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Abstract

Recent investigations into sum-product-max networks (SPMN) that generalize sum-product

networks (SPN) offer a data-driven alternative for decision making, which has predominantly

relied on handcrafted models. SPMNs computationally represent a probabilistic decision-

making problem whose solution scales linearly in the size of the network. However, SPMNs

are not well suited for sequential decision making over multiple time steps. In this paper, we

present recurrent SPMNs (RSPMN) that learn from and model decision-making data over

time. RSPMNs utilize a template network that is unfolded as needed depending on the length

of the data sequence. This is significant as RSPMNs not only inherit the benefits of SPMNs

in being data driven and mostly tractable, they are also well suited for sequential problems.

We establish conditions on the template network, which guarantee that the resulting SPMN

is valid, and present a structure learning algorithm to learn a sound template network. We

demonstrate that the RSPMNs learned on a testbed of sequential decision-making data sets

generate MEUs and policies that are close to the optimal on perfectly-observed domains.

They easily improve on a recent batch-constrained reinforcement learning method, which

is important because RSPMNs offer a new model-based approach to offline reinforcement



learning.

Index words: Tractable Probabilistic Models, Machine Learning, Sequential Decision
Making, Batch Reinforcement Learning
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Chapter 1

Introduction

Probabilistic Graphical Models [12] encode complex distributions compactly using graph-

based representation based on relationships between the variables. The graph-based rep-

resentation makes transparent the conditional dependence and independence between the

variables which enables a factored distribution of the joint distribution over the variables.

This transparent structure also allows for efficient inference based on observations using the

encoded distribution in a graph. They also facilitate learning these models with a data-driven

approach.

These Probabilistic Graphical Models using some domain knowledge from a human expert

can learn distributions from the data. But the inference in such models is often intractable.

Since learning uses inference as a sub-routine, learning also becomes intractable.

In general, Bayesian Networks are used for probabilistic reasoning, Influence Diagrams are

used for modelling decision problem and Dynamic Bayesian Networks are used for reasoning

over sequence data. Dynamic Influence Diagrams (DIDs) are used for sequential decision

making. But, data-driven learning is well-studied only in Bayesian Networks and remains

a challenge in other graphical representations mentioned above. Moreover, inference is NP-

hard in all these models.

1



1.1 Sum-Product Networks and Extensions

Sum-Product-Networks[22] (SPNs) are a class of Graphical Models which can be learned

directly from data. These graphical models are appealing because most types of inference

can be performed in time that is linear in the size of the network. On the other hand,

inference in Bayesian networks is generally exponential.

SPNs are based on the concept of network polynomial [2] which is a representation of the

probability distribution of a Bayesian Network as a polynomial. Evaluations of the polyno-

mial provide the joint or conditional distributions as desired. But the network polynomial

is itself exponential in the number of variables. Arithmetic circuits [10] and sum-product

networks (SPN) [23] can compactly represent a network polynomial as a network of sum and

product nodes. Although, one limitation of SPNs is that the size of the learned network is

not bounded. In [23], the notion of validity of SPN is given which is important for computing

the correct probability distribution. An SPN is valid if it performs a marginalisation in the

same manner as a network polynomial.

Given the overall benefit of these generative models, recurrent SPNs as a generalization

of SPNs are introduced in [16] for modeling sequence data of varying length. In particular,

if a recurrent SPN is a valid SPN, inference queries can be answered in linear time, thereby

providing a way to perform tractable inference on sequence data. They define and learn

a single template network that can be unrolled for length of the sequence. This recurrent

template enables learning an SPN over data with varying sequence length.

Sum-product-max networks (SPMN) [15] generalize SPNs by introducing two new types

of nodes to an SPN: max and utility nodes. Max nodes correspond to decision variables and

utility nodes to the reward function, which allow SPMNs to computationally represent a

probabilistic decision-making problem. If the SPMN learned from data is valid by satisfying

a set of properties, then it correctly encodes a function that computes the maximum expected
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utility given the partial order between the variables. As such, valid SPMNs potentially

represent a shift in paradigm for decision-making models: from being primarily handcrafted

to enabling machine learning from decision-making data.

1.2 Contribution

Motivated by these recent generalizations of the SPN, we present a new graphical model

Recurrent Sum-Product-Max Networks. We also present a modified structure learning algo-

rithm LearnSPMN for SPMN. Specific contributions are as follows

• We present Recurrent SPMN (RSPMN) which can be seen as a synthesis of a recurrent

SPN and an SPMN: it allows extending the decision-making problem across multiple

time steps thereby modeling sequential decision-making problems for the first time.

They extend the twin benefits of an SPN (tractable inference and directly learned from

data) to a new class of problems.

• Given decision-making data consisting of finite temporal sequences of values of state

and utility variables, and decisions, we present an effective method for learning an

RSPMN of any finite length from this data and evaluating it to obtain the maximum

expected utility (MEU) and the corresponding policy. We define a template network,

which is a key component of the learned model whose repeated application makes the

temporal generalization possible.

• We prove that unfolding the learned RSPMN produces a valid SPMN, which, in com-

bination with a result from [15] establishes that its evaluation is equivalent to using

the sum-max-sum rule.

• On a testbed of sequential decision-making datasets from simulations in perfectly-

observed domains, we demonstrate that the learned RSPMNs generate MEUs that
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are close to the optimal. RSPMNs offer a model-based approach to offline (batch)

reinforcement learning where simulation data has already been collected. Consequently,

we also compare the MEUs with those from a recent batch-constrained Q-learning

method [7] and report favorable results.

• Additionally, we present a modified LearnSPMN algorithm, illustrate the differences

to original LearnSPMN algorithm and demonstrate that these modifications improve

the log-likelihoods by orders of magnitude on a testbed of decision-making datasets.

1.3 Organisation of Thesis

Rest of the thesis is organised as follows.

• In the “Background” chapter, Chapter 2, we introduce several important foundational

concepts that are required for comprehending this thesis well. Sections 2.1 and 2.2

introduce several well established notions like network polynomial and validity in the

SPN literature. We also discuss structure learning and evaluation of SPNs in these

sections. Focus of these sections is to define and clearly state these concepts and

provide an intuitive understanding using simple examples.

• In Section 2.3, we introduce SPMNs and the notion of validity of an SPMN. Focus of

this Section is to show the original structure learning algorithm for SPMN and explain

the modifications we made to improve the learning algorithm. We also make the often

confusing differences and similarities in notions of validity of SPN and SPMN clear in

this section. In [15], an evaluation of SPMN is given. But the evaluation of SPMN to

compute the MEU is not discussed in depth. In Section 2.3, we describe in detail the

evaluation of SPMN for computing the MEU.

• In the chapter “Recurrent SPMNs”, Chapter 3, we present the theoretical framework of
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RSPMNs. In this chapter, we present notion of validity of RSPMN. We define template

and top networks that constitute RSPMN and define some constraints on them which

make the RSPMN valid.

• In the chapter “Learning and Evaluation of RSPMN”, Chapter 4, we present a com-

plete structure learning algorithm LearnRSPMN for RSPMN, aided by an illustrative

example and pseudo-code. We also describe the evaluation of RSPMN to compute the

MEU and how to determine the best decisions from the network based on MEU.

• In chapter “Experiments”, Chapter 5, we report the experimental results of modi-

fied LearnSPMN algorithm (Section 5.1 and LearnRSPMN(Section 5.2 on various

metrics and discuss these results.

• We conclude in Chapter 6 by summarising RSPMNs and providing limitations and

possible future directions to build on this research.

5



Chapter 2

Background

In this chapter, we define and explain several foundational concepts and terms that we build

on in later parts of this thesis. We begin by introducing Network Polynomial in Section 2.1.

Then, we introduce the notion of validity of an SPN and define some properties that ensure

the validity of an SPN in Section 2.2. In Section 2.2, we also provide the structure learning

algorithm LearnSPN and evaluation of SPN. We then present SPMN on similar lines to SPN

in Section 2.3 while making the distinctions clear between notions of validity between SPN

and SPMN. Next, we present a new structure learning algorithm and evaluation for SPMN

that was built on top of the original SPMN algorithm and SPMN evaluation. We explain the

modifications made by us in Section 2.3 and present results of the modified algorithm in the

experiments chapter. In Section 2.4, we introduce some related work describing recurrent

SPNs, decision circuits and batch reinforcement learning

2.1 Network Polynomial

A network polynomial presented in [3] is a representation of the probability distribution of

a Bayesian network as a polynomial. It is showed in [3] that several kinds of probabilis-
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tic inferences can be made immediately from the values and partial derivatives of network

polynomial. Formally,

Definition 2.1.1. A network polynomial is defined as

f = ΣxΠxu∼xλxθx|u

for a Bayesian network N with variables X and the parents of variable X being U.

For each network variable X there are a set of evidence variables λx and for each network

family XU there are a set of parameters θx|u. The outer sum in definition 2.1.1 ranges over all

instantiations x of the network variables. For each instantiation x, the inner product ranges

over all in- stantiations of families xu that are compatible with x. For example, consider the

Bayesian network (BN) in Figure 2.1 with conditional probability tables as given in Table 2.1

A B
Figure 2.1: Bayesian Network with A as parent of B [3]

A θA
true θa = 0.3
false θã = 0.7

A B θB|A
true true θb|a = 0.1
true false θb̃|a = 0.9

false true θb|ã = 0.8
false false θb̃|ã = 0.2

Table 2.1: Conditional Probabilities [3]

The network polynomial for the BN given in Figure 2.1 would be

f = λaλbθaθb|a + λaλb̃θaθb̃|a + λãλbθãθb|ã + λãλb̃θãθb̃|ã (2.1)

7



Definition 2.1.2. [3] The value of network polynomial f at evidence e, denoted by f(e),

is the result of replacing each evidence indicator λx in f with 1 if x is con- sistent with e,

and with 0 otherwise.

In the network polynomial in equation 2.1, if the evidence e is ab, then f(ab) is computed

by assigning λa = λb = 1 and λã = λb̃ = 0. Therefore, f(ab) = θaθb|a, which is the probability

P (ab) of the BN in Figure 2.1.

Theorem 2.1.1. [3] Let N be a Bayesian network representing probability distribution P

and having polynomial f . For any evidence (instantiation of variables) e, we have f(e) =

P (e).

A large number of probabilistic inference queries can be answered by using the values of

network polynomial and its partial derivatives. We present some probabilistic semantics of

network polynomial here that are sufficient to comprehend the later parts of this thesis. We

encourage the reader to refer [3] for a more detailed analysis.

Theorem 2.1.2. [3] Let N be a Bayesian network representing probability distribution P

and having polynomial f . For every variable X and evidence e, we have

∂f

∂λx
(e) = P (x, e−X)

Here, e − X denotes the instantiation of subset of variables in e after removing those

instantiations that correspond to variables in X. For example, if e = ab̃cd̃ and X = AD

then e−X = b̃c

To analyse the equation in theorem 2.1.2 for the BN given in Figure 2.1, let us suppose

8



e = b̃ and x = a which implies X = A. Therefore,

λx = λa

∂f

∂λa
= λbθaθb|a + λaλb̃θaθb̃|a

∂f

∂λa
(e) =

∂f

∂λa
(b̃) = θaθb̃|a

which is equal to P (x, e−X) = P (a, b̃−A) = P (a, b̃). This means that if we differentiate

a network polynomial f with an indicator value corresponding to a variable X and compute

the result at an evidence e, then we get join probability distribution of the instantiation x

and the instantiation of remaining variables in e except instantiations corresponding to X.

While we have seen probabilistic semantics of first order partial derivative of network

polynomial f with respect to indicator variables λx works, one could also differentiate f

partially w.r.t network parameters θ.

Theorem 2.1.3. [3] Let N be a Bayesian network representing probability distribution P

and having polynomial f . For every family XU in the network and for every evidence e,

we have

θx|u
∂f

∂θx|u
(e) = P (x,u, e)

The equation from Theorem 2.1.3 can be analysed as done above on the network poly-

nomial f for the BN in Figure 2.1. Since f(e) = P (e), The sematics of second order partial

derivative are showed in [3].

Network polynomial itself can have exponentially large number of terms, but it can be

expressed compactly as a graph. Specifically, in [3], it is shown that the network polynomial

of exponential size can sometimes be expressed as an arithmetic circuit of linear size. Infor-
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mally, an arithmetic circuit(AC) is a rooted directed acyclic graph with leaf nodes holding

numerical values of variables and other nodes being arithmetic (+,−, ∗, /) operators. Size of

the arithmetic circuit is the number of edges it contains. The results from the probabilistic

semantics of partial derivatives of f are important because some of these partial deriva-

tives can be obtained in polynomial time using arithmetic circuits. Hence, the probabilistic

inference in arithmetic circuits encoding a network polynomial is tractable.

Sum-Product Networks (SPNs) presented in the next section can be considered as a

restricted AC containing weighted sum and product operators as internal nodes. In SPNs,

the probabilistic semantics are defined more directly compared to ACs and SPNs can be

learned efficiently from data.

2.2 Sum-Product Networks

Sum-Product Networks build on the ideas of network polynomial [3]. The network poly-

nomial is generalised to unnormalised probability distrubutions in [22]. The unnormalised

network polynomial can be given as ΣxΦ(x)Π(x), where Φ(x) >= 0 is an unnormalized

probability distribution and Π(x) is the product of the indicators that have value 1 in state

x. The probability distribution P is related to Φ as P (x) = Φ(x)
Z

, where Z is the partition

function. Partition function is a normalising factor which can be obtained from a network

polynomial by setting all the indicator variables to 1. For example, consider an unnormalised

network polynomial for BN given in Figure 2.1.

fu = λaλbΦ(ab) + λaλb̃Φ(ab̃) + λãλbΦ(ãb) + λãλb̃Φ(ãb̃) (2.2)

The partition function Z would be equal to fu after setting λa = λb = λã = λb̃ = 1 The

probability distribution θaθb|a = Φ(ab)
Z

.

As we have seen in Section 2.1, while it is possible to make inference using a network

10



polynomial, it grows exponentially in the number of variables. But a Sum-Product Network

may be able to represent and evaluate it in polynomial space and time. An SPN is defined

as follows:

Definition 2.2.1. [22] A sum-product network (SPN) over variables x1 . . . xd is a rooted

directed acyclic graph whose leaves are the indicators x1 . . . xd and x1 . . . xd and whose internal

nodes are sums and products. Each edge (i, j) emanating from a sum node i has a non-

negative weight wij. The value of a product node is the product P of the values of its children.

The value of a sum node is ΣjεCh(i)wijvj, where Ch(i) are the children of i and vj is the value

of node j. The value of an SPN is the value of its root.

A sample SPN for the BN shown in Figure 2.1 is shown in Figure 2.2 for illustration

purposes1. The value of an SPN can be represented as a function of indicator variables as

S(x1, x2 . . . xn, x̃1, x̃2 . . . x̃n). When all indicator variables are set to 1, it is represented as

+

XXX X

a ~a b ~b

Figure 2.2: Bayesian Network with A as parent of B [3]

S(∗) which is the partition function Z.

1The SPN in the Figure is one representation for this network polynomial. There could be other SPN
structures that represent this network polynomial
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Consider the SPN represented in Figure 2.2. This SPN can be represented as

S(a, b, ã, b̃) = w1ab+ w2ab̃+ w3ãb+ w4ãb̃ (2.3)

When a partial evidence e = a, S(e) = S(1, 1, 0, 1). When a complete state i.e., it

contains instantiations for all the variables, is x = ab̃, S(x) = S(1, 0, 0, 1). S(x) gives the

unnormalised probability distribution at a state x, for all x ∈ X. Therefore, the unnormalised

probability distribution for a partial evidence e is ΦS(e) = Σx∼eS(x).

Definition 2.2.2. A sum-product network S is valid iff S(e) = ΦS(e) for all evidence e.

This means that an SPN is valid if it computes the correct probability of evidence. Since

ΦS(e) = Σx∼eS(x), an SPN is valid if S(e) = Σx∼eS(x) In the example, when e = a, the

complete states that are consistent with e = a are x1 = ab, x2 = ab̃. Therefore, for this SPN

to be valid S(1, 1, 0, 1) must be equal to S(1, 1, 0, 0) + S(1, 0, 0, 1).

The expansion of an SPN is given as a polynomial ΣkskΠk(. . . ), where Πk(. . . ) is a

monomial over indicator variables and sk >= 0. Let us consider an SPN over two variables

X1, X2 with value at root as

S(x1, x2, x̃1, x̃2) = (w1x1 + w2x̃1)(w3x2 + w4x̃2) (2.4)

This SPN has a sum node +1 that connects indicator variables x1, x̃1 with weights w1, w2

and another sum node +2 that connects x2, x̃2 with weights w3, w4. These two sum nodes

are connected to a root product node P0. The expansion of this SPN would be

S(x1, x2, x̃1, x̃2) = w1w3x1x2 + w1w4x1x̃2 + w2w3x̃1x2 + w2w4x̃1x̃2 (2.5)

An SPN is valid if its expansion is its network polynomial which also means that each

monomial in the expansion is non-zero in exactly one state and each state has exactly one
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monomial that is non-zero in it. Hence, each monomial and state has one to one corre-

spondence with each other. We show this by verifying it on the networks represented in

Equations 2.3 and 2.4. For a complete proof refer [22]. Let’s say former SPN is SA and

the latter is SX . As we can see from the equations, both networks satisfy the condition

that monomials and states have one to one correspondence. Therefore, both these net-

works must be valid. Let us verify it on a partial evidence e = a for Sa and e = x̃2 for Sx.

SA(e) = SA(1, 1, 0, 1) and SX(e) = SX(1, 0, 1, 1). For the SPNs to be valid S(e) = Σx∼eS(x).

Hence, SA(1, 1, 0, 1) must be equal to SA(1, 1, 0, 0) + SA(1, 0, 0, 1) and SX(1, 0, 1, 1) must be

equal to SX(1, 0, 0, 1) + SX(0, 0, 1, 1). We can verify from Equations 2.3 and 2.5 that this is

indeed the case.

Now that we understand that an SPN would be valid if its expansion is its network

polynomial, we would like to know how can we guarantee, if possible, that an expansion of

an SPN always leads to its network polynomial. To this extent, constraints on the network of

an SPN are discussed in [22], which guarantee that the resultant expansion gives a network

polynomial . This makes the SPN valid. We present these properties as follows,

Definition 2.2.3 (scope). Scope of a node is the union of scopes of its children; scope of a

leaf node is the set of random variable that the indicator variable corresponds to.

Note that the leaf of node of an SPN can also hold a tractable distribution over random

variables instead of being an indicator variable. Then, the scope of a leaf node is the set of

random variables whose distribution the leaf node holds.

Definition 2.2.4 (Sum-complete). A sum-product network is complete iff all children of the

same sum node have the same scope.

Definition 2.2.5 (Consistent). A sum-product network is consistent iff no variable appears

negated in one child of a product node and non-negated in another.
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Definition 2.2.6 (Decomposable). A sum-product network is decomposable iff no variable

appears in more than one child of a product node.

Theorem 2.2.1. A sum-product network is valid if it is complete and consistent/decomposable.

When an SPN is complete and consistent/decomposable, the expansion of SPN always

leads to a polynomial with each of its monomials having one to one correspondence with the

states. This makes the SPN valid. Although completeness and consistency/decomposability

are sufficient conditions for the network to be valid, they are not necessary. For example,

the SPN represented by w1x1x2x̃2 + w1x1 is valid as S(e) = ΦS(e) for all evidence e. But

it is both incomplete and inconsistent. Completeness and consistency are necessary for the

stronger condition that each sub-SPN of an SPN is valid.

Evaluation: Let us suppose that we have an SPN over a set of random variables X. Let

scope(n) represent the scope of a node n of SPN. Sn gives the sub-SPN rooted at the node

n. x = val(X) is a vector of values assigned to all random variables in X. φn repre-

sents a tractable unnormalised probability distribution held by a leaf node n over scope(n).

x|scope(n) = val(scope(n))scope(n)∼X.

Let an evidence for variables E is given where E ⊆ X and e = val(E). To evaluate an

SPN, the random variables in leaf nodes are assigned values consistent with the evidence and

corresponding probability is computed. Rest of the random variables that are not consistent

with evidence are marginalised by setting their probability to 1. The values from leaf nodes

are passed up by applying the operators at each node as shown below,
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Sn(e|scope(n)) =




φn(scope(n) = e|scope(n)), if scope(n) ∼ E

1, otherwise

, if n is leaf node

Πc∈ch(n)Sc(e|scope(c)), if n is product node

Σc∈ch(n)wncSc(e|scope(c)), if n is sum node

(2.6)

The value at the root node of SPN, Sroot(e) gives the joint probability P (E = e). When

E = X, it corresponds to complete evidence inference and when E ⊂ X, it corresponds

to marginal inference. Notice that both these inferences are linear in size of the network.

Consequently, conditional probability distributions are tractable as well because,

P (Q|E) =
P (Q,E)

P (E)

Another type of inference that is linear in the size of the network is MPE inference.

Formally, MPE is given as

q∗ = arg max
q∈Q

P (E = e,q) where,

E,Q ⊂ X,

E ∩Q = ∅ and,

E ∪Q = X

Given an evidence , it is the most likely value of all the remaining variables. To perform

an approximate MPE inference, the SPN is evaluated bottom-up as shown in Equation 2.6.

To get the most likely values of remaining variables, a top-down pass is done by,

• passing through all the out-going(child) branches of product node and
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• passing through through the out-going(child) branch with maximum likelihood at sum

node.

After reaching the leaf node, the most likely value of the random variable, given evidence

e, that the leaf node corresponds to is determined as,

qn = arg maxφn(scope(n))

Note that this is different from MAP inference which gives the most likely value of some

remaining variables. This means E ∪Q need not be equal to X for MAP inference which is

not linear in size of the network in SPNs.

Structure Learning: We have learnt that a valid SPN is able to represent a network

polynomial and the learned SPN is useful in making tractable probabilistic inferences. This

leads to the next question, how can we create these SPN structures. One way would be to

use the domain knowledge and handcraft these SPNs and learn the parameters (weights)

using the data. While this is possible, it may not be scalable to large complex domains.

Better yet, can we learn these valid SPN structures from data? In [8], a generic structure

learning algorithm (LearnSPN) has been presented for learning a valid SPN. We show a

pictorial representation of the algorithm in Figure 2.3.

LearnSPN proceeds by recursively splitting the data into groups of independent vari-

ables and clusters of instances as shown in the Figure 2.3. LearnSPN takes the dataset D

as input and performs an independence test on all the variables V in D. If the independence

test is passed, it returns a product node with each out-going edge corresponding to the group

of correlated variables which are independent with respect to the rest of the variables. If

the independence test fails, it performs clustering on the instances. It returns a sum node

with each out-going edge corresponding to the cluster of instances grouped together. The

weight on each out-going edge is equal to the numberOfInstancesClusteredTogether
totalNumberOfInstances

. This process is
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Figure 2.3: Structure learning algorithm for SPN

|V|=1

Return a smooth 
univariate distribution Leaf

Figure 2.4: Leaf node of SPN

repeated recursively until the number of variables V become 1. At this stage, a smoothed

out univariate distribution over V is returned. Additionally, this process can also be stopped

after reaching a minimum number of instances for clustering and returning a multivariate

distribution over the remaining variables. Several structure learning algorithms for SPNs
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have been proposed based on this generic LearnSPN algorithm [19].

2.3 Sum-Product-Max Networks

SPMNs [15] generalise SPNs by introducing two new types of nodes to SPNs. Max nodes

that represent decision variables and Utility nodes to represent utility functions. SPMN is

defined as follows:

Definition 2.3.1. [15] An SPMN over decision variables D1 . . . Dm , random variables

X1 . . . Xn , and utility functions U1 . . . Uk is a rooted directed acyclic graph. Its leaves are

either binary indicators of the random variables or utility nodes that hold constant values.

An internal node of an SPMN is either a sum, product or max node. Each max node cor-

responds to one of the decision variables and each outgoing edge from a max node is labeled

with one of the possible values of the corresponding decision variable. Value of a max node i

is maxjεChildren(i)vj, where Children(i) is the set of children of i, and vj is the value of the

subgraph rooted at child j. The sum and product nodes are defined as in the SPN.

Recall the concepts of information sets and partial ordering in influence diagrams [12].

Information sets I0, . . ., Im are subsets of the random variables such that the random variables

in the information set Ii−1 are observed before the decision associated with variable Di,

1 ≤ i ≤ m, is made. An ordering between the information sets may be established as

follows: I0 ≺ D1 ≺ I1 ≺ D2, . . ., ≺ Dm ≺ Im. This is a partial order, denoted by P≺, because

variables within each information set may be observed in any order. Any information set

may be empty and variables in Im need not be observed before some decision node.

In [15], Validity of SPMN is defined in terms of the properties on the nodes of SPMN. It

is proved in [15] that these properties are sufficient to ensure that evaluation of the SPMN

computes MEU values identical to those arrived at by an application of the Sum-Max-Sum
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rule over the same evidence and the partial order of the variables We present these properties

and definitions below [15]:

Definition 2.3.2 (Sum-complete). An SPN is complete iff all children of the same sum node

have the same scope.

Definition 2.3.3 (Decomposable). An SPN is decomposable iff no variable appears in more

than one child of a product node.

Definition 2.3.4. An SPMN is max-complete iff all children of the same max node have the

same scope, where the scope is as defined previously

Definition 2.3.5. An SPMN is max-unique iff each max node that corresponds to a decision

variable D appears at most once in every path from root to leaves.

Definition 2.3.6. An SPMN is valid if it is sum-complete, decomposable, max-complete,

and max-unique.

Theorem 2.3.1. The value of a valid SPMN S is identical to the maximum expected utility

obtained from applying the Sum- Max-Sum rule that utilizes the partial order on the random

and decision variables: S(e) = MEU(e|P,U).

Notice that the notion of validity in an SPN is tied to correctly computing the probability

distribution, while it corresponds to computing correct MEU in accordance with the sum-

max-sum rule in an SPMN.

Evaluation: To evaluate an SPMN, values are assigned to the random variables that are

consistent with the evidence. Then, we perform a bottom-up pass of the network during

which operators at each node are applied to the values of the children. The optimal decision

rule is found by tracing back (i.e., top-down) through the network and choosing the edges

that maximize the decision node.
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2.3.1 Structure Learning: LearnSPMN

A learning algorithm (LearnSPMN) is presented in [15] to learn a valid SPMN. This algo-

rithm works by splitting the data recursively using decision values on decision variables and

clustering and independence testing on random variables and utility variable based on the

partial order of the variables.

LearnSPMN takes a data set and partial order P≺ as input. It iterates through the

partial order P≺. If the current item in the partial order P≺[i] is a decision variable D, a

corresponding max node is returned by splitting the data over each decision. It then iterates

to the next item in P≺ and recursively calls LearnSPMN on the split data as shown in

Figure 2.5.

D X Y Z U

1

1

0

0

0

If current item
in partial order is D

Partition dataset
on values of D and 

return Max node

Max

X Y Z U

1

X Y Z U

0

Recurse

Figure 2.5: LearnSPMN if the current item in partial order P≺ is a decision variable D.
Next step is shown in Figure 2.6

If the current item in the partial order P≺[i] is an information set I, then an independence

test is performed on variables in the current information set I. This test tries to partition

variables VI in I into independent subsets while keeping the rest of the variables VR =

{P≺[i]∪P≺[i+ 1]∪ . . . ]} as one set. If a partition is found in VI , a product node is returned.
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One of the out-going edge corresponds to set of variables in rest of the partial order VR and

other out-going edges correspond to the sets of variables in VI as shown in Figure 2.6

If a partition is not found during independence test, clustering is performed over instances.

Unlike independence testing, clustering takes all variables in the data set into account.

Similar to clustering in LearnSPN, a sum node is returned with corresponding weights

after clustering the instances as shown in Figure 2.6.

This process is recursively repeated until the number of variables |V | = 1. If |V | = 1,

a smoothed out univariate distribution is returned. If V is a utility variable, the smoothed

out univaraiate distribution over utility values is returned.

X Y Z D U

If current item
in partial order is 
information set

Try to partition variables in current 
information set into independent 
subsets by keeping rest of the 
variables in one partition.
(Independence testing based on 
variables in current information set)

x

D UX Z Y

+

X Y Z D U

X Y Z D U

3/5 1/5

Recurse

Figure 2.6: LearnSPMN if the current item in partial order P≺ is an information set
I = {X, Y, Z}, VR = {D,U}.

2.3.2 Modified LearnSPMN algorithm

While the original LearnSPMN creates valid SPMNs, it fails to acknowledge correlations

between the variables in current information set VI and the variables in the rest of the
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|V|=1

Return a smooth 
univariate distribution Leaf

Figure 2.7: Leaf node of SPMN. If V is a utility variable, the smoothed out univaraiate
distribution over utility values is returned.

partial order VR while making the split on independence testing. An illustration of the

same is shown in Figure 2.8.

x

D UX Z Y

X correlated with D

x

Y X Z D U

Better way of returning a product node

Figure 2.8: Left figure shows the product node returned when XZ ⊥⊥ Y using original
LearnSPMN even though X is correlated with D. Right figure shows a better way of
returning a product node in this scenario

Since the independence test is done among the variables VI within the current information

set I, the correlations between variables in VI with those in VR is missed. Therefore, we

propose a change to the independence test in the original LearnSPMN algorithm.

In the new approach, we test the independence between all the variables V in the data

set. This returns a set of independent subsets of variables S. If VR ∩ Sj = ∅ then Sj is a

set of correlated variables independent of all the other variables in V. This corresponds to
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variable Y in Figure 2.8.

All the subsets such that Sj ∩VR is not ∅ are identified. This means that these subsets

have some correlation with variables in VR. A union of all such subsets Vrem is formed

while respecting the partial order P≺. This corresponds to the set of variables {X,Z,D,U}

in Figure 2.8. A product node is returned with one of the out-going edge corresponding

to Vrem and other out-going edges corresponding to the independent subsets Sj such that

VR ∩ Sj = ∅. This difference in independence testing between the original LearnSPMN

and the modified LearnSPMN is shown in the Figure 2.9.

x

D UX Z YX Y Z D U
Independence testing 
based on variables in 
current information set

x

Y X Z D U
X Y Z D U

Independence testing 
based on all variables 

Figure 2.9: Top figure shows the indpendence testing in original LearnSPMN while the
bottom figure shows it on modified LearnSPMN

We show in the experimental section that this change to independence testing improves

the log-likelihood on various data sets by several orders of magnitude. We also observed

that the structures were more comprehensible with the change. Clustering of instances in the

original LearnSPMN is done by taking all the variables in the data set into account. While

this makes sense, we found that changing the clustering by confining the variables to current
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information set I improved the performance of the algorithm. We found from experiments

that changing this not only improved the log-likelihoods, but also created sensible structures

when compared to clustering by taking all variables V into account. A possible intuitive

explanation for this is that the variables VI in the current information set I in the partial

order P≺ are observed before any variables VR of next items in the partial order. Due

to this, clustering over all variables V might violate this partial order. Nonetheless, it is

interesting to note that, considering correlations between variables in VI and VR works

better for independence testing.

To summarise, LearnSPMN is modified to do independence testing on all variables

and clustering within the partial order. This is essentially reversing the clustering and

independence testing on the variables and leaving the rest of the algorithm in place. The

pseudo-code for the complete modified LearnSPMN is shown in Algorithm 1. From here

on, when we refer LearnSPMN, we refer to the modified LearnSPMN algorithm.
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Figure 2.10: Top figure shows the clustering in original LearnSPMN while the bottom
figure shows it on modified LearnSPMN.
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Algorithm 1: LearnSPMN

input: D: instances, V : set of variables, i: infoset index, P≺: partial order
output: SPMN

1 if |V| = 1 then
2 return smoothed univariate distribution over V

3 else
4 if V ∩ P [i] = ∅ then
5 i← i+ 1

6 VR ← P[i + 1] ∪ P[i + 2] ∪ P[i + 3] ∪ . . .
7 if P [i] is a decision variable then
8 for v ∈ decision values of P [i] do
9 Dv ← subset of D where P [i] = v

10 return MAXv LearnSPMN(D,VR, i+ 1, P≺)

11 else
12 Try to partition V into a set of independent subsets S
13 Vrem ← ∅
14 for each subset Sj ∈ S do
15 if Sj ∩VR is not ∅ then
16 Vrem ← Sj ∪VR

17 remove Sj from S

18 Vrem ∪ S
19 if length of S > 1 then
20 return ΠjLearnSPMN(Dj,Sj, i, P

≺)

21 else
22 partition D into clusters Dj of similar

instances based on the values in P [i]

23 return Σj
|Dj |
|D| × LearnSPMN(Dj,V, i, P≺)

Evaluation: In [15], a brief evaluation for SPMN is presented. Although, it is sufficient for

evaluating the likelihood, it does not clearly show the evaluation of the SPMN for computing

the MEU. Here, we present a detailed explanation on evaluating the SPMN to compute the

MEU.

To compute the MEU, in a bottom-up pass, we propagate the likelihoods and utility
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values from the leaf nodes. In addition to evaluation shown in Equation 2.6, in SPMN,

evaluation is done at a max node by taking the likelihood from the max child branch. Let

a max node have a finite set of decision values K = {d1, d2, . . . dn}, where 1, 2, . . . n belong

to each child branch of max node. If a decision value dg ∈ K is given for a decision variable

Dk corresponding to a max node, the likelihood of the child branch that corresponds to dg

is taken. Let an indicator function to indicate dg is given by,

1(d) =


1, if d = dg

0, otherwise

(2.7)

Evaluation of an SPMN at each node is shown below,

Sn(e|scope(n)) =




φn(scope(n) = e|scope(n)), if scope(n) ∼ E

1, otherwise

, if n is a leaf node

Πc∈ch(n)Sc(e|scope(c)), if n is a product node

Σc∈ch(n)wncSc(e|scope(c)), if n is a sum node
Σc∈ch(n)1(dc)Sc(e|scope(c)), if dg is given

maxc∈ch(n) Sc(e|scope(c)), otherwise

, if n is a decision node

(2.8)

To compute the MEU, the likelihoods along with utility values from leaf utility nodes

are used. At a utility leaf node the utility value is computed as the expected value Eφn(U)

based on the distribution the leaf utility node holds. At a product node the utility values

are added. At a sum node, the utility values coming from the child nodes are multiplied by

normalised likelihood and are added. At a max node, the maximum utility value coming

from the child branches is taken or the utility value of child branch g is taken if dg is given.
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This is formally shown below,

MEUn(e|scope(n)) =


Eφn(scope(n)), if n is a leaf utility node and if not e|scope(n) ∼ e

e|scope(n), if n is a leaf utility node and if e|scope(n) ∼ e

0, if n is a leaf random variable node

(2.9)

MEUn(e|scope(n)) =



Equation 2.9, if n is a leaf node

Σc∈ch(n)MEUc(e|scope(c)), if n is a product node

Σc∈ch(n)wnc ×
Sc(e|scope(c))

Sn(e|scope(n))
×MEUc(e|scope(c)), if n is a sum node

Σc∈ch(n)1(dc)MEUc(e|scope(c)), if dg is given

maxc∈ch(n) MEUc(e|scope(c)), otherwise

, if n is a decision node

(2.10)

In general, to compute the MEU, all leaf nodes are marginalised by setting their likeli-

hoods to 1 and the MEU is computed as shown in Equation 2.10. The MEU value at the

root MEUroot gives the maximum expected utility.

To obtain best decision at any decision node Di, given some observations of variables in

information sets preceding Di, the leaf random variable nodes are assigned values consistent

with the observation corresponding likelihoods and MEUs are computed as shown in Equa-

tion 2.8 and 2.10. To get the best decision, a top down pass is done from the root node

by

• passing through all the out-going(child) branches of product node and

• choosing the out-going(child) branch with maximum likelihood at sum node
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• choosing the child branch g if dg is given or choosing the branch with maximum like-

lihood otherwise.

The best decision for a decision variable Di is the decision chosen at its corresponding

max node.

2.4 Related work

Dynamic SPNs a.k.a recurrent SPNs that generalize SPNs to sequence data is presented

in [16]. A template network is defined that can be repeated as many times as needed. A

valid SPN is produced by capping the repeated templates with a top and a bottom network.

This enables learning an SPN and performing probabilistic inference over data with varying

sequence lengths. An invariance property for the template if met yields recurrent SPNs that

are valid. More recently, an online structure learning algorithm has been presented [11] for

these SPNs. RSPMNs can be viewed as a synergistic integration of some of the temporal

concepts of recurrent SPNs with SPMNs; thereby generalizing the model to decision making.

Furthermore, the handcrafted template structure in recurrent SPNs is mostly fixed (with just

the number of interface nodes allowed to change) while LearnRSPMN generates the entire

template from data.

SPNs are related to other graphical models for probabilistic inference such as arithmetic

circuits[20] and AND/OR graphs[4]. Bhattacharjya and Shachter[1] proposed decision cir-

cuits as a representation that ensures exact evaluation and solution of influence diagrams in

time linear in the size of the network. A decision circuit extends an arithmetic circuit with

max nodes for optimized decision making, which is analogous to how SPMNs extend SPNs.

However, decision circuits are obtained by compiling IDs. Previous work has shown that

SPMNs are efficiently reducible to decision circuits in time that is linear in the size of the

SPMN[14]. However, no dynamic extension of decision circuits has been presented nor any
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algorithms to learn decision circuits directly from data to the best of our knowledge.

Batch Reinforcement learning is a sub-field of reinforcement learning that deals with data-

driven approach to RL. In contrast to online reinforcement learning, batch (also labeled as

offline) reinforcement learning seeks to derive an optimal policy from a given set of prior

experiences. This set is analogous to our simulations, and may either be fixed or allowed to

grow. Batch RL is particularly useful when it is risky, expensive or not feasible to interact

with the environment to learn an optimal policy. This also becomes important in several real

world scenarios where some sub-optimal policy already exists and we would like to improve

on this by using the experience collected from this sub-optimal policy.

While offline reinforcement learning is not as well studied as its online counterpart, the

general approach is to modify online techniques for use in batch contexts. Prominent meth-

ods, such as experience replay[13] and fitted Q-iteration [5], are model-free and utilize the

Q-update rule synchronously over all data until convergence. Recently, methods based on

deep neural networks such as BCQ [7] have appeared. In contrast, RSPMNs offer a model-

based approach to learning the policy from data, which is provably tractable in the size of

the network. Additionally, we established RSPMN’s favorable performance in comparison to

BCQ.

29



Chapter 3

Recurrent SPMNs

In this chapter, we introduce the theoretical framework of RSPMN. In Section 3.1, we begin

by introducing RSPMN and its advantages over SPMN. In Section 3.2, we provide the data

schema required by the RSPMN algorithm. In Section 3.3, we formally define the template

and top networks and provide some properties that ensure the validity of RSPMN. In Sec-

tion 3.4, we present a theorem for the validity of an RSPMN and provide an inductive proof

for it.

3.1 RSPMN

Popular frameworks such as a Markov decision process (MDP) and languages such as dy-

namic influence diagrams [25] model long-term decision making as a temporal sequence of

decision-making steps.A dynamic influence diagram unfolds an influence diagram with tem-

poral links as many times as the number of steps in the extended problem thereby generating

a much larger influence diagram that models the complete sequence. Likewise, a dynamic

part of SPMN may be modeled using each of the time steps which can be unrolled to form

a larger SPMN that models the entire sequence.
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We take this perspective to modeling sequential decision making and introduce a recurrent

SPMN (RSPMN), which unfolds a template network as many times as the number of time

steps in each sequence of data. While the template network is not rooted at a single node

and is not a valid SPMN, we obtain these by learning an additional component: a top

network that caps the unfolded templates, which, in conjunction with some properties on

the structure of the template then yields a valid SPMN.

An alternative approach to the recurrent SPMN is to directly learn the SPMN from

the sequence data using the LearnSPMN algorithm [14]. However, this poses two main

challenges. First, an increase in the sequence length often leads to an exponential blow up

of the size of the network and subsequently in evaluation time as we demonstrate later in

our experiments. Second, the LearnSPMN algorithm requires a fixed number of variables

in each data record. Hence, it may not be used when the sequence length varies between

records as there may not always be an efficient way to either fill in the missing time steps for

shorter sequences or eliminate extra sequences from the longer ones. One could break the

data sequences into fixed-length segments corresponding to each time step. An SPMN can

be learned from this data set of segments. However, it is not clear how the resulting SPMNs

can be linked to each other to obtain a valid SPMN that accurately models the sequential

data.

We begin by describing which domain attributes should be present in the data to allow

learning RSPMNs followed by formal definitions of the components of the RSPMN.

3.2 Data Schema

Useful data for learning RSPMNs consists of a finite temporal sequence of values of state

and utility variables, and decisions that are actions. More formally, consider a decision-

making problem where the (fully observed) state of the environment is characterized by
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n variables, X1, X2, . . ., Xn; decisions by a combination of m decision variables, D1, D2,

. . ., Dm; and a single utility variable U . The partial order of the variables given by P≺

is I0 ≺ D0 ≺ I1 ≺ D1 · · · ≺ Ip, where I0, I1 . . . Ip are information sets containing subsets

of random variables and D0, D1 . . . Dp are decision variables. When the variables follow

some P≺, the random variables in the information set Ii−1 are observed before the decision

associated with variable Di, 1 <= i <= m, is made.

A candidate data record of at most T steps is then a sequence of T tuples of the form

〈(I0, d1, I1, d2, . . . , Im−1, dm, Im, u)0, (I0, d1, I1, d2, . . . , Im−1, dm, Im, u)1, . . .,

(I0, d1, I1, d2, . . . , Im−1, dm, Im, u)T−1)〉. Recall from Section 2.3, I0, I1, . . . , Im are information

sets where Ii−1, 1 ≤ i ≤ m consists of values of the state variables in the information set of

Di. Additionally, u in each tuple is the value of utility variable U given the realizations of

the state variables and decisions in that tuple.

3.3 Definitions

A RSPMN models sequences of decision-making data of varying lengths using a fixed set of

parameters by unfolding a template network. In the context of a dynamic influence diagram,

our template corresponds to an influence diagram with temporal links between nodes that

are repeated in each time slice.

Definition 3.3.1 (Template network). A template network is a directed acyclic graph with r

root nodes and at least n+ 1 leaf nodes where n is the number of state variables and there is

one utility function. The root nodes form a set of interface nodes Ir. The leaf nodes in the

network hold the distributions over the random state variables X1, X2, . . . , Xn, hold constant

values as utility nodes, or are latent interface nodes. The root interface nodes and interior

nodes can either be sum, product, or max nodes. Let L denote the set of leaf latent interface

nodes. Each latent node in L is related to a root interface node in Ir of the template network
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through a bijective mapping f such that f : L→ Ir.

The bijective mappings can be seen as time delay edges that link latent interface nodes

at time step t with root interface nodes at t+1, thereby enabling recurrence of the template.

The scope of a latent node of a template network in time step t is related to the scope of a

root interface node of the template network at time step t + 1. More formally, for any pair

of latent nodes lti, l
t
j ∈ L, let f(lti) = irt+1

i , f(ltj) = irt+1
j , where irt+1

i , irt+1
j ∈ Ir, then

scope(lti) = scope(irt+1
i ) (3.1)

Intuitively, the leaf latent interface nodes can be viewed as summarizing the latent in-

formation coming from the subsequent template network. They pass information between

templates of different steps. In other words, they pass up the information in a bottom-up

evaluation of the RSPMN and pass down the information in a top-down pass. As such, the

root and leaf latent nodes play a key role in linking the template networks during unfolding.

Toward ensuring that the unfolded network is a valid SPMN with a single root, we define

another special network as given below.

Definition 3.3.2 (Top network). A top network is a rooted directed acyclic graph consisting

of sum and product nodes, and whose leaves are the latent interface nodes. Edges from a

sum node are weighted as in a SPN.

A generic top and template networks are shown in Figures 3.2 and 3.1

Furthermore, the bottom-most template network – corresponding to the final time step

T of the sequential decision making – has its leaf interface nodes removed. Parents of these

interface nodes that are sum or product nodes with no other children are also pruned. We

may also achieve this while evaluation by setting the values of all these interface nodes as 1

(thus summing them out) and any utility values to pass set to 0.
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Figure 3.2: Generic top network with n leaf latent nodes

Next, we seek to ensure that the SPMN formed after interfacing the top network and

repeated templates is valid. One way to check for validity is to ensure that all the sum nodes

in the unfolded SPMN are complete, the product nodes are decomposable, and max nodes

are complete and unique as in defined in Section 2.3. However, can we define constraints

on the top and template networks that will ensure validity of the unfolded SPMN? If so, we

may establish the validity without checking the full network, which may grow to be quite
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large. To establish this, we first introduce a soundness property for the template network.

Definition 3.3.3 (Soundness of the template). A template network is sound iff

• All sum nodes in the template are sum-complete as defined in Def. 2.3.2;

• All product nodes in the template are decomposable as defined in Def. 2.3.3;

• All max nodes in the template are max-unique and max-complete as defined in Defs. 2.3.4

and 2.3.5;

• The scope of all the root interface nodes in Ir is the same, i.e.,

scope(iri) = scope(irj) ∀ iri, irj ∈ Ir;

• And, the scopes of the leaf latent interface nodes in L are related to scope of the mapped

root interface nodes in Ir as

(scope(iri) = scope(irj))⇒ (scope(li) = scope(lj)) (3.2)

Next, Theorem 3.4.1 establishes that a sound template network combined with a valid

top network generates a valid SPMN on unfolding the RSPMN.

3.4 Validity

Theorem 3.4.1 (Validty of RSPMN). If (a) in the top network, all sum nodes are complete

and product nodes are decomposable, i.e., top network is valid, and (b) the template network

is sound as defined in Def. 3.3.3, then the SPMN formed by interfacing the top network and

the template network unfolded an arbitrary number of times as needed is valid.
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Proof. We sketch a proof by induction. By assumption,

• In the top network, all sum nodes are complete and product nodes are decomposable

i.e. top network is valid

• The template network is sound, i.e., all sum nodes are complete, product nodes are

decomposable, max nodes are complete and unique.

Base case: We prove that the SPMN formed by interfacing a top network and a single

template network is valid. The relation between scopes of leaf latent interface nodes in

the top network with the root interface nodes Ir of template network can be inferred from

bijective mapping f as,

scope(iri) = scope(irj)⇒ scope(ltopi ) = scope(ltopj ), (3.3)

(ltopi , ltopj ) ∈ L, (iri, irj) ∈ Ir, f(li)→ iri, f(lj)→ irj

Since template network is sound,

scope(iri) = scope(irj),∀(iri, irj) ∈ Ir (3.4)

From 3.3 and 3.4, the scopes of leaf latent interface nodes of top network become,

scope(ltopi ) = scope(ltopj ), ∀(li, lj) ∈ L (3.5)

This means that all the leaf latent interface nodes in top network have same scope.

Under this condition and assumption, all the sum nodes of the top network are complete

and product nodes are decomposable.
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Next, the template network is sound. This means the scopes of all leaf latent interface

nodes of template network are same because,

scope(iri) = scope(irj),∀(iri, irj) ∈ Ir (3.6)

From bijective mapping f(L)→ Ir, we can infer

scope(iri) = scope(irj)⇒ scope(li) = scope(lj) (3.7)

(iri, irj) ∈ Ir, (li, lj) ∈ L

From 3.6 and 3.7, the scopes of leaf latent interface nodes of template network become,

scope(li) = scope(lj),∀(li, lj) ∈ L (3.8)

Under this condition and soundness of template, all sum nodes of template are complete,

product nodes are decomposable and max nodes are complete and unique.

Now, when the top network is interfaced with a single template network, the scopes of

leaf latent interface nodes of top network change based on relation with root interface nodes

Ir at t = 0 as below,

scope(ir0
i ) = scope(ir0

j )⇒ scope(ltopi ) = scope(ltopj ), (3.9)

(ltopi , ltopj ) ∈ L, (irt+1
i , irt+1

j ) ∈ Ir, f(Li)→ iri, f(Lj)→ irj
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From 3.6 we have,

scope(ir0
i ) = scope(ir0

j ),∀(ir0
i , ir

0
j ) ∈ Ir (3.10)

From 3.9 and 3.10,

scope(ltopi ) = scope(ltopj ),∀(ltopi , ltopj ) ∈ L (3.11)

The condition from 3.11 is equivalent to the condition from 3.5. This means the scopes

of leaf latent interface nodes of top network have not changed after interfacing with the

template network. So, all the sum nodes of top network are complete and product nodes are

decomposable even after interfacing with template network. Since no scope is changed in

template network after interfacing, all sum nodes are complete, product nodes are decom-

posable and max nodes are complete and unique in the template network. Therefore the

SPMN formed after interfacing top network with single template network is valid.

Induction hypothesis: Let us assume that the SPMN formed after interfacing a top

network and the template repeated t times is valid, i.e., all sum nodes are complete, product

nodes are decomposable and max nodes are complete and unique. Let this SPMN be R

Inductive step: We now prove that an SPMN formed by interfacing one more template

network (template network repeated (t+ 1) times in total) with R is a valid SPMN.

Since the template network is sound, as we have shown in 3.6, 3.7 and 3.8, we can show

that for template at t+ 1,

scope(irt+1
i ) = scope(irt+1

j ),∀(irt+1
i , irt+1

j ) ∈ Ir (3.12)

scope(lt+1
i ) = scope(lt+1

j ),∀(lt+1
i , lt+1

j ) ∈ L (3.13)
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and for template at t,

scope(irti) = scope(irtj),∀(irti , irtj) ∈ Ir (3.14)

scope(lti) = scope(ltj),∀(lti, ltj) ∈ L (3.15)

When the template at t is interfaced with the template at t+ 1, the scopes of leaf latent

interface nodes of template at t relate to root interface nodes of template at t+ 1 as follows,

scope(irt+1
i ) = scope(irt+1

j )⇒ scope(lti) = scope(ltj), (3.16)

(lti, l
t
j) ∈ L, (irt+1

i , irt+1
j ) ∈ Ir, f(Li)→ iri, f(Lj)→ irj

From 3.12 and 3.16 we have,

scope(lti) = scope(ltj),∀(lti, ltj) ∈ L (3.17)

The condition from 3.17 is equivalent to the condition from 3.15. This means the scopes

of leaf latent interface nodes of template network at t have not changed after interfacing with

the template network at t + 1. From inductive hypothesis, SPMN R is valid. Since there

is no change in scopes of any of the nodes in R after interfacing with template at t + 1, all

sum nodes are complete, product nodes are decomposable and max nodes are complete and

unique in R. Since no scope is changed in template network at t + 1 after interfacing, all

sum nodes are complete, product nodes are decomposable and max nodes are complete and

unique in the template network at t+ 1. So, all sum nodes are complete, product nodes are

decomposable and max nodes are complete and unique in the SPMN formed after interfacing

R with template network at t+ 1. Therefore, the SPMN formed after interfacing R with one

more template network (template repeated t+ 1 times in total) is valid.
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Chapter 4

Learning and Evaluation of RSPMN

In this chapter, we present the complete algorithm for structure learning of RSPMN and

its evaluation to compute the MEU and the best decisions based on MEU. In Section 4.1,

we present the four main parts of the LearnRSPMN algorithm and a description of the

domain that we use for illustration. In Sections 4.2 to 4.5, we describe each step of the

algorithm in detail aided by pseudo-code and an illustration. In Section 4.6, we describe

the evaluation of RSPMN to compute the MEU. We also show how to determine the best

decisions from the network based on the MEU values.

4.1 Structure Learning

Illustration: We use a simple 2X2 grid world to provide illustrations of the application of

various steps of the RSPMN structure learning algorithm. The data set is generated from an

agent following a random policy for navigating in the 2X2 grid world shown in Fig 4.1. Each

cell in the grid is represented by two binary state variablesX, Y , which represent the x, y coor-

dinates of the cell, respectively. Here, the top-left cell is (0, 0) and (1, 1) indexes the bottom-

right cell. The agent can decide to either move in one of the four cardinal directions or per-
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form a No-op, which is represented using a single decision variable, A. Let (0, 0) be the start

state, (1, 0) a penalizing state with a reward of -10, and (1, 1) the goal state with a reward of

10. All transitions are deterministic and cost -1. Reward is represented by the utility vari-

able U . Recall from Section 3.2 that the data schema is 〈(I0, d1, I1, d2, . . . , Im−1, dm, Im, u)0,

(I0, d1, I1, d2, . . . , Im−1, dm, Im, u)1, . . ., (I0, d1, I1, d2, . . . , Im−1, dm, Im, u)T−1)〉.

For this domain, the information set I0 consists of variables X, Y , decision variable D1 is

A and the utility values are represented by u. There are no further state or decision variables.

So the data schema for the 2X2 grid world is 〈(x, y, a, u)0, (x, y, a, u)1, . . ., (x, y, a, u)T−1)〉.

A data set of 10K records over 4 time steps T with schema as given is generated by a

randomly-acting agent in the domain.

0

1

0 1

Start

Goal

-10

-1

+10

-1

Figure 4.1: 2X2 Grid world used in the illustration of each step of RSPMN strcuture learning
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Algorithm: We present a complete algorithm for learning the structures of a valid top net-

work and a sound template network from data whose schema is outlined in Section 3.2 . Each

data record of length T is a capture of an episode during which a decision-maker interacts

with the environment for T steps (observing the state, acting, and obtaining reward). Let

there beE such episodes. For convenience, we denote a tuple (I0, d1, I1, d2, . . . , Im−1, dm, Im, u)t

as τ t. Consequently, the data set has E records each consisting of T tuples 〈τ 0, τ 1, . . . , τT 〉e

where e = 1, 2, . . . , E.

Recall from Section 3.2 that the partial order is given by P≺ is I0 ≺ D0 ≺ I1 ≺ D1 · · · ≺

Ip. Let us also note for the sake of completeness that all variables related to time step t+ 1

assume their values after time step t. This is reflected in the expanded P≺, which now

specifies the partial order not only among variables of a single time step but also includes

variables of the next time step. This is sufficient because the partial order among variables

of two time steps does not change over time.

Algorithm 2: LearnRSPMN

Input: Dataset 〈τ0, τ1, . . . , τT 〉e where e = 1, 2, . . . , E; Partial Order P≺

Output: top network, template network
1 St=2 ← Run LearnSPMN over wrapped 2-time step data 〈τ0, τ1〉e e = 1, 2, . . . , T × E
2 Create top network and set of root interface nodes Ir from St=2

3 Create initial template network from Ir and St=2

4 Revise initial template using sequence data to obtain the final template

Algorithm 2 presents the four main steps involved in learning the RSPMN from data.

We refer to this algorithm as LearnRSPMN. We describe each of these steps below in

more detail, give their algorithms, and also illustrate their applications on a simple 2×2 grid

problem.
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4.2 Learn an SPMN from 2-time step data

Sequential decision making environments can often be modeled as Markovian. For a Markov

domain, the transition from a state 〈x0, x1, . . . xn〉t in time step t to next state

〈x0, x1, . . . xn〉t+1 in time step t+1 is dependent only on the state 〈x0, x1, . . . xn〉t and actions

〈a0, a1, . . . an〉t in the previous time step t. Therefore, state transition probabilities and utility

functions can be sufficiently learned from data spanning two time steps. Consequently, the

first step of LearnRSPMN is to use Melibari et al.’s LearnSPMN algorithm to learn a

valid SPMN, St=2, from 2-time step data. Subsequently, St=2 serves as a basis for obtaining

the template network.

Algorithm 3: SPMN from 2-time step data

input: Dataset: 〈τ 0, τ 1, . . . , τT 〉e where e = 1, 2, . . . , E, Partial Order: P≺

output: SPMN from 2-time step data: St=2

1 w0 ← Empty, w1 ← Empty
2 for e in 1, 2, . . . , E do
3 for t in 0, 1, . . . T − 1 do
4 w0 ← w0.add(τ t)
5 w1 ← w1.add(τ t+1)

6 W ← 〈w0, w1〉
7 St=1 ← LearnSPMN(W , P≺)

However, which two time steps of the data record should we utilize? One might think that

it may be sufficient to limit utilizing tuples of the first two steps in each data record 〈τ 0, τ 1〉,

or to tuples of any particular two consecutive steps 〈τ t′ , τ t′+1〉. But, an agent often starts the

episode at the same start state and is often at the same intermediate state in a subsequent

time step. As such, data in the first two time steps, or for that matter, any fixed pair of

time steps, is seldom fully representative of the transition probabilities. Consequently, we

consider each consecutive pair of tuples 〈τ t, τ t+1〉 t = 0, 1, . . . , T −2 in each data record and

wrap it to create a data set with T ×E rows spanning two time steps as shown Algorithm 3.

Note that in order to observe the goal state in the tuple τ t, padding values can be added
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into τ t+1 where any transition from goal state to next state is goal state with a zero utility

value.
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Figure 4.2: SPMN St=2 learned on wrapped 2-time step data for the example grid problem. Xt,
Y t, At, and Ut represent the corresponding variables for step t, where t ∈ {1, 2}.

Note that P≺ is focused on the partial order among the variables of two consecutive time

steps, and need not change for use in LearnSPMN. Then, LearnSPMN is run over the

wrapped data set with P≺ as the partial order. We show the learned 2-time step SPMN for

the example grid problem in Fig. 4.2.
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4.3 Obtain top network and Ir nodes

To obtain the nodes in Ir, we extract a 1-time step network St=1 from St=2. We point

out that it is necessary to use a 2-time step SPMN to obtain St=1. To realize this, let

a state-action pair 〈s0, a0〉 transition to state s1 while 〈s2, a0〉 transition to s3. If St=1 is

learned from data of a single time step, the correlations between variables of different steps

is obviously is not ascertained. Due to this, both state values s0 and s2 may get included in

a single substructure. However, the 2-time step data makes it clear that they effect differing

transitions, which could be identified during independence testing, thereby modeling them

separately by creating different clusters for each of these states in the first step as they

result in a transition to the next step. Importantly, this identifies the behaviorally distinct

variables of the domain, which in turn helps in identifying distinct states. This helps create

an interface node for each of the states in the template network.
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Figure 4.3: St=1 obtained from the St=2 of Fig. 4.2 with the orange nodes removed.
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As shown in Algorithm 4, to obtain St=1, we simply remove all those sum nodes whose

immediate children have scopes that consist of subset of variables in the next time step

(I0, d1, I1, d2, . . . , Im−1, dm, Im, u)1. If there are no such sum nodes, but instead variables of

the next time step are directly linked to product nodes (as in Fig. 4.2 where the orange

nodes are children of the product nodes), then we remove the nodes corresponding to these

children. This results in St=1 with no nodes whose scopes lie in variables of the next time

step, yet appropriately modeling its impact on the first time step. Figure 4.3 illustrates St=1

for the grid problem.

Algorithm 4: 1 step SPMN from 2 step SPMN

input: Two step SPMN: St=2

output: Top Network SO, Set of root interface nodes Ir
1 Queue← St=2.root
2 while Queue is not ∅ do
3 node← Queue.dequeue
4 if node is product then
5 for each child c in the set of node’s children Cn do
6 if c does not have any variable of (I0, d1, I1, d2, . . . , Im−1, dm, Im, u)1 in its

scope then
7 Remove c from Cn

8 One step network St=1 ← remaining St=2

Now, we may obtain the nodes in Ir using St=1 (shown in Algorithms 5 and 6). Starting

from the top-most product nodes (the blue nodes in Fig. 4.3), the root interface nodes are

obtained by identifying all the distinct state distributions from these product nodes. This is

done by recursively traversing all the branches of the product node until we find a product

node without any sum node as a child.

This corresponds to the four product nodes in Fig. 4.3 below the blue colored product

nodes. Each of these product nodes as well as leaf nodes of all the parent product nodes

on path to this product node are added to a corresponding set. A product node is created

for each of these sets and the elements of the set are added as children of the product
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Algorithm 5: Create top network and set of root interface nodes

input: Two step SPMN: St=1

output: Top Network SO, Set of root interface nodes Ir
1 set of nodes seen E ← ∅ ; root interface nodes Ir ← ∅
2 Queue← St=1.root
3 while Queue is not ∅ do
4 node← Queue.dequeue
5 if (node is product and all (I0, d1, I1, d2, . . . , Im−1, dm, Im, u)0 are in node.scope)

then
6 topProdChildren C ← ∅

/* c.scope must be a proper subset */

7 if (each c.scope ⊂ (I0, d1, I1, d2, . . . , Im−1, dm, Im, u)1,∀c ∈ node.children)
then

8 C ← node.children
9 node.children← ∅

10 if C is not ∅ then
11 Create Product node P ; P.children← C
12 R← IrChildren(P)
13 latent interface nodes L← ∅
14 for each irchildren set irC in R do
15 Create interface root product node ir
16 ir.children← irC
17 Create latent interface node l with a bijective mapping f(l)→ ir
18 L← L ∪ l ; Ir ← Ir ∪ ir
19 Create Sum node SL with SL.children← L
20 node.children← node.children ∪ SL
21 else
22 for each child c in the set of node’s children Cn do
23 if c is not in E then
24 Add c to E
25 Enqueue c into Queue

26 Top Network SO ← remaining St=1

27 Set of root interface nodes Ir

node as shown in Fig. 4.5. Each of these product nodes is a root interface node. Each of

these interface nodes holds an SPMN that corresponds to a state distribution (there are four
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Algorithm 6: make sets of Ir children

input: Product node P
output: set of interface root node children sets

1 Function IrChildren(P):
2 if (any c is Sum, ∀c ∈ P.children) then
3 for each c in P.children do
4 stateVars X ← ∅
5 if c is Sum then

/* a set of sets */

6 set of IrChildren sets R← ∅
7 for each cp in c.children do
8 irChildren set irC ← IrChildren(cp)
9 R← R ∪ irC

10 else
11 X ← X ∪ c

12 for each irC in R do
13 irC ← irC ∪X
14 return R

15 else
16 return {{P}}

interface nodes for the four states in illustration). The interface nodes, for example, can help

learn the probability of transitioning from one state st on taking at to some other state st+1

in the next time step. Observe that union of the scopes of the children of each interface node

in Ir is identical. This makes the scopes of all the interface nodes Ir identical.

The top network is then simply a sum node with as many children as the nodes in Ir.

The weights on these edges are equal and correspond to a uniform distribution. Each of

these children is a latent interface node with a bijective relationship to a root interface node.

We show the top network in Fig. 4.4. The weights on the root sum nodes can be learned

using the wrapped two step data obtained in Section 4.2.

Alternatively, the top network can be created by removing the children of the top blue
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Figure 4.5: Root interface nodes obtained using the network in Fig. 4.3. The colored product
nodes function as the root interface nodes.
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product nodes and adding a sum node with children as a latent interface leaf node for each

interface root node created from these product nodes. The weight on each out-going edge

from this sum node to latent interface node can be obtained by multiplying the weights

of out-going edges from sum node to product node that leads to the state distribution the

latent node corresponds to. This corresponds to weights (0.52, 0.48, 0.49, 0.51) on out-going

edges from sum nodes below the blue product nodes in Fig 4

4.4 Building an initial template

The network from the previous step containing the root interface nodes forms a basis for

creating the initial template. Let |Ir| denote the number of root interface nodes created in

the previous step. We begin by creating a subnetwork SL rooted at a sum node with as many

children as |Ir|. Each of the children is a leaf latent interface node observing the following

relationship, f(li) = iri, i = 1, 2, . . . , |Ir|, and f is a bijective relationship. In other words,

each of the latent interface node corresponds to a distinct root interface node. The weights

on the edges are equal and correspond to a uniform distribution.

Beginning at each root node in Ir, we traverse the graph to the bottom-most sum,

product, or max node. In case of a product node, we add a new edge and link it to a new

subnetwork SL. In case of a sum or max node, each of its children nodes is now replaced by

a product node with two outgoing edges. One of these edges links to the previous child node

while the other edge links to SL. Including all latent nodes in SL can be effectively thought

of as having observed a state and taken a decision at time step t results in reaching all the

other states in the next time step t+ 1 with equal probability. We show the initial template

network for the example grid problem in Fig. 4.6.

Since, each latent interface node is added by using a bijective mapping f , all the latent

nodes li have same scope. Hence, sum node SL is complete. Adding SL as described above
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Figure 4.6: An initial template network for the grid problem obtained by attaching SL to the
bottom-most product node following each node in Ir. Similarly colored nodes in the sets L and Ir
are related.

does not change properties of any of the nodes for validity. Moreover, scope of all Ir is same.

Therefore, the initial template network is sound.

4.5 Learning the final template network

Parameters of the template network are the edge weights of the outgoing edges from the sum

nodes including SL. We adapt the hard expectation-maximization algorithm for SPNs [23,

21] to the recurrent structure of the template network to update the structure and parameters

of the initial template. Broadly, it involves performing a bottom-up pass during which

the likelihoods of each sum, product, and max node are calculated using a data record
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Algorithm 7: Create initial template network

input: Set of root interface nodes Ir
output: Initial template root interface nodes Ir

1 L← ∅
2 for each ir in Ir do
3 Create a Latent interface node l and f(l)→ ir
4 L← L ∪ l
5 for each ir in I do
6 set of nodes seen E ← ∅
7 Queue← ir.root
8 while Queue is not ∅ do
9 node← Queue.dequeue

10 if (each c is Leaf node, ∀c ∈ node.children) then
11 Create Sum node SL /* bottom sum interface node */

12 SL.children← L
13 SL.weights← 1/numOf(SL.children)
14 if node is product then
15 Add SL as child of product node

16 else
17 for each l that is Leaf node in set of node.children Cn do
18 Create Product node P
19 P.children← SL ∪ l
20 Cn ← Cn \ l
21 Cn ← Cn ∪ P

22 else
23 for each c ∈ node.children do
24 if c is not in E then
25 Add c to E
26 Enqueue c into Queue

27 Initial template root interface nodes Ir ← set of root interface nodes Ir

〈τ 0, τ 1, . . . , τT−1〉. 1 This is followed by a top-down (backpropagation) pass beginning at the

rooted top network, which selects a maximum likelihood path and updates the counts on

1If the leaf node is a distribution instead of being an indicator variable, then entering a value yields a
likelihood as well.
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the edges from sum nodes along that path.

Data from the last tuple τT−1 is entered in the leaf random variable nodes of the bottom-

most template (recall that the bottom-most template network has its leaf latent nodes re-

moved). Likelihoods are propagated upwards through the network by performing the sum,

product, and max operations represented by the nodes until we obtain a likelihood for each

in node in IrT−1. Using the bijection function that relates the nodes in L with the nodes in

Ir, we may propagate the likelihoods of the nodes in IrT−1 to the corresponding latent nodes

in LT−2. The above mentioned bottom-up pass is repeated using the likelihoods of the leaf

latent nodes and data from tuple τT−2 entered into the leaf random variable nodes of time

step T − 2 template, thereby yielding another set of likelihoods for the nodes. Regressing in

data to time step 0, the bottom-up pass continues assigning a likelihood to each node in the

network terminating when the root node of the top network is reached.
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Figure 4.7: The final template network from the bottom and top-down passes for the grid problem.
Notice that we retain the leaf latent nodes at each SL in the initial template with the maximum
likelihoods only.
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Given the likelihoods computed at each node for each time step, the top-down pass begins

at the root node of the top network and at time step 0. It traverses downward visiting each

node, selecting the child node with the highest likelihood for each sum node (including

subnetwork SL) and updating the count (initialized at zero) on the edge connecting the

sum node to the child, selecting the child with the highest likelihood for the max node, and

following each edge of the product node. The bijection mapping is used to go from the leaf

latent nodes with maximum likelihood in time step t− 1 to the mapped root interface nodes

of time step t. An edge from a sum node chosen again has its previous count incremented by

1. The top-down pass terminates at the bottom-most network representing time step T − 1.

New weights of outgoing edges from each sum node are obtained as:

count on edge from sum → child node
# sum node visited

. Thereafter, any leaf latent nodes (and indeed any children of

a sum node) with zero counts are pruned. We may perform both the bottom-up and top-

down passes without actually unfolding the template network by following the implicit links

represented by the bijection mapping. Applying this step, the learned final template for our

illustrative grid problem is shown in Fig. 4.7.

Since we only drop the latent interface nodes, the scope of SL does not change and the

template network is still sound.

4.6 MEU and Policy Evaluation

We may evaluate the RSPMN formed by interfacing the top network with the learned final

template network iterated as many times as the length of each data record to compute the

MEU for each state and obtain a policy from the MEU values.

The MEU value is obtained by evaluating the template network bottom-up as in an

SPMN as described in Section 2.3.2. The utility values of the leaf latent interface nodes of

the bottom-most template (last time step) are set to zero. After evaluating the bottom-most
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Algorithm 8: Final template network

input: Initial template root interface nodes Ir; Top Network SO
output: Final template root interface nodes

1 T ← length of sequence
2 ll−1, ll0, . . . , llT−1 ← EmptyList
3 for each time step t from T − 1 . . . 0 do
4 if t = T then
5 Remove leaf latent nodes from Ir
6 Assign leaf values (I0, d1, I1, d2, . . . , Im−1, dm, Im, u)t to leaves in Ir
7 llt ← bottomUpPass(Ir)

8 else
9 Assign leaf values (I0, d1, I1, d2, . . . , Im−1, dm, Im, u)t to leaves in Ir

10 Assign Ir values from llt+1 to latent leaves in Ir
11 llt ← bottomUpPass(Ir)

12 Assign Ir values from ll0 to latent leaves of SO
13 ll−1 ← bottomUpPass(SO)
14 for each time Step t from −1 . . .m− 1 do
15 if t = −1 then
16 TopDownPass(SO)
17 l← leaf latent interface node reached

18 else
19 Il ← root interface node corresponding to l
20 TopDownPass(Il)
21 Increment counts on outgoing edges visited on sum nodes
22 l← leaf latent interface node reached

23 Update weights on sum node SL whose children are L in Ir using counts
24 Drop branches with zero counts on SL
25 Final template root interface nodes Ir ← Ir

network, each root interface node of the template network holds a utility value. In the next

iteration, the utility values of the leaf latent interface nodes are assigned the utility values of

the corresponding root nodes computed in the previous iteration, and the process is repeated

until time step 0 and the top network is evaluated. Assuming that the template network

learned a model of the true transitions well, each bottom-up pass through the template can
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be thought of as performing one Bellman update in the value iteration technique.

In the first iteration, the utility values at leaf latent nodes are set to 0 and all the leaf

nodes are marginalised by setting all the leafs to a likelihood of 1. The values are passed up

by applying the operators at each node for likelihood and utility as described in as described

in Section 2.3.2. At the end of first iteration, each root interface node, which corresponds to

a particular state in the domain holds a utility value and a corresponding likelihood. In the

next iteration, the utility and likelihood values of these root interface nodes are set to the

corresponding leaf latent nodes from which they are mapped. This can be repeated until the

length of the data sequence T or even infinitely until utility values converge. Subsequently,

each node of the template holds a corresponding utility value.

Recall from Section 3.2 that before making a decision at a decision node Di the variables

preceding it in the partial order P≺ are observed. To obtain a decision value at a given

decision variable Di,and some observation of variables in the information sets preceding

Di, the above process to compute MEU is run until T − 1 iterations (T, T − 1, . . . , 1) or

until values converge. In the next iteration, the template network is interfaced with the top

network and variables are assigned values corresponding to observed state. Leaf latent nodes

are assigned values that correspond to their mapped root interface nodes from the previous

iteration. The interfaced network is then evaluated as an SPMN and a top-down pass is done

to select the best decision at Di as in an SPMN.

As we can see, each iteration is linear in size of the template network and it requires at

most T iterations to compute the MEU for a horizon of T time steps. Hence, the complexity

of computing the MEU for a finite horizon of T time steps is O(TE) where E is the size of

template network measured in terms of edges and T is the number of time steps.
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Chapter 5

Experiments

In this chapter, we report the experimental results of the modified LearnSPMN and the

LearnRSPMN algorithms and provide an analysis of the results. In Section 5.1, we discuss

the improvement in likelihood of modified LearnSPMN over the original LearnSPMN

algorithm. In Sections 5.2, we discuss in detail the performance of LearnRSPMN al-

gorithm using various metrics on a test-bed of data sets collected from seven sequential

decision-making domains that adhere to the schema given in Section 3.2. We show that the

LearnRSPMN algorithm reaches close to optimal values by comparing it against Value It-

eration and DQN [17] techniques . We also show that it outperforms modified LearnSPMN

and Batch-constrained Q-learning [6] on various domains.

We implemented modified LearnRSPMN in the SPFlow library [18]

5.1 Modified LearnSPMN

Table 5.1 shows a comparison of likelihoods between original LearnSPMN algorithm against

the modified LearnSPMN algorithm. We tested it on a test-bed of five data sets. Four

of these data sets (except Marbles) are from [15]. Notice that the MEU values for Ex-
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Modified LearnSPMN
Dataset Original LearnSPMN I I&C MEU

Marbles -18.77 -0.86 -0.52 4.49
Export Textiles -12.67 -1.08 1917933.05
Test Streptococal -62.04 -1.14 -1.12 54.92
Computer Diagnostic -47.18 -0.89 -0.89 242.80
Power Plant Air Pollution -19.61 -2.03 -1.82 1.77E − 16

Table 5.1: Log likelihood on original LearnSPMN vs Modified LearnSPMN algorithm.
I column gives the likelihood values on Modified LearnSPMN with modifications on inde-
pendence testing, and I&C on both independence and clustering changes. MEU column
gives the MEU values on I&C changes of modified LearnSPMN

port textiles and Power Plant Air Pollution data sets are large positive and negative values.

But these utility values are reflected in the data sets. Notice the improvements in the log-

likelihoods after the modifications. The log-likelihoods of all the data sets improved in orders

of magnitude after the modifications. While the difference between independence changes,

independence and clustering changes in the modified LearnSPMN are small, we observed

more sensible structures on both independence and clustering changes compared to just

independence changes.

5.2 LearnRSPMN

In this section we discuss at length the experimental results of the LearnRSPMN algorithm

on various metrics. We begin by describing evaluation testbed, dataset sizes and the data

collection strategy. We then draw comparison between RSPMNs and SPMNs on sizes, learn-

ing and evalution times. We then compare the MEUs and policies obtained using RSPMNs,

SPMNs, BCQs against the optimal MEUs and policies.
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5.2.1 Evaluation testbed

There are few existing data sets on simulations of decision-making domains. Due to this,

we created a new testbed of seven data sets, listed in Table 5.2 and available for download

at https://github.com/c0derzer0/RSPMN. Four of these data sets are simulations of these

domains present in OpenAI’s Gym and the remaining three are simulations of RDDLSim [24]

MDP domains. Each data set is generated by using a random policy which interacts with

the environment and collecting the 〈state, action, reward〉 generated at each step. Each

episode is run for T time steps, which is selected to be sufficient to reach the goal state. A

new episode is started if either the last time step is reached or if the agent reaches the goal

state or some other terminal state.

Data set |X|, |D| #Episodes T |Columns| |SPMN| |RSPMN|
GridUniverse1 (1, 1) 100K 8 24 138,492 (13, 210)
FrozenLake1 (1, 1) 100K 8 24 1,068,246 (18, 401)
Maze1 (2, 1) 100K 8 24 352,312 (11, 184)
Taxi1 (4, 1) 20K 50 150 - (80, 1815)
SkillTeaching2 (12, 4) 100K 10 170 - (137, 4878)
Elevators2 (13, 4) 200K 10 180 - (143, 5390)
CrossingTraffic2 (18, 4) 100K 15 345 - (82, 2349)

Table 5.2: Superscript 1 denotes simulations of Gym domains and 2 denotes simulations of RDDL-
Sim domains. |X|, |D| gives the numbers of state and decision variables in the domain, |Columns| is
the total number of columns in each data record. We also report the size of the learned structures.
|SPMN| and |RSPMN| gives the sizes of the (top, template) networks respectively. ‘ - ’ denotes
that the SPMN was not learned in 12 hrs on an Ubuntu Intel i7 64GB RAM PC.

For each data set in the testbed, we learn an SPMN using the LearnSPMN algorithm.

This was made possible by padding the sequences so that all sequences have the same length

– on reaching a terminal state, the agent stayed in that state until the length of the sequence

is T . The top and template networks of an RSPMN were learned using our LearnRSPMN

(Algorithm 2).
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5.2.2 SPMN and RSPMN size comparision

We show the sizes of the learned networks as the total number of nodes in each, in the

ultimate two columns of Table 5.2. Notice the blow up in the sizes of the SPMNs learned

for the sequential data sets. For the larger RDDLSim domains, the sizes of the top and

template networks also grow but we did not observe a disproportionate growth, while the

SPMNs could not be learned.

The blow up in the sizes of the SPMNs happens because the SPMN has many repeated

structures for the state distributions over time. The SPMN grows in depth with time step

T creating new structures to model data at each time step. Each of these is also connected

to previous time step structures. If a same state s is reached from multiple states say k in

the previous step, k copies of structures corresponding to s are connected to k states from

previous step. This leads to a blow up in the number of nodes in the SPMN as the time

steps T grow. Whereas, the LearnRSPMN algorithm identifies a distinct state and creates

only one copy corresponding to its data distribution.

5.2.3 MEU and policy comparisons

Table 5.3, which reports the key results, compares the MEU from the start state of each

domain as obtained by evaluating the learned RSPMNs and any learned SPMNs with the

(near-)optimal values. We obtained the latter from converged DQNs for the Gym domains

and by solving the MDP using value iteration for the RDDLSim domains. Observe that

RSPMNs yield MEUs that are very close to the optimal and significantly better than those

from the learned SPMNs. Clearly, the sequential data sets do not have sufficient episodes

to learn high-quality SPMNs. Moreover, it may not be possible to learn an SPMN if we

increase the size of the datasets. Also, since the SPMN is learnt over specific number of time

steps, there is no guarantee that the MEU values from SPMN are converged values.
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MEU Average reward
Data set Optimal RSPMN SPMN RSPMN BCQ ∆ % LL (RSPMN)

GridUniverse 6 6 6 5.9 5.9 0 -0.87
FrozenLake 0.8 0.818 0.13 0.8 0.3 62.5 -6.17
Maze 0.966 0.966 0.052 0.96 0.96 0 -0.86
Taxi 8.9 9 - 8.9 -200 60.25 -2.45
SkillTeaching -3.022 -3.06 - -5.42 83.3 -2.09
Elevators -7.33 -7.47 - -1.52 80 -4.8
CrossingTraffic -4.428 -4.425 - 27.98 94.7 -8.44

Table 5.3: Our key results comparing the MEUs of the optimal policy, learned RSPMNs, SPMNs,
and batch-constrained Q-learning. ∆ % gives the policy deviations between the policies obtained
from RSPMN and the optimal ones.

RSPMNs and SPMNs also represent a model of the environment as present in the data,

which then plays a role in the MEU and policy computation. So, how well did the structure

learning method capture the environment dynamics? To answer this question, we simulated

the policies obtained from the RSPMNs in their respective Gym environments and noted

down the average rewards. 1 Sometimes, it may happen that the MEU values returned from

the RSPMN may be close to optimal values, but the policy modeled by the structure may

not be optimal. It may also happen that some states may end up having values close to

optimal MEU. Deploying the policies on the domain and calculating the average rewards

helps bolster the MEU values obtained from the RSPMN as it shows the performance of the

policy on the domain.

Table 5.3 shows that these average rewards nearly match the MEUs obtained directly

from the RSPMNs. This implies that the networks are modeling the environment accurately

and the policies and MEUs obtained are indeed optimal. We also compare with the average

rewards of policies learned by the discrete batch-constrained Q-learning [7] on the data sets

as a baseline, a technique similar to DQNs but constrained to learning from a batch of

data. For RDDLSim domains, we report on the Q-values of the start states. Clearly, BCQ

1We are currently implementing the RDDLSim domains in Gym to allow simulations of our policies.
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expects far more data to learn a good policy. We also made an interesting observation that

when BCQ was allowed to learn using data generated from a sub-optimal behavioral agent

(DQN) on infinite horizon on FrozenLake, BCQ was able to generate close to optimal average

reward. But when the environment was restricted to a horizon of 10, it failed to learn a good

policy and the average rewards fell to 0.1. On the other hand, RSPMNs generalise well on

data with limited number of time steps. It could also be possible that the default Neural

Networks and parameters of the publicly available BCQ implementation from the author

may not have been sufficient to model the domains accurately. This could indicate that it

may be hard for BCQ to generalise well on data with smaller horizons or the NNs used may

not be sufficient to model the data.

Next, we report the deviation in policy learned by the RSPMN from the optimal one.

This is the total number of states where the actions differ and reported as a percentage ∆

% of the total number of states. Notice the large deviations for FrozenLake, Taxi, and the

RDDLSim domains although the learned policies show MEUs close to the optimal. This is

likely due to the presence of multiple optimal policies in these large domains. Again, the

fact that the average rewards from RSPMN policies are close to optimal MEUs show that

the learned policy from RSPM is one of the optimal policies. For the sake of completeness,

we also report the log likelihoods of the models in the last column.

Template learning MEU eval
Data set Initial Final SPMN learning RSPMN SPMN

GridUniverse 2m 26.33s 1m 1.49s 4h 25m 31.72s 0.72s 8.8s
FrozenLake 1m 49.8s 2m 02.78s 12h 5m 40.77s 23.21s 1m 26.85s
Maze 2m 51.19s 54.84s 2h 31m 49.51s 0.62s 24.87s
Taxi 9m 21.79s 2h 28m 15.75s - 18.45s -
SkillTeaching 59m 5.87s 29m 28.49s - 3.84s -
Elevators 1h 19m 3.91s 4h 19m 29.53s - 20s -
CrossingTraffic 8m 46.14s 1h 37m 53.17s - 18.45s -

Table 5.4: Initial and final template learning times are shown in first two columns. These are
significantly less than those learning the large SPMNs. Run times of MEU evaluations on the
learned SPMNs and RSPMNs are shown next.
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Table 5.4 shows our final set of results on the clock time it takes for learning the initial

template structure, learning the final template of the RSPMN and learning the large SPMNs

when possible. The time to learn an SPMN was capped at about 12 hrs. Observe that

both learning and evaluating the large SPMNs takes a few orders of magnitude longer than

learning the templates. However, the template learning times also increase for the larger

RDDLSim domains with Elevators taking more than 4 hours. On the other hand, the MEU

evaluation remains quick for all the domains taking less than a minute.
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Chapter 6

Conclusion and Future work

Sum-Product Networks are interesting because they have the twin benefits of tractable in-

ference and data-driven learning which is difficult in other probabilistic graphical models.

Several extensions to SPNs like Recurrent SPNs that generalise SPNs to sequential reasoning

and Sum-Product-Max Networks that extend them to decision-making are appealing because

they represent a shift in paradigm in probabilistic models from expert-driven handcrafted

models to data-driven learning.

First, we presented a modified structure learning algorithm for SPMNs with detailed as

well as intuitive reasoning for the modifications. We then described in depth the evaluation

of SPMNs to compute the MEUs and obtain best decisions based on MEUs. We showed

from our experiments that, the modifications to LearnSPMN improve the log-likelihoods

by orders of magnitude compared against original LearnSPMN algorithm.

Along the lines of the recent developments and extensions of SPNs, we presented RSPMNs,

a new graphical framework to model sequential decision-making problems in perfectly-

observed contexts. We first presented the theoretical framework of RSPMNs. We defined a

template network and a top network, that constitute an RSPMN. We defined a soundness

property of the template network which enables the RSPMN to be valid. We proved this by
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showing that an unfolded RSPMN forms a valid SPMN.

Having defined the constituents of RSPMNs and their properties for forming a valid

structure, we proposed a novel four step structure learning algorithm LearnRSPMN to

learn a sound template network. We gave detailed reasoning for each of the four steps

coupled with pseudo-code and illustrations. We then described in detail the evaluation of

RSPMN which performs a Bellman update(assuming template network closely models true

transitions) to compute the MEU and obtain the best decisions. We also showed that the

complexity of computing the MEU is linear in size of the template network.

We demonstrated from our experiments that, recurrent generalizations of SPMNs do not

suffer from an exponential blow-up in size with sequence length that SPMNs suffer from by

comparing the sizes, learning times and MEU computation times of RSPMNs and SPMNs.

We also showed that RSPMNs reach optimal values on batch RL applications and outperform

SPMNs and neural network based BCQs.

One of the limitations of model is that it creates a root interface node for each state of

the domain reflected in the data set. This may lead to a large growth in size of the network if

the state state space is large. Also, these models work efficiently on fully observed domains.

A logical extension of this work would be to extend them to partially observable domains.

Another interesting area would be to investigate an online structure learning algorithm for

RSPMNs. This would be useful as it can be used in conjunction with offline RSPMN on

reinforcement learning domains. An offline RSPMN can be learned from already available

data using LearnRSPMN and the resulting RSPMN can be deployed on the environment.

While deployed on the environment, the RSPMN structure can be updated in online fashion

as more data becomes available. This is realistic because an online structure learning [11]

for an RSPN already exists and modifications specific to RSPMNs may be feasible.

Furthermore, since RSPMNs model the whole environment dynamics instead of learning

just a value function, it would be interesting to research their applicability for off-policy
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evaluations [9] where the environment model is learned from the data, which can be then

used for evaluating different policies.
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