulting subset and chooses the best of these 

neighbor subsets to be used in its next iteration. The algorithm backtracks should it ever reach a 

point in which the current neighbor subsets it is checking perform worse than some previous 

subset. Should the algorithm ever explore some predefined number, in our case 10000, of 
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consecutive non-improving subsets it will terminate and return the best subset it has found thus far 

(there is no specific significance in the value of 10000 it is simply how much you want to allow 

the algorithm to continue without termination, without this cut-off the search would explore every 

single possible subset, in our case 235). (Patankar and Chavda 2016). 

Then, the Best First Search was repeated using Wrapper Subset Evaluation for the search 

heuristic. This is a technique in which each feature subset is used for training some classifier with 

10-fold cross-validation then using an evaluation metric, in our case the F-measure with respect to 

the Activating class, as the subset’s merit. (Arlot and Celisse 2010) This was repeated with all of 

our models (see Classification Methods for details on the models used) 

This process was repeated over one hundred unique 75% samples. Aggregate scores for 

how the individual features performed across the hundred samples were then calculated. Voting 

was used in which each feature in the selected subset for a sample gets one vote; the votes are 

totaled across all samples generating a ranking for each individual feature. The feature rankings 

were then analyzed to find the top set of high-ranking features with the largest gap to the next 

highest feature below that set. The resulting set was then used as the feature set for training the 

models within that fold. The feature selection process was repeated for each fold before training 

occurred. 

The advantage of this process is it incredibly rigorous; testing a vast number feature sets 

across a variety of subsamples, using two different feature set evaluation metrics, and employing 

all of the models to be tested in the wrapper results in a feature set with a high probability being 

predictive and generalizable. The obvious disadvantage is a single experiment take hours to 
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execute on our dataset of just 77 data points, making it only practical to use in Small Data 

applications (though with more data less rigor is required regardless). 

Classification Methods 

Sci-Kit Learn was the library used for our study.(Pedregosa et al., 2011) The experiments 

were repeated 100 times to obtain the final results. Class weighting was employed in all training 

in order to account for the imbalance.(Hall 1999) We experimented with a large variety of models, 

a selection of which we shall describe.. 

The Random Forest classifier works by developing an ensemble of decision trees. (Breiman 

2001) Decision trees are a classification method in which a tree structure if formed such that at 

each interior node a single rule is defined which evaluates an attribute of some input data point 

and determines which of the node’s children the data point will be evaluated by next. This process 

is repeated until the data point reaches a leaf node which then determines the data point’s class. A 

random forest model builds a series of these trees, first by selecting a pseudo-random subset of 

features of a predefined size from the original input feature set. Then, a sample of the training data 

is chosen using sampling with replacement. A decision tree is then built on this sample using the 

feature subset. Any decision tree construction algorithm may be employed, in our case it was C4.5 

(Ruggieri 2002). A series of trees are built in this manner. After the model is built, to classify each 

point it is classified by each tree in the model then the class which had the most trees select it is 

chosen as the overall classification. By training an ensemble of trees each on separate subsets and 

each using a random subset of features Random Forest classifiers are very effective at combating 

over-fitting. (Breiman 2001) 
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Nearest Neighbor based models classify unseen data points based on their proximity to 

already labeled points in the feature space. No training is actually required for the model. Each 

target data point is compared to the other data points in the dataset. Those nearest to the data point 

are selected to be used in classification. The number of points used can be decided in manners such 

some predefined fixed value, as in K-Nearest Neighbors (Denoeux 1995), or the points found 

within some fixed radius as in Radius Nearest Neighbors. (Cover 1967) After the nearest neighbors 

are selected, each neighbor votes on the classification for the unlabeled point and the class with 

the most votes is assigned to the unlabeled point. If the classes are unbalanced, the classes are 

weighted giving the smaller classes more influential votes. Ties are broken by adding the next 

nearest neighbor to the set and considering its vote. 

A Support Vector Machine is a classifier designed to find one or more dividing hyperplanes 

between separable classes within a complex, multi-dimensional feature space. It works by finding 

one or more hyperplanes in the feature space that divides the space into two separate sub-spaces, 

each correlated to one of two classes of data. Unseen data points are then classified by finding 

which sub-space they fall into. The hyperplanes considered the best are that with the maximum 

distance to two support vectors on opposite sides of the plane. A support vector is a vector 

representing the edge of one of the separable classes in the training space. (Scholkopf et al. 1997) 

The hyperplane is calculated using a kernel. The kernel/resulting hyperplane need not be linear. 

The common kernels used for support vector machines include linear, polynomial, hyperbolic 

tangent, and Gaussian radial basis functions. (Scholkopf et al. 1997) 

Logistic Regression is a classifier that calculates the probability of a feature vector 

belonging to a particular class. (Dreiseitl 2002) It works by training a linear function in the form 

of the summation of each value in the feature vector after each multiplied by some corresponding 
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weight. It then transforms the result of this equation using the logistic function with a maximum 

of 1, giving a probability value for the given point belonging to some class. This probability is 

then divided by the probability of the data point not belonging to that glass, resulting in a 

comparative likelihood value for the data point belonging to the given class versus the other. The 

linear function used in the probability function is trained using any technique that can be used for 

training a standard linear regression model (in our case stochastic gradient descent). (Dreiseitl 

2002) 

        A Naïve-Bayes classifier is one based on the application of Bayes theorem. (Lewis 1998) 

Bayes Theorem estimates the probability for a given event based on prior knowledge of 

conditions that may be correlated. A Bayesian classifier uses the feature values of the training 

data as the prior conditions to calculate the probability. The Naïve-Bayes is known as naïve 

because is it makes the assumption that the features are all entirely independent of each other 

when making its probability calculations. While this can somewhat hinder the classifier, as in 

many cases the features are not truly independent, these classifiers still perform surprisingly well 

despite their simplicity (Lewis 1998). Gaussian Naïve-Bayes is a formulation of the Naïve-Bayes 

classifier that works with continuous feature values.(Lou et al. 2014) In this formulation, the 

features are used to calculate some Gaussian distribution modeling that feature’s possible values 

to a probability for each class. 
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CHAPTER 3 

RESULTS 

Results and Discussion 

As discussed above (see Feature Selection), for every 10-fold cross-validation of the 

models it was possible for up to 10 distinct feature sets to be chosen. We ran 100 unique 10-fold 

cross-validations with a different seed used in the pseudo-random number generator for every 

fold to obtain the results for an experiment. Therefore, for each experiment up to 1000 unique 

feature could have been generated. With this in mind, a significant result of our study was that in 

the experiment which employed all of the models described above, a singular feature set of size 3 

was chosen across all 1000 chosen sets. It was a set of three features, diff_relax_inactive, 

diff_asa_active, and active_dimer. These three features clearly have a significant predictive 

power within our dataset. Due to the measures taken to prevent data leakage and over-fitting in 

our selection technique as well as the repeated experimentation across randomized dataset 

partitions, it is highly probable that these features are generalizable and will still be predictive for 

mutations not within our data set. Additionally, this demonstrates the robustness of our approach 

to feature selection, as applied to Small Data. 
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Table 2. Feature Scores: Average voting scores for each feature during feature selection across 

all experiments. Assuming the scores were similar for each fold in each experiment, it is easy to 

see why those three features were selected consistently with such a large gap between them and 

the next feature. 

Feature Score (%) 

diff_relax_inactive 92.53 

active_dimer 89.1 

diff_asa_active 88.3 

conservation_tk 49.4 

conservation_egfr 43.7 

diff_pmut_scan_per_residue_active 32.9 

conservation_epk 29.3 

conservation_egfrfam 26.7 

diff_pmut_scan_active 25.2 

diff_relax_per_residue_inactive 23.3 

diff_active_network_closeness 23.1 

blosum62 19.7 

diff_polarity 17.6 

diff_local_inactive_neg_tk 11.6 

diff_hydropathy 10.6 

diff_charge 9.8 

diff_pmut_scan_per_residue_inactive 8.7 

diff_relax_per_residue_active 8.6 

diff_relax_active 7.9 

diff_pmut_scan_inactive 3.2 

diff_local_inactive_neg_egfrfam 2.8 

diff_local_inactive_neg_egfr 1.6 

diff_local_inactive_neg_epk 1.3 

 

The Rosetta inactive energy is a measure of the overall fold of the protein. The kinase 

domain of EGFR exists in an equilibrium between the active and inactive states (Jura et al. 2009). 

Mutations in the kinase domain that destabilize the inactive state is likely to shift the equilibrium 

towards the active state, thus activate the enzyme (Zhang et al. 2006)(Ruan and Kannan 2015). 

The diff_relax_inactive feature measures the relative stability of the mutant in comparison to WT 

in the inactive state. Identification of this feature shows that modulating the stability of inactive 
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EGFR is a common mechanism by which cancer cells alter kinase activity. The importance of 

taking into account structural conformation is shown by diff_relax_inactive (92.53%) being the 

most important feature while diff_relax_active (7.9%) holds almost no predictive power. 

The activation of EGFR requires the formation of an asymmetric dimer (Zhang et al. 

2006). Mutations disrupt the interface typically result in kinase inactivation (Lavoie et al. 

2014)(Zhang et al. 2006)(Ruan et al. 2016). In particular, many of our training data are mutations 

in the asymmetric dimer interface and inactivate the kinase by disrupting the dimer formation. 

Therefore, the feature active_dimer which is good at classifying a subset of mutations is selected. 

The diff_asa_active describes the difference of solvent accessible area between WT and 

mutant EGFR. It is unclear why solvent accessible area is important for the classification. Because 

only the active conformation allows substrate binding, a change in surface area may also reflect a 

change in substrate accessibility. The importance of conformation is shown yet again as 

diff_asa_inactive has virtually no predictive power.  

Another result of note is our feature selection doesn’t choose the frequency of a mutation 

as important to determine the Activating mutations. This result emphasized the fact that many of 

the rare occurring mutations could also contribute the kinase activation. However, a systematic 

understanding of these mutations is currently lacking. 

In our experimentation, we are most interested in the ability to classify the activating 

mutations. Our focused interest in the activating class along with the severe imbalance in our 

data set, which contains 56 Non-activating mutations but only 21 Activating mutations, so in our 

evaluation of our models we judged them primarily on their prediction ability of the activating 

class. The metrics used for evaluating the models were accuracy, precision, and recall. Accuracy 
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is the measure of how many mutations were classified correctly by the model. Recall is the 

measure of how many mutations that are members of certain class were correctly classified as 

that class. Precision is the measure of how many mutations classified as a certain class were 

indeed members of that class. F-Measure is a metric which combines precision and recall into a 

single metric that is intended to balance their relative importance. (Sokolova et al. 20006)  

Accuracy = 
# 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝐷𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠
  (2) 

Recall = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (3) 

Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
 (4) 

F-Measure = 2 ∙  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (5) 

The three highest performing models according to these metrics were Random Forest, Naive-

Bayes, and Support Vector Machine with a Gaussian Radial Basis Function kernel. These three’s 

performance are as follows: 
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Figure 2. Average Correctly Classified Activating Mutations: The average correctly classified 

Activating mutations for each model across the 100 experiments. (The minimum possible value 

for this is 0 and the maximum 21 but for readability’s sake the x-axis range has been restricted to 

9.5 to 12.5) 

 

 

 

Figure 3. Average Correctly Classified Non-Activating Mutations: The average correctly 

classified Non-activating mutations for each model across the 100 experiments 
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Figure 4. Classifier Performance Comparison. The average performance metrics for the 

classifiers across the 100 experiments. The Activating class was considered the positive class in 

the calculation of Recall and Precision. 

 

Table 3. Activating Mutation Correct Predictions: The number of correct classifications for each 

variant within the Activating class by each model and the total across all three classifiers. (The 

correct classifications for Non-Activating class is in S1 Table in Supporting Information) 
Variant RF NB SVM Total 

M766S 100 100 100 300 

M766T 99 100 100 299 

D761N 96 100 100 296 

I759A 92 100 100 292 

L858R 96 100 94 290 

T725M 94 100 94 288 

E746K 31 100 80 211 

G735S 87 100 0 187 

Q791E 74 15 97 186 

A767T 82 0 97 179 

T790M 69 99 0 168 
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L833V 67 0 97 164 

L861Q 17 0 93 110 

G724S 2 100 0 102 

L777F 0 100 0 100 

G719S 86 0 0 86 

S768I 63 0 0 63 

L861R 40 0 0 40 

R776C 4 28 0 32 

R776H 1 0 0 1 

M766A 0 0 0 0 

 

Naïve-Bayes performed the best in sheer number of predicting the Activating class, with 

an average of 12 Activating mutations predicted correctly. Random Forest was second with an 

average of 11.23 and the Support Vector Machine was last with an average of 10.5 (Fig 2). As 

for the Non-activating class, in this the Support Vector Machine performed the best with an 

average of 52.35 true negatives predicted correctly. Naïve-Bayes was second with 45.25 and 

Random Forest last with 40.09 (Fig 3). In Accuracy, the Support Vector Machine was much 

higher than the others with an accuracy of 83%, Naïve-Bayes second with 75%, and Random 

Forest was last with 68% (Fig 4). The Support Vector Machine may have performed better in 

terms of the Non-activating class and Accuracy but as discussed above these are not the best 

metrics for evaluating our models; their performance with the Activating class yields more 

relevant metrics. Naïve-Bayes predicted the most true-positives on average and as such had the 

highest recall measure for the Activating class at .57, however its precision was only .55, much 

lower than the Support Vector Machine so its high recall may possibly be attributed to a bias 

towards the prediction of the Activating class in general (Fig 4).  The Support Vector Machine 
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had by far the highest Activating precision at 0.80, 0.25 higher than Naïve-Bayes in second (Fig 

4). Though it did not have the highest recall, this high precision gives the Support Vector 

Machine the highest F-Measure, or F1 Score. Since at .61 the F1 Score for the Support Vector 

Machine was the highest for the Activating class (Fig 4) we can conclude that it is our highest 

performing model (Fig 4) and had the added benefit of performing the best on the Non-activating 

class as well (Figs 3).  

These three models performed the highest most likely due to the limited size of our 

dataset. Random Forest through its technique of subsampling the data and dataset to build an 

ensemble is very resistant to over-fitting, something which can be a serious issue in a dataset this 

small. Additionally, having a series of models each trained on different features and mutation 

samples allows for a more thorough consideration this complex feature space, and by examining 

multiple random relations between the mutations and their features the Random Forest model 

can more accurately and in a more generalizable fashion capture the correlations between the 

features and each class. Naive-Bayes resists over-fitting in a completely different manner. Due to 

the simplicity of the Naive-Bayes classifier, it is more easily able to learn from small data sets. It 

has no need for large numbers of training example to calculate its event probabilities. This can 

give it an advantage in small datasets over algorithms such as Logistic Regression using 

stochastic gradient descent, which requires large number of training points it can use to iterative 

update its function weights in order to converge. (Lewis 1998) Finally, the highest performing 

model, the Support Vector Machine with a Gaussian radial basis function kernel. Support Vector 

Machines like Naive-Bayes do not necessarily need a large volume of data points to train on. As 

long as the points within the data are representative of the general areas within the feature space 

points of that same class will be found, a support vector machine will perform well. This is 
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because its method of finding dividing hyper planes that maximize their distance to any support 

vector leaves a large margin in which unseen data points may fall outside the support vector(s) 

binding their class yet still be on the correct side of the classifying hyperplane(s) support vector. 

The Gaussian radial basis function kernel performs better than the other SVM kernels due to its 

increased flexibility in adapting to the support vectors (Scholkopf 1997). 

After our experimentation with a multitude of classifiers found the Support Vector 

Machine with a Gaussian radial basis functional kernel to be the best performing, we repeated 

our full experiment, now only using the SVM with the optimal kernel for feature selection, 

leaving out the less effective classifiers. This would always yield one of 4 feature sets. These 

feature sets we remarkably for several reasons. Firstly, all four of these sets were all a superset of 

the previously found feature set. This further demonstrates the importance and predictive power 

of the features diff_asa_active, diff_relax_inactive, and active_dimer within our dataset. 

Secondly, there were two other features also consistent across all four sets. These were 

conservation_tk and conservation_egfr. Finally, the 6th feature was interchangeably one of the 4 

Structural Network features; these being diff_active_network_closeness, 

diff_active_network_betweenness, diff_inactive_network_closeness, and 

diff_inactive_network_betweenness. To explore this phenomenon, we trained and validated the 

Support Vector Machine on all 4 feature sets and compared the results. All of the metrics for all 

4 feature sets were essentially identical (there was some very slight variation with a magnitude 

on the order of a thousandth). Furthermore, when introducing more than one of these 4 features 

into the set the performance decreased. This indicates that in terms of predictive power all 4 

Structural Network features are equivalent and using all 4 of them is redundant. When examining 

the 4 features’ values charted across the mutations we can see the clear correlation: 
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Figure 5. Network Features Across All Mutations: When charting the feature values for each 

mutation across the x-axis we can see a clear correlation between their values in most instances. 

 Thereafter we eliminated diff_active_network_betweenness, 

diff_inactive_network_closeness, and diff_inactive_network_betweenness from our dataset, 

leaving only diff_active_network_closeness (this feature was chosen arbitrarily, since the 4 are 

redundant any of the others could have been kept instead). The experiment was then run again. 

Doing so yielded the following feature rankings: 

Table 4. SVM Only Feature Scores: Average voting scores for each feature during feature 

selection across all experiments with only the SVM with the RBF kernel being used. Again, 

there is a very clear distinction between the consistently selected features and the rest. 

Feature Score (%) 

diff_relax_inactive 93.5 

diff_asa_active 92.7 

conservation_tk 87.4 

active_dimer 86.4 

conservation_egfr 84.7 
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diff_active_network_closeness 83.4 

diff_pmut_scan_per_residue_active 25.7 

conservation_epk 23.9 

conservation_egfrfam 23.3 

diff_pmut_scan_active 23.1 

diff_relax_per_residue_inactive 21.4 

blosum62 14.2 

diff_polarity 14 

diff_charge 10.1 

diff_local_inactive_neg_tk 9.5 

diff_relax_per_residue_active 7.7 

diff_relax_active 5.7 

diff_pmut_scan_per_residue_inactive 5.1 

diff_pmut_scan_inactive 4.4 

diff_hydropathy 1.1 

diff_local_inactive_neg_egfr 1 

diff_local_inactive_neg_egfrfam 0.8 

diff_local_inactive_neg_epk 0.3 

  

A new set of now six features was selected consistently, again chosen in nearly every 

experiment. It contained the same three features as selected by all of the classifiers together, but 

added three new features unique to the SVM. Sequence conservation features were found to be of 

increased importance for the SVM as compared to the other classifiers such as Naive Bayes and 

Random Forest (no evidence here, because in Table 1 it is not a result of using Naive Bayes or 

Random Forest). {The conservation features incorporated in our study are evaluated at different 

levels. Specifically, we calculated the conservation score (entropy) of the sequence alignment of 

1} all eukaryotic protein kinases (ePKs), 2} all tyrosine kinases (TKs), 3} all EGFR family kinases, 

and 4} all EGFR homologous sequences. Interestingly, the 2nd level (conservation_tk) and 4th 

level (conservation_egfr) were found to be the most important conservation features, while the 3rd 

level (conservation_egfrfam) lying in between was found to be the worst. Despite numerous the 

popularity of using sequence conservation in predicting mutation impact (Gnad 2013), the 
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prediction performance seems to be highly dependent on the way the sequence alignment is built. 

In addition, the diff_active_network_closeness is also selected as an important feature for SVM. 

The network properties of protein structures have previously explored to understand the allosteric 

communications between different regions of the protein (James and Verkhivker 2014). Our result 

further suggests that it might be useful to understand mutation impact as well. 

In order to further explore the impact of the features we have proposed, we took the set of 

6 features and did a cross-comparison of this full set versus the subsets formed by removing each 

category of features we proposed. E.g. we experimented with the removal of the Structural 

Network feature diff_active_network_closeness, the Energy feature diff_relax_inactive, and the 

Structural features active_dimer and diff_asa_active. In doing so we aimed to demonstrate the 

importance of EGFR-specific features in the classification of these mutations. Our comparison was 

done by generating the receiver operating characteristic (ROC) curve for each set. The ROC curve 

charts the true positive rate of a classifier against its false positive rate.(Hanley and Mcneil 1982) 

This is done by having the trained classifier predict the probability of each instance in the 

validation set belonging to the Activating class. The samples with a probability higher than some 

threshold are predicted as Activating. This threshold starts at 1 (meaning nothing is classified as 

Activating) and is then iteratively decreased, with the false positive and true positive rate for the 

classifier at each new threshold being calculated. As the threshold becomes less stringent, both the 

false and true positive rate will increase. The ROC curve charts how the true positive rate changes 

as compared to the false positive rate. These curves can be compared by calculating their Area 

Under the Curve (AUC) .(Hanley and Mcneil 1982) The higher the AUC, the more likely the 

classifier will correctly predict the Activating class. The classifier used for the ROC curve was the 

Support Vector Machine. 
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Figure 6. Feature Sets’ ROC Curves: Compares the full set of 6 features to the removal of each 

category of features. False Positive Rate is the x-axis and True Positive Rate the y-axis. 

Generated using an SVM for training/validation 

 

Table 5. AUC for Figure 5. 

Feature Set AUC 

Original 0.759211429 

W/O Structure-

based 

0.732628788 

W/O Energy-based 0.663242944 

W/O Network-

based 

0.749817446 

W/O All Three 0.490396147 

 

 

 As demonstrated by Figure 6, the removal of the Structure-based features or the Energy-

based features both significantly diminish the model’s performance in terms of its ability to 

predict the Activating class while minimizing false positives. Although, interestingly the set 

excluding the structural features did perform better at higher false positive rates than the original 

set. This accounts for why its AUC is only ~0.03 less than the original set. The removal of the 
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Structural Network feature had little effect on the classifier’s performance, only reducing the 

AUC by ~0.01 from the original. Though the fact that it did diminish the AUC somewhat shows 

it has enough significance to explain its inclusion in the original set. 

 Each model was then trained and validated using the expanded set of now 6 features. 

Additionally, two voting schemes were tested to see if combining the classifiers could improve 

performance. One used majority or “hard” voting, where each classifier gets 1 vote for the class 

it would choose and the class voted for the most is used as the predicted class.(Halteren et al. 

2001) The other used probability or “soft” voting, where each classifier gives a prediction 

probability for each class then the class with the highest average probability across the classifiers 

is selected.(Halteren et al. 2001) The ROC curves were then generated for each model using the 

new feature set (except for the hard voting model since it does not give a probability score). Each 

model’s performance is as follows: 

 
Figure 7. Classifier Performance Comparison with SVM-only Selected Features. The average 

performance metrics for the classifiers across the 100 experiments. The Activating class was 

considered the positive class in the calculation of Recall and Precision. 
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Figure 8. Classifiers’ ROC Curves with SVM-only Selected Features: The ROC curve for each 

of the 3 highest performing classifiers being compared. 

 

Table 6. AUC for Figure 8 

Classifier AUC 

SVM 0.760272597 

RF 0.744972771 

NB 0.721502771 

Soft Voting 0.827519307 

 

 The new feature set resulted in an across-the-board improvement for the Support Vector 

Machine. Figure 7 shows, the SVM performed better across the board with the expanded set of 

features. With respect to the Activating class its Precision increased from 0.80 to 0.85, its Recall 

from 0.50 to 0.59, and the resulting F-Measure from 0.61 to 0.70. Finally, its Accuracy increased 

from 0.83 to 0.86. With this improvement, the SVM now performs better than the other 

classifiers across all of the metrics, whereas with the set of only three features it had a lower 

Activating Recall than the Random Forest and Naïve-Bayes models. Interestingly, the F-Measure 

for the other two classifiers increased as well, although the Naïve-Bayes model gained recall but 
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lost precision and accuracy and the Random Forest lost recall but gained precision.(Fig 7) 

Neither voting scheme improved the performance according to the metrics in Figure 7. Soft 

voting was the best, with the second highest overall Accuracy, F-Measure, and Precision, though 

it did not out-perform the SVM in any one of the metrics in Figure 7.  

In the ROC curve, we can clearly see the SVM outperforming the other two base 

classifiers in its ability to detect Activating mutations without a high degree of false positives. 

Interestingly however, the Random Forest and Naïve-Bayes classifiers do both exceed the 

SVM’s true positive detection capability, however this comes at the cost of greatly increased 

false positives. Neither model surpasses the SVM until they have a false positive rate greater 

than 30%, well above that achieved by the SVM at almost the same true positive rate.(Fig 8) 

However due to their improved performance later in the curve, the AUC for the Random Forest 

and Naïve-Bayes classifiers are only ~0.015 and ~0.03 lower respectively than that of the SVM. 

Interestingly, by combining all 3 classifiers using soft voting we don’t lose too much 

performance at the lower end of the false positive rates, while improving the true positive rate 

later in the curve to higher than even the Random Forest or Naïve-Bayes. This yields an AUC for 

the soft voting model of 0.82, ~0.06 higher than the SVM.(Table 6) So while the soft voting 

strategy performed worse in our validation metrics than the SVM, it did perform better in the 

ROC curve, showing it to be the most effective strategy for classification of the Activating class. 

 In small datasets such as ours there can be concern that the data is not representative 

enough of the full problem space to constitute a valid sample for model training/validation. To 

ease this concern, we generated a learning curve using the set of 6 features and our highest 

performing classifiers. A learning curve is a method for determining the validity of a dataset as a 

representative sample.(Perlich 2010) It is created by taking a series of subsample of varying sizes 
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of the training data and using them to train/validate one or more models. With the sample size on 

the x-axis and the model accuracy on the y-axis, the resulting curve depicts how much adding 

data improves your model. Ideally, the curve will have a high positive slope as it initially 

increases its training set size from zero, but then this slope will greatly decrease as more data is 

added and the actual dataset size is approached. The implication is should the curve level-off as 

it approaches our dataset size then out dataset is a sufficient sample of the domain since adding 

anymore data yields only a marginal improvement in accuracy. To calculate ours, cross-

validation was employed with each model being trained and validated on varying size 

subsamples of each fold. This was repeated 100 times with unique partitions and the results were 

averaged. It is depicted as follows: 

 
Fig 9. Learning Curve. The Accuracy of each model when trained on a given sample size. The 

accuracy was determined using cross validation. 
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As shown in Figure 9, each model undergoes a substantial increase in accuracy as data is 

added to the smaller subsamples. The accuracy gradually levels off and the rate at which 

accuracy increased was reduced. However, there is still a moderate improvement as the sample 

size increases. This curve indicates that while our sample is approaching the ideal sample size 

additional data would still prove valuable in the training/validation of our models. 

After exploring the data and our ability to model it, we next took a set of previously 

unclassified mutations and evaluated them with the SVM using the six features that yielded the 

highest performance. The evaluation was done by randomly partitioning the training set into 10 

sets of roughly equal size (in a similar manner as cross-fold validation). For each partition, the 

SVM was trained then voted for the classification of each mutant in the unknown set. If a 

majority of the partitions voted that an unknown mutant was Activating, it received a score of 1 

for that experiment, if more voted it was Non-Activating it received a score of 0 and if equal 

number voted for either then it received a score of 0.5. These scores were summed across 100 

different random splits to generate the predicted likelihood of an unknown mutation being 

Activating (e.g. a score of 100 being the most likely to be Activating, 0 the least.) We compared 

these quantitative results from our models to our own qualitative predictions of the potential 

class for each mutant. A selected sample of the results is as follows: 

Table 7. Classifier Predictions for Previously Unclassified Mutations: Table of selected 

resulting scores from unknown mutant classification as well as our own predictions of the mutant 

class based on qualitative examination of the mutation. 

Variant SVM Score Qualitative Prediction Comments 

A859T 100 Activating 

A859 is at the activation loop helix right under the C-

helix. I expect A859T to destabilize the helix and activate 

the kinase. 

H773Y 100 Non-Activating This is NPH-His. I expect the mutation to be inactive. 

I821T 100 Non-Activating 
I821 locates at the E-helix and interact with TK-network 

residues. I expect threonine to destabilize the kinase core. 
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L718P 100 Non-Activating 
This will be inactivating at Pro will disrupt the beta1 

strand. 

L747S 100 Activating 

L747 is at the end of beta3 strand and interact with the 

short helix at the A-loop. Mutation to a serine might 

activate the kinase. 

L858A 100 Activating 
This is possible at L858A will destabilize the activation 

loop, although to a lesser extent compared to L858R. 

L861E 100 Activating 
This could be activating. L861E will clearly destabilize 

the inactive state of EGFR. 

L862Q 100 Activating 
L862Q could destabilize the activation loop, thereby 

activates the kinase. 

 

R776L 
100 Activating 

R776L will disrupt the auto-inhibitory interaction 

mediated by R776 (PMID: 26101090). 

R776S 100 Activating 
R776S will disrupt the auto-inhibitory interaction 

mediated by R776 (PMID: 26101090). 

V834A 100 Non-Activating 

V834 is at the beginning of beta7 strand and packs in a 

hydrophobic core. I expect alanine to destabilize the 

protein. 

L858G 81 Activating 
I expect Glycine will destabilize the protein in the 

inactive state. 

A743P 0 Non-Activating 
A743 is at the beta3 strand before KE-Lys. Proline will 

terminate the strand and inactivate the kinase. 

A743T 0 Non-Activating Same as A743P 

A743V 0 Non-Activating Same as A743T 

A763D 0 Non-Activating 

A763 is at the C-helix and mediate hydrophobic 

interaction with the N-lobe. I expect A763D to interfere 

C-helix position and inactivate the kinase. 

A822P 0 Non-Activating 
A822 is in the middle of E-helix. A proline will disrupt 

the helix and affect kinase folding. 

A859D 0 Activating 

A859 is at the activation loop helix under the C-helix. 

Mutation it to an Asp will destabilize the inactive state of 

EGFR. 

C775Y 0 Non-Activating 

C775 is at the alphaC-beta4 loop and is buried inside the 

kinase core. Tyr will completely destabilize the alphaC-

beta4 loop. 

D770N 0 Non-Activating 

I have experimental data for this mutation. Its activity is 

comparable to the WT EGFR. Therefore, the prediction 

here is correct. 

D837G 0 Non-Activating 
D837 is the HRD-Asp. This mutation should be 

inactivating. 

D837N 0 Non-Activating Same at D837G 

D855N 0 Non-Activating 
D855 is catalytic Asp. Mutation of it will definitely 

inactivate the kinase. 

E884K 0 Non-Activating 
E884 is the APE-Glu (EGFR has a ALE). The mutation 

should be inactive. 

F856Y 0 Non-Activating F856 is the DFG-Phe. Should be non-activating. 

G721W 0 Non-Activating 
Trp is too bulky here and will affect ATP binding. I 

expect the mutation to be inactive. 

G857E 0 Non-Activating 
G857 is the DFG-Gly. I expect this mutation to be non-

activating. 

G857V 0 Non-Activating Same as G857E 

G873E 0 Non-Activating 
G873E is at the activation loop. I expect the mutation 

impact to be neutral. 

G873Q 0 Non-Activating Same as G873E. 
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G917A 0 Non-Activating 
G917 is in the alphaF-alphaG loop. Unknown mutation 

impact. 

G917R 0 Non-Activating Same as G917A. 

H773L 0 Non-Activating 
H773 is the HPN-His. Mutation of the histidine is expect 

to inactivate the kinase. 

H773P 0 Non-Activating Same as H773L 

H773R 0 Non-Activating Same as H773R 

I759N 0 Non-Activating 
I759 is in the C-helix. I expect this mutation will affect 

the correct position of C-helix in the active state. 

I759V 0 Non-Activating 
Valie is very similar to isoleucine. Unknown mutation 

impact. 

I780S 0 Non-Activating 

I780 is in the beta4 strand and makes hydrophobic 

interaction with C-helix. I expect this mutation to 

destabilize the interaction between C-helix and kinase N-

lobe. 

I780T 0 Non-Activating Same as I780S 

K745R 0 Non-Activating K745 is the KE-Lys. The mutation should be inactive. 

L782N 0 Non-Activating 

L782 interacts with the C-helix through hydrophobic 

interactions. Asparagine will destabilize such interaction 

and inactivate the kinase. 

L815P 0 Non-Activating 
L815 is in the E-helix. A proline will probably 

determinate the E-helix and affect kinase folding. 

L844P 0 Non-Activating 

L844 is in the beta7 strand and interact with ATP 

molecule. Proline will disrupt the secondary structure 

here and inactivate the kinase. 

L858K 0 Activating 
I expect lysine will be similar to arginine and activate the 

kinase at the position. 

L858P 0 Activating 
Proline will also destabilize the 3/10 helix and activates 

the kinase. 

L861G 0 Activating 
Glycine will create a void here and destabilize the 

inactive state. 

L862R 0 Activating Arginine will probably destabilize the 3/10 helix as well. 

N842D 0 Non-Activating 
N842 is the HRD+5 Asn. Mutation to Asp will probably 

inactivate the kinase. 

N842H 0 Non-Activating Same as N842D 

N842S 0 Non-Activating Same as N842D 

P772H 0 Non-Activating 
P772 is the NPH-Pro. I expect a histidine here will 

inactivate the kinase. 

P772R 0 Non-Activating Same as P772H 

P772S 0 Non-Activating Same as P772H 
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CHAPTER 4 

CONCLUSION 

         Study Limitations and Conclusion 

The limitations of our study are primarily due to the lack of data as compared to the extreme 

complexity of this domain’s feature space. For instance, we had to perform feature selection upon 

the same dataset as we performed the training and cross-validation of our model. Though we 

employed comprehensive methods to combat the potential of over-fitting and information leakage 

due to this, ideally were there sufficient data we would keep entirely separate sets for feature 

selection and model. We also believe that some of the features found to have no significant 

contribution for classification in this dataset could provide useful insight should we have a dataset 

large enough to accommodate them. This issue stems from the relatively small size of our dataset 

as compared to the high degree of variability in mutations that could occur. The complexity of 

EGFR kinase domain (with a total of 317 residues in our model) leads to the potential of 6023 

distinct point mutations, and finding a ground truth for each is incredibly time consuming (hence 

the purpose and importance of our research). Across each of these mutations there is a high 

dimension of potential features, each with a large degree of variability across their respective 

dimension. Within our own dataset there are additional features we potentially could have 

calculated, further increasing the problem’s complexity. This high degree of variability of data 

points within such a complex feature space makes finding a generalizable predictive model 

challenging. 
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Despite these limitations, we proposed an effective feature selection technique, which 

thoroughly examined the feature space while minimizing the risk of overfitting and data leakage. 

This scheme found two feature set that were consistently chosen across a substantial variety of 

data subsamples/permutations. One of the feature sets was a super set of the other, further 

reinforcing the approaches effectiveness in finding the globally meaningful features. Finally, a 

variety of model were validated with a Support Vector Machine using a Gaussian radial basis 

function kernel performing the best. It achieved an Accuracy of 86% and an F-Measure of 0.7. 

This model was rigorously validated in such a way as to negate the possibility of its performance 

being biased by overfitting and data leakage. It was then combined with the next two highest 

performing models, Random Forest and Gaussian Naïve-Bayes in a weighted probability voting 

scheme which achieved an ROC AUC score of ~0.83. 

 While compiling our dataset, we also noticed a lack of a standardized method of assessing 

mutational impact. Our dataset requires the mutant kinase to be assayed directly for their auto-

phosphorylation activity. Classifiers trained on databases such as COSMIC (Forbes et al. 2008) 

would define mutational impact as simply appearing in a cancer sequencing. A recently developed 

high-throughput assay assesses mutants by increased cell proliferation (Kohsaka et al. 2017). 

Further complicating the issue, recent work has shown that the kinase signaling network is capable 

of flux under aberrant signaling conditions (Wilson 2018). While this issue may never be fully 

resolved, we believe it is important to maintain a consistent and concrete definition within datasets. 

 Despite the issues associated with a small dataset, our high level of curation allowed us to 

accurately analyze the importance of features in predicting disease-related mutations. We 

narrowed our dataset to kinase activating mutations in EGFR and performed extensive feature 

selected followed by training of machine learning models. While widely-used features such as 
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structural properties and, in the case of SVM, sequence conservation were indeed found to be good 

predictors of EGFR activation. Our analysis demonstrates: 1) conformation is an important factor 

when calculating structural features, 2) the specific level of sequence conservation plays a large 

role in its importance, and 3) EGFR-specific features have high predictive power. We proposed 

biological explanations as to why these features are important in predicting EGFR activity. We 

also applied our models to unclassified data to attain meaningful, discussion worthy result. We 

have demonstrated the existence of meaningful, though not yet fully identifiable, trends within this 

data that merit the continuation of this line of research. 
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