

SOCIAL STRUCTURE AND COLLECTIVE INTELLIGENCE IN PROBABILITY-BASED

PARTICLE SWARM OPTIMIZATION FOR THE FOREST PLANNING PROBLEM

by

ANGELA TSAO

(Under the Direction of Pete Bettinger)

Forest planning can be represented as a type of spatially constrained combinatorial optimization.

Many complex forest planning problems are computationally intractable, but metaheuristics

allow for efficient discovery of high quality solutions. This project introduces a new velocity

update procedure for a probability-based variant of the Particle Swarm Optimization algorithm,

incorporating models of baboon information-pooling behavior to inform social influence among

particles. The new baboon-based algorithm is tested over three forest planning problems in

comparison to existing optimization strategies. The baboon communication mechanism

significantly improves performance of the PSO on complex, higher-dimensional problems. We

implement strategies for improving performance of probability-based optimization over a

constrained search space and test the effect of different frameworks of social influence on

algorithm performance.

INDEX WORDS: Combinatorial optimization, Constrained optimization, Probability

optimization, Discrete particle swarm optimization, Forest planning,

Nature-inspired optimization, Collective intelligence, Social networks

SOCIAL STRUCTURE AND COLLECTIVE INTELLIGENCE IN PROBABILITY-BASED

PARTICLE SWARM OPTIMIZATION FOR THE FOREST PLANNING PROBLEM

by

Angela Tsao

BS, University of Georgia, 2021

A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE

ATHENS, GEORGIA

2021

© 2021

Angela Tsao

All Rights Reserved

SOCIAL STRUCTURE AND COLLECTIVE INTELLIGENCE IN PROBABILITY-BASED

PARTICLE SWARM OPTIMIZATION FOR THE FOREST PLANNING PROBLEM

by

ANGELA TSAO

 Major Professor: Pete Bettinger
 Committee: Frederick Maier
 Chris Cieszewski

Electronic Version Approved:

Ron Walcott
Vice Provost for Graduate Education and Dean of the Graduate School
The University of Georgia
May 2021

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Dr. Bettinger, for his guidance and

support of my foray into the study of heuristic optimization algorithms. His Advanced Forest

Planning course inspired me to explore this subject deeper and incorporate my experiences in

ecology with my interest in computational intelligence. I thank him for his continued mentorship,

especially in talking through ideas and sharing patient feedback over numerous revisions.

 I would also like to thank Dr. Maier and Dr. Cieszewski for their support and being

members of my thesis committee. Their comments and advice helped shape the direction of this

final product.

 Finally, I am grateful to my family for their unwavering love.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER

 1 INTRODUCTION ...1

 2 BACKGROUND ...4

 2.1 FOREST PLANNING ...4

 2.2 PARTICLE SWARM OPTIMIZATION ...9

 2.3 ROULETTE WHEEL PSO ..15

 2.4 COLLECTIVE INTELLIGENCE ...17

 3 ALGORITHM DEVELOPMENT ...19

 3.1 B-RWPSO (BABOON-BASED ROULETTE WHEEL PARTICLE SWARM

OPTIMIZATION) ..19

 3.2 NETWORK INFLUENCE TYPE (LEARNING STRATEGY)26

 4 RESULTS AND DISCUSSION ..29

 4.1 TESTING ON EXAMPLE FORESTS ...29

 4.2 NETWORK INFLUENCE TYPE COMPARISON ..39

 5 CONCLUSION ..41

REFERENCES ..43

vi

LIST OF TABLES

Page

Table 1: Comparison of Mixed Integer Programming and B-RWPSO Best Solutions30

Table 2: Comparison of Heuristics for the 40-Stand Northern Forest ...33

Table 3: Comparison of Heuristics for the 73-Stand Western Forest ..33

Table 4: Comparison of Heuristics for the 625-Stand Southern Forest ...33

Table 5: Paired Comparison of the Baboon-Modification on the 625-Stand Forest35

Table 6: Paired Comparison of the Baboon-Modification on the 625-Stand Forest35

Table 7: Paired Comparison of the Baboon-Modification on the 625-Stand Forest35

Table 8: Comparison of Time-Varying vs. Static Parameters on the 625-Stand Forest36

Table 9: Comparison of Different Time-Varying Parameters on the 625-Stand Forest36

Table 10: Comparison of Learning Strategy and Network Influence on the 625-Stand Forest40

vii

LIST OF FIGURES

Page

Figure 1: Map of the 43- and 70- stand forests ..7

Figure 2: Vector representation of spatial adjacency constraints ..9

Figure 3: gbest vs. lbest neighborhood topologies ...12

Figure 4: Fitness vs. Iteration curve for B-RWPSO and RWPSO on the 625-stand Forest37

Figure 5: Fitness vs. Iteration curve for B-RWPSO and RWPSO on the 73-stand Forest38

Figure 6: Fitness vs. Iteration curve for B-RWPSO and RWPSO on the 40-stand Forest39

1

CHAPTER 1

INTRODUCTION

 In natural resource management, forest planning involves decision-making about when

and where to conduct various forest management activities. Forest planning can occur at

different scales and involves selection of appropriate management prescriptions at certain

locations over a time horizon, with a goal of achieving stakeholder-defined objectives. These

goals may be as diverse as economic production, environmental services, or social good. Due to

the combinatorial complexity of potential management configurations, mathematical

programming methods like linear programming and mixed integer programming have been

applied in the development of forest plans. However, the size or nature of different forest

planning problems may render these methods computationally inefficient or infeasible for

practical use. Some researchers have applied search and optimization heuristics to forest

planning in an attempt to produce high-quality forest plans more efficiently (Bettinger et al.,

2009); promising results from application of heuristic algorithms like Simulated Annealing and

Tabu Search (Borges & Eid, 2014; Bettinger et al., 2009) suggest that the development of

efficient, robust heuristics is important for the forest planning problem.

 Particle Swarm Optimization (PSO) is a population-based optimization algorithm based

on the behavior of interacting individuals in a swarm. In the canonical PSO, candidate solutions

represent individual particles in a larger swarm. Each particle possesses a position, a velocity,

and memory of its personal best position ever found as well as the swarm’s best position ever

found (Eberhart & Kennedy, 1995). While PSO achieved much success in many different types

2

of problem (particularly over the continuous domains it was originally designed for), its discrete

variants did not perform particularly well when applied to the forest planning problem. The

Roulette Wheel PSO (RWPSO) is a variant of PSO designed specifically to perform well on

nominal variable problems like the forest planning problem. While RWPSO outperformed

existing heuristics on two harvest scheduling problems, it had inferior performance on a higher-

dimensional, more complex harvest scheduling problem (Smythe, 2012) and struggles with

constraint-handling. PSO-class algorithms lack native constraint-handling, so algorithms must

use problem-level methods that may transfer poorly over probability-based movement. Despite

the initial promising results of RWPSO, there has been a lack of further research into these

challenges and the broader potential of probability-based PSO variants for solving the forest

planning problem. Our project extends this work by updating the RWPSO algorithm with

behavioral models of social structure from cognitive ecology.

We introduce a direct information-sharing behavior based on baboon social groups to the

RWPSO algorithm; a new velocity update function is developed that incorporates information

from both global and neighborhood-level sources, modeled on baboon social structure. In

addition, the efficacy of the baboon modification is tested across various network structures to

evaluate their impact in the harvest scheduling domain. We incorporate an embedded constraint

handling method for operation over a discrete, nominal search space, which coordinates the

probability-space flight of RWPSO with local movement in the solution space. In testing over

three test cases, B-RWPSO matched the best solution found by mixed integer programming in

two low-dimension test cases and found a solution within 2.5% of the mixed integer solution on

the most complicated test forest. B-RWPSO improves upon the performance of the original

RWPSO. Paired testing to compare the isolated effect of the baboon modification shows that B-

3

RWPSO improves the RWPSO’s mean best objective function by a range of 10.4% to 17.4%,

depending on parameter settings. Our testing of velocity initialization strategies also provides

insight into the interaction between spatial adjacency handling and population evolution in

generational algorithms.

 Chapter 2 of this work summarizes existing background information about the forest

planning problem domain. Details are also given about the canonical particle swarm optimization

algorithms and modifications that have improved performance, including the probability-based

discrete RWPSO variant. Chapter 2 also briefly discusses collective intelligence, and how

insights from this field of behavioral ecology can, like its swarm intelligence subfield, augment

development efforts in nature-inspired algorithms. Chapter 3 describes the details of design and

development of the Baboon-Modified RWPSO (B-RWPSO). Chapter 4 presents the results of

testing B-RWPSO in comparison to existing heuristics and mixed integer programming on three

spatial harvest scheduling problems. We assess different parameter combinations and discuss the

impact of constraint-handling. In addition, testing is conducted to evaluate performance of the

baboon-based information-pooling process in various network topology types. Finally, Chapter 5

provides a summary discussion of this project and directions for future work.

4

CHAPTER 2

BACKGROUND

2.1 FOREST PLANNING

 Forest planning is a field of natural resource management that has a long tradition of

using mathematical programming for harvest scheduling. Forest planning efforts often involve

selecting the timing and location of forest management activities, at the forest or landscape level,

to best meet the objectives of the landowner or land managers. This type of problem can be

represented as constrained optimization, and is inherently an allocation problem (where to go and

what management activity to apply) under graph-coloring adjacency constraints. In forestry, a

management plan could be designed to maximize an economic (e.g., net present value),

commodity production (e.g., timber volume), environmental (e.g., wildlife habitat), or social

(e.g., net human benefit, jobs, etc.) objective. In addition, a management plan could be designed

to minimize environmental damage, management costs, and other measures of outcomes from

the assignment of activities to a landscape; the quality of forest plans can be assessed based on

the calculated expected outcomes. Common constraints in forest management plans include

those applied to the forest inventory (e.g., to prevent depletion), to the timing and placement of

certain activities (e.g., to prevent clearcuts from becoming too large), to the budgets that are

assumed, and to many other economic, environmental, and social concerns as long as they can be

quantified.

5

However, when the number of decision variables increases beyond trivial levels, a

planning problem suffers combinatorial explosion— also known as the curse of dimensionality—

where the number of distinct forest plans that can be developed is:

(Number of decision variables related to a stand) number of stands

rendering the problem basically intractable to the human mind. Linear programming (LP) was

the first quantitative method applied in the development of forest plans for areas larger than

small forests. Linear programming utilizes the Simplex method to solve a problem that is

arranged in a detached coefficient matrix. LP remains a common optimization technique in forest

planning, but assumes that each decision variable can be assigned a continuous real number (the

assumption of divisibility). In practical terms, linear programming may produce a solution that

splits a stand's timber harvest amongst two or more time periods. An alternative strategy, the

mixed integer programming model, forces all decisions into integer or discrete solution values

and requires the use of branch and bound (Lawler & Wood, 1966), cutting plane, or other

methods. In contemporary forest planning efforts, there is a need for integer solution values for

some decision variables, to control the timing and size of final harvests (clearcuts) or the size and

location of wildlife habitat patches. Depending on the size of the problem and the nature of the

data to which the problem is applied, these methods may be computationally intensive and

require significant time to arrive at the optimal solution. Heuristics have thus been suggested as

alternatives to mixed integer programming. While heuristics can be designed to produce high-

quality solutions (forest plans), they cannot guarantee optimal solutions will be located.

Additionally, many heuristic algorithms have been primarily designed for deployment over

unconstrained optimization problems, so constraint-handling methods must be integrated into the

algorithm to solve certain constrained problems and keep solutions in feasible regions (Liu &

6

Wang, 2019). Therefore, the development of computationally efficient and robust heuristic

methods is important in the forest planning problem.

2.1.1 Harvest Scheduling

 Harvest scheduling as described by Bettinger & Zhu (2006) presents a simplified version

of the forest planning problem, narrowed down to focus primarily on the single objective of

timber harvest volume. In this version of the harvest scheduling challenge, an individual stand in

the forest is scheduled either with a single time period to be harvested or left untouched

throughout the management horizon; however, each stand may only be cut once. To simplify the

representation of this challenge, the set of “management prescriptions” or potential locations at a

dimension in the vector space is limited to just clearcuts of an entire stand. Real-world

considerations would allow for alternative management activities such as partial harvests or

thinnings. The challenge is one of combinatorial optimization with graph-coloring constraints, as

different stands (spatial units) within a forest need to be harvested at appropriate times to

maintain even-flow cutting while subject to unit-restriction spatial adjacency constraints (like

those found in a typical graph-coloring problem).

Specifically, we model the problem such that a stand within a forest may not be clear-cut

in the same time period as an adjacent stand, and depending on the type of tree grown, a stand

may not be harvested until reaching a certain age. These spatially-based harvest constraints

represent environmental protections during forest green-up periods. One unique consideration for

the spatial constraints used in forest planning is the disanalogy between spatial relationships in

the physical forest and the numerical representation of stands (Figure 2) used by a heuristic. For

example, two stands that are ‘neighboring’ in the vector representation of a forest plan (e.g.

7

stands 3 and 4 in the 40-stand forest, Figure 2) may not be subject to adjacency constraints

because they map to real forest stands that are far apart. Unlike traditional ordinal problems,

constraints lack shape or order in the solution space and reflect the combinatorial relationship

between stand-level assignments in a forest plan.

In order to maximize even-flow of harvest volume, we then define the objective function:

𝑓! =	$%𝑇 −	$𝑎"ℎ",$

%

"&!

*

'(

$&!

Where for each simulated forest plan, we sum the time period’s squared deviations of scheduled

harvest volume from target harvest volume in each period. T is the target harvest volume for

each time period, an is the acres in stand n, hn,k is the volume harvested per acre in stand n for

time period k, and d is the total number of stands. z represents the number of time periods. Here,

f1 represents the squared error from a determined target harvest volume, an optimal schedule is

one that minimizes f1.

 Optimization heuristics may be used to search potential configurations of forest plans for

an optimal or near-optimal solution by representing the problem as an n-dimensional search

space, where each dimension n can have a value (a harvest time period or management

prescription) from the set of allowable k. This project considers three different forests to which

an array of different optimization strategies have previously been employed. These forests

include a 40-stand northern forest (Bettinger & Zhu, 2006; Smythe, 2012), a 73-stand Daniel

Pickett Forest (Bettinger & Zhu, 2006; Smythe, 2012), and a 625-stand southern forest (Bettinger

& Zhu, 2006; Smythe, 2012).

8

Figure 1. The 73-stand forest (left) and the 40-unit northern forest (right)

These forest planning problems span three time periods, giving each stand a choice

among 4 management options (time period 1, 2, or 3, or no cut at all). The target harvest and

projected yields per time period are determined a priori and input into the problem. For the 40-

stand forest the target harvest is 9,134.6 m3, for the 73-stand forest the target harvest is 34,467

9

MBF (thousand board feet), and for the 625-stand forest the target harvest is 2,972,462 tons

(Bettinger & Zhu, 2006). The target volumes for these forests are the derived linear

programming solutions; however, because real-world constraints on harvest require that entire

stands be managed as a unit, the optimal solution derived from a forest plan must be found with

methods that accommodate this requirement. Therefore, mixed-integer solutions are used as a

point of comparison in Chapter 4.

Position Vector: [2,3,1,1,3,1,3,3,2,2,1,2,1,2,3,1,3,1,1,3,2,3,2,2,1,1,1,3,3,1,2,1,2,2,2,3,1,3,2,3]

Figure 2: Representation of spatial adjacency constraints (unit-restriction model): forest plan

spatial overlay vs. vector representation in harvest scheduling

2.2 PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a population-based search algorithm modeled after

the swarm behavior of animals such as birds and fish. The population in a PSO is referred to as

10

the swarm, while individuals in the population are particles in the swarm (Eberhart & Kennedy,

1995). Particles—or candidate solutions—represent a point or position in an i-dimensional

search space, and they move to different positions in the search space based on their recorded

velocity, which is in turn updated based on the local and global best locations in memory. In the

forest planning context, each particle is a complete but mutable forest plan, and it possesses a

current location, velocity, and memory of both its own best past location and the swarm-level

best past location.

The population is initialized by generating randomly positioned individuals with random

starting velocities. Like evolutionary algorithms, SI algorithms iteratively update individuals in

the population across time-steps, which may be referred to as generations, epochs, or iterations.

In an iteration of the algorithm for each particle’s dimension i, the particle updates its position x

based on its velocity and previous position. Meanwhile, it updates its velocity based on its

previous velocity, its personal best position in memory p, and the swarm’s best position in

memory g (where “best” is determined by a user-defined objective function). For the velocity of

dimension i at iteration t, the particle’s previous velocity is multiplied by an inertia factor μ and

the relative weight given to knowledge about the particle’s local best and the swarm’s global best

positions is dependent on the cognitive influence factor, c1, and the social influence factor, c2.

Stochasticity is introduced via random coefficients r1 and r2:

𝑣)(𝑡) = 	𝜇𝑣)(𝑡 − 1) +	𝑟!𝑐!4𝑝) − 𝑥)(𝑡 − 1)7 +	𝑟'𝑐'4𝑔) −	𝑥)(𝑡 − 1)7

𝑥)(𝑡) = 	𝑥)(𝑡 − 1) +	𝑣)(𝑡)

Self-organization in the group arises from individuals’ iterative velocity updates where aggregate

movements result in superior movements as a manifestation of “swarm intelligence.” The many-

wrongs principle hypothesizes that group cohesion works to suppress the numerous individual

11

errors made by members of a group; in PSO, similarly, individual particles contribute to

stochastic exploration but accelerate toward the best solution found by the swarm.

An oft-cited advantage of PSO is that its nature-inspired velocity mechanism removes the

need for a gradient, thus allowing PSO to be applied on problems with objectives that are not

differentiable. However, due to its modelling of velocities as a combination of direction and

magnitude, there are difficulties in representing movement of particles in the solution space of a

problem with nominal variables, such as the forest planning problem. Smythe (2012) notes that

PSO is frequently adapted to travel in the probability space of nominal variables instead of their

value space, as the latter lacks congruence with particles’ movement orientation and magnitude.

Researchers have made many iterative improvements to PSO (Freitas, 2020); this background

section describes some modifications and variants of the PSO that show promise for the forest

planning problem.

2.2.1 Social Interaction in PSO:

 The standard PSO algorithm described above uses a singly informed network influence

type with gbest topology, which means that all individual particles in the swarm receive social

influence exclusively from the global leader (“exclusively” because the swarm is a singly

informed network type; “from the global/swarm-level leader” because of gbest sociometry). In

such a case, each particle is connected to every other one, in a gbest sociometry (although in any

given iteration, only one social neighbor’s influence is considered). However, it has been

proposed that this gbest topology may be poorly suited for problems without long gradients in

the function landscape (Kennedy & Mendes, 2006). The alternative lbest topology with “best-of-

neighborhood” network type connects each particle only to its k immediate neighbors and

12

updates each particle’s velocity based on the position of its best neighbor in the set of k nearest.

This has been shown to curb premature convergence in PSO, as global leaders stuck in a local

optimum cannot pull all other particles toward the local optimum. In contrast, the gbest “best of

neighborhood” PSO has performed especially poorly on complicated, higher dimensional

problems (Parsopolous & Vrahatis, 2005) where particles can easily fall into local optima.

Figure 3. Network depiction of gbest topology (left) and lbest topology with k= 2 (right)

The neighborhood topology refers to which other particles a given particle may ever see

or interact with. On the other hand, the network influence type (e.g., fully informed, singly

informed/“best-of-neighborhood”) refers to a particle’s willingness to use information from its

visible neighbors—the particle may use only the “best-of-neighborhood,” or it could even

receive social influence from every particle in its neighborhood. To improve upon these

extremes, the Unified Particle Swarm Optimization (UPSO) was introduced to combine the gbest

and lbest topologies by weighting each approach with a unification factor (Parsopoulos &

Vrahatis, 2005). Kennedy and Mendes (2006) tested the performance of the fully informed

particle swarm (FIPS), a network influence type of the PSO where each particle is influenced by

the success of all of its neighbors (as opposed to just the global or neighborhood leader) and find

that the FIPS outperforms the singly informed canonical PSO in some cases, depending on

neighborhood topology (e.g., gbest vs. lbest). The importance of neighborhood topology is

13

evidenced by empirical data that particles need not be informed exclusively by the best

performing particle in the swarm (Kennedy & Mendes, 2006). However, previous applications of

PSO variants to the forest planning problem have not explored the effect of topology on

problem-specific performance. Variation in the information influence structure and

neighborhood topology can have a significant effect on convergence speed and likelihood of

premature convergence (Vasquez, 2014), although these effects vary by problem and domain

(Freitas, 2020). Our work in collective intelligence communicative procedures is inspired by

these inquiries into the role of network influence type and neighborhood topology on algorithm

performance.

2.2.2 Variable Parameters in PSO

The parameters in PSO include inertia weight μ, besides cognitive/social influence factors

and two random coefficients. In the canonical PSO, these parameters are static throughout

execution. The values of these parameters are critical to the algorithm’s performance, as they

help to modulate a balance between global exploration and local exploitation of the search space.

Cognitive and social influence factors contribute to these two aims, respectively, while inertia

helps balance the local and global search by weighting the value of previous particle trajectory

(Shi & Eberhart, 1999). Some degree of parameter tuning is crucial to ensure that the swarm

balances both exploration and exploitation. In particular, Eberhart and Kennedy (1995) found

that a high cognitive influence factor can result in meandering around the search space, while a

high social component could lead particles in the swarm to premature convergence at a local

optimum.

14

Later studies by Shi and Eberhart (1999) then demonstrated an improvement to PSO

performance when using a linearly varying inertia factor (within a user-specified range for

inertia, between maximum start μ1 and minimum ending value μ2). The implementation of time-

varying acceleration coefficients (social and cognitive factors) can also improve PSO

performance (Ratnaweera, 2004).

2.2.3 Constrained Optimization with PSO

 Although PSO is incredibly versatile and can be applied to a large number of domains, it

lacks a native constraint handling strategy for adapting to constrained optimization challenges

(like forest planning). The three main applicable strategies have been the penalty function

method, feasibility-based rules method, and the constraint-preserving method (Sun, 2011). The

former involves representing a constrained optimization problem as an unconstrained

optimization problem, but modifying the objective function to include a penalty for infeasible

solutions. A simple brute-force strategy adopted for PSO is the Preservation of Feasible

Solutions Method, in which all feasible solutions found in the search space are preserved, and the

optimal solution from this pool is selected after reaching stopping criteria (Hu & Eberhart, 2002).

However, for domains like forest planning, checking feasibility for each individual in a swarm at

every iteration to calculate a penalty assignment can become the most computationally expensive

aspect of the algorithm. Many heuristics reduce the required number of feasibility checks by

employing a “fly-back” type of constraint-preserving method by only accepting feasible moves

to retain legal solutions at all times. Constraint-checking can then be streamlined by only

checking adjacencies for the few stands affected by a move from an existing solution, and illegal

moves are simply never made. If, however, a better feasible solution is separated from a current

15

particle by an infeasible intermediate move, then “islands” in the search space may not be found

under the constraint-preserving method. Existing algorithms like the NVPSO and IVPSO work

in continuous spaces to alter particle velocities when they move out of feasible regions (Sun,

2011). This vector-based acceleration augments the exploratory capabilities of the swarm, unlike

earlier methods that used the “fly-back” protocol to undo particle’s movement out the boundary

of the occupied feasible zone (Sun, 2011). However, a clear extension of this acceleration

strategy to probability-based PSO variants does not exist, as probabilities in the velocity domain

map to likelihood of a location k at dimension i being selected, rather than mapping to a real

value in the solution space.

2.3 ROULETTE WHEEL PSO

2.3.1 Discrete PSO:

Discrete PSO is a subtype of PSO that operates over a discrete search space. Forest

planning is one type of problem that requires use of DPSO, as the categorical variables do not

map coherently to a continuous space. In DPSO with interval or ordinal variables, the traditional

equation for velocity update and position update can still be used (with a rounding modification),

but baseline performance with DPSO is subpar over nominal-type variables. In such problems,

locations or positions in the solution space are not ordered and lack spatial relationships to each

other.

2.3.2 Roulette Wheel PSO:

RWPSO is a discrete multi-valued PSO designed specifically for use with nominal or

categorical variables (Smythe, 2012), as in the case of harvest time periods scheduled in the

16

forest planning context. Because RWPSO is a probability-based variant, particles in the swarm

travel over a probability space that maps to locations in the solution space. The RWPSO includes

four static parameters that have been adapted to explicitly adjust roulette wheel values, namely

stopping criteria (number of iterations to run), swarm size, maximum step size (of a change in

probability), and social emphasis. An additional fifth parameter, cognitive emphasis, is simply

equal to 1-social emphasis.

In RWPSO, every potential location k in dimension i of a particle n in the swarm is

assigned a roulette wheel probability that gets updated at each iteration t (referred to as a velocity

vi,k(t)) (Smythe, 2012). Because these velocities are based on a roulette wheel, the velocities

vi,k(t) for all locations k in the dimension sum to 1. The original RWPSO initializes starting

velocities uniformly at each location k for each dimension i to the reciprocal of the number of

permissible locations in dimension i. The velocity update equation parallels that of standard

PSO:

𝑣),$(𝑡) = 	𝑣),$(𝑡 − 1)

+ 𝑚 :𝑠4𝐵(𝑔) , 𝑘) − 𝐵(𝑥)(𝑡 − 1), 𝑘)7 + (1 − 𝑠)4𝐵(𝑝) , 𝑘) − 𝐵(𝑥)(𝑡 − 1), 𝑘)7?	

where	𝐵(𝑥) , 𝑘) = 	 D
1				𝑖𝑓	𝑥) = 𝑘
0				𝑒𝑙𝑠𝑒									

	

Given updated velocities, a particle calculates its new position for each dimension i by selecting

a location for i in accordance with the probability distribution given by the roulette wheel

probability of locations in each dimension.

𝑃(𝑥)(𝑡) = 𝑘) = 	
𝑣),$(𝑡)

∑ 𝑣),*(𝑡)+
*&!

RWPSO has been tested on the forest planning problems in (Bettinger & Zhu, 2006;

Smythe, 2012), and has achieved performance equal or superior to existing metaheuristics on

17

certain types of problems. Notably, RWPSO was superior to the forestry domain-specific

Raindrop Optimization algorithm and existing heuristic methods like Tabu Search and Threshold

Accepting when applied to the 40-stand and 73-stand forests (Bettinger & Zhu, 2006; Smythe,

2012). These promising results suggest that the RWPSO may be advantageous in forest planning.

However, the RWPSO was inferior to both RO and Threshold Accepting on the 625-stand forest,

and seemed to converge prematurely toward local optima (Smythe, 2012). This poor

performance, and the comparative advantage of Raindrop Optimization algorithm, may be

related to incompatibilities between the structure of the solution space, regions of infeasibility,

and RWPSO’s constraint handling. RWPSO thus requires additional refining and modifications

that can enhance social communication. RWPSO also adds a multiplicative layer of time

complexity in that velocity and position updates must be calculated over t iterations for n

particles across i dimensions and k potential locations. The time complexity of RWPSO increases

dramatically with combinatorial complexity for problems, especially those with many

dimensions or many potential decisions in a dimension. To mitigate this challenge, we propose

the baboon social structure modification as a way of updating information pooling in addition to

improving the time complexity of the algorithm.

2.4 COLLECTIVE INTELLIGENCE

In empirical studies from cognitive ecology, it has been observed that group decisions

generally improve in accuracy with an increase in the number of individuals involved in the

decision-making process (Santos & Przybyzin, 2016). Collective intelligence may arise in

intelligent species via a centralized social structure regulating the process of information pooling.

Swarm intelligence is a lower-level manifestation of CI and a more decentralized information-

18

sharing process, including simple mechanisms like stigmergy (Krause, 2010). SI is what

algorithms like PSO, ant colony optimization, and bee colony algorithm use; it differs from CI in

that SI is the individual decisions of interacting organisms in the group, while CI refers to the

group-level decision-making process of higher-level organisms. A swarm or group achieves CI

via mechanisms of social structure and hierarchical communication. Within the CI-based baboon

algorithm, we test an empirical model of baboon behavior as described by Strandburg-Peshkin &

Farine (2015).

Collective Intelligence has the potential to complement the social-psychological

phenomena built into PSO. Because CI governs centralized interactions between group members,

more complicated relationships and patterns of social influence can be built in with structural

approaches. These mechanisms may provide more nuanced communication between individuals,

mitigating some issues in PSO related to premature convergence. Kennedy (2000) built a spatial

lbest neighborhood topology based on clustering with “social stereotyping,” simulating the

sociological process of group assimilation and identity formation. This modification sets an

example for how insights from CI may be integrated into the PSO as a behavioral mechanism or

modification of the velocity update function.

19

CHAPTER 3

ALGORITHM DEVELOPMENT

3.1 B-RWPSO (BABOON-BASED ROULETTE WHEEL PARTICLE SWARM

OPTIMIZATION)

The baboon modification introduces social structure to the Particle Swarm Optimization’s

standard particle-based velocity update mechanism, where traditionally the particle’s velocity is

updated based on cognitive and social coefficients, the population’s global best position in

memory, and the particle’s own individual best position in memory. In the baboon algorithm,

some particles directly update their velocity based on a collective intelligence approach that

accounts for the local exploration of “movement initiators” in an iteration. Additionally, many of

the improvements to the canonical PSO (discussed in Section 2.2) do not translate over to

probability-based discrete PSO; certainly, the reframing of parameters as roulette wheel

probabilities in RWPSO precludes certain strategies from being logically extended from PSO. As

such, we adapt some promising features from the continuous PSO literature— like TVAC and

innovative constraint-handling— and additionally develop new modifications to work

specifically for an algorithm traveling over the probability space instead of the solution space.

3.1.1 Baboon Information-Pooling Behavior

 Baboon troops interact with extreme egalitarianism when foraging (Strandburg-Peshkin

& Farine, 2015), which allows for robust global exploration. There is also strong preference in

baboons for moving toward locations that have previously been occupied by other baboons in the

20

troop (Strandburg-Peshkin, 2017), which supports a social intelligence ecosystem for search

intensification. In wild movements, a random number of baboons will choose to move at any

given moment, becoming “movement initiators” for a period of time. Surprisingly, these baboons

need not have any social status or standing in the group; any baboon in the troop can initiate a

movement and successfully influence others. Non-initiator baboons that decide where to move

based on the decisions and distribution of these initiators are known as “followers”.

An algorithm is implemented that randomly selects between 2.5% and 10% of baboons in

the population to be movement initiators in an iteration. The B-RWPSO uses the constraint-

preserving method (Sun, 2011) as the means of constraint handling and restricting search to only

feasible solutions/forest plans. Baboons in an iteration are subject to strict constraint-preserving

with fly-back implemented in the position function (which assigns a position based on

probabilities specified by the individual’s roulette wheel “velocities”). Based on a decision-

making function modelled by ecologists with individual-level tracking data (Strandburg-Peshkin

& Farine, 2015), follower baboons copy the velocity update (change in velocity) of movement

initiators in their static social neighborhood. However, if the initiators branch in different

directions, the followers may choose to compromise and take the path in between two initiating

subgroups. Thus, there emerge 3 potential behavioral patterns that can be followed by a baboon

in any iteration.

1) a) Randomly chosen baboon movement initiators OR b) baboons without any

initiators in their social neighborhood both use the standard velocity update

equation to calculate their new velocities

2) Follower baboons with exactly one initiator located in their social neighborhood

3) Follower baboons with more than one initiator located in their social neighborhood

21

Categories 1a and 1b follow the standard RWPSO update equation discussed in Section 2.3.

However, follower baboons (categories 2 and 3) use two different behavioral equations,

depending on how many initiators moved in their neighborhood in any given iteration. In the

case of neighborhoods with a single initiator, all followers in the neighborhood will copy the

change in velocity of the movement initiator (category 2). This equation can be represented most

simply by:

𝑣),$(𝑡) = 	𝑣),$(𝑡 − 1)

+ 𝑚 :𝑠4𝐵(𝑔) , 𝑘) − 𝐵(𝑟)(𝑡 − 1), 𝑘)7 + (1 − 𝑠)4𝐵(𝑞) , 𝑘) − 𝐵(𝑟)(𝑡 − 1), 𝑘)7?	

Where ri is the position at dimension i of an initiator in the follower’s neighborhood, and qi is the

best location in memory for that initiator. Other variables retain their meaning; essentially, the

follower simply copies the change in movement of the initiator, by summing this additive factor

and its own current velocity. Because the initiator classifies as category 2, its velocity update at

iteration t follows the standard RWPSO velocity update equation. If there are two or more

initiators in the neighborhood, then the follower follows a baboon behavioral pattern of

“compromise” between diverging paths (category 3). This update takes the form of the equation:

𝑣),$(𝑡) = 	𝑣),$(𝑡 − 1)

																												+	
∑ 𝑚 L𝑠 :𝐵(𝑔) , 𝑘) − 𝐵4𝑟(,)(𝑡 − 1), 𝑘7? + (1 − 𝑠) :𝐵4𝑞(,) , 𝑘7 − 𝐵4𝑟(,)(𝑡 − 1), 𝑘7?M	(
!

𝑧 	

Where z represents the number of initiators in the follower’s neighborhood, and rz,i and qz,i

respectively refer to the current position and best location in memory of neighbor initiator z at

dimension i. The velocity update based on this equation will be referred to as “baboon update.”

The conceptual modification is described as “baboon information-pooling” or “baboon

modification.”

22

3.1.2 Constraint Handling over Roulette Wheel Velocities

RWPSO uses a penalty function method to handle infeasibilities arising from unsatisfied

constraints. However, if a certain assignment of any dimension within a configuration violates a

constraint, then RWPSO simply “unschedules” it, or chooses a neutral assignment that adds no

value to the optimization (Smythe, 2012). One of the challenges within the harvest scheduling

domain is that feasible solutions may form “islands” essentially surrounded by infeasible

solutions. Because RWPSO velocities represent probabilities of selection, assignment of location

based on probability still requires a constraint-handling step at the plan formulation stage.

 B-RWPSO uses a relaxed constraint-preserving strategy, in which follower particles only

traverse feasible positions in the solution space. This is maintained via constraint-checking as

solutions are given assignments based on the roulette wheel velocities. In a strict constraint-

preserving method, a disconnect may arise between the velocity in the probability space and

position in the solution space—for example, a high-probability location k for dimension i might

be rejected for infeasibility in the broader context of the particle’s working assignments. This

manner of dealing with constraint-preserving is analogous to the harsh repair penalty function

from Smythe (2005):

𝑓' =	$%𝑇 −	$𝑉",$

%

"&!

*

'(

$&!

where	𝑉),, =	D
𝑎"ℎ",$
0										

	
				𝑖𝑓	𝑠" = 𝑘	𝐴𝑁𝐷	∄𝑞, 𝑠-∈*%/(") = 𝑘
𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																					 		and

𝑎𝑑𝑗	(𝑛) = {ℎ|ℎ	𝑖𝑠	𝑎	𝑠𝑡𝑎𝑛𝑑	𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡	𝑡𝑜	𝑛}

Where unit-restriction adjacency checking is also similar to the simpler graph coloring check

employed in the quaternary PSO (Cui & Qin, 2008).

23

A popular strategy with the constraint-preserving method is the particle “fly-back.” This

is a default move that forces particles to return to their origin point if they cross into an infeasible

region. For continuous search spaces, these boundaries may be more clear, but for nominal,

combinatorial problems, constraints may have little relation to spatial locations. Improved

constraint-preserving strategies found in the New Vector PSO and Improved Vector PSO alter

the fly-back strategy by redirecting a particle entering an infeasible region and updating its

velocity (Sun, 2011). There is not a clear analogy between this type of strategy and what could

potentially be employed by probability-based discrete variants of the PSO. We implement a

modified type of search reversion that uses randomly initialized velocities to overcome the

tendency of the algorithm to converge early in local optima that are surrounded by infeasible

moves.

3.1.3 Variable RWPSO Parameters

One unique feature of the RWPSO is that it expresses its parameters in explicit terms as

coefficients of a roulette wheel-based method. As such, the parameters in the equation are

uniquely suited to guide the swarm’s traversal over the problem’s solution probability space.

While current versions of the RWPSO only use static parameters, we introduce conceptual

modifications built around the canonical PSO to vary the social/cognitive influence coefficients

throughout iterations of the algorithm.

 Existing algorithms such as Simulated Annealing and Threshold Accepting employ

variable parameters in order to modulate the exploration and exploitation behavior of the

algorithm; the modifications to PSO discussed in Chapter 2 (e.g., linear varying inertia weight,

time-varying acceleration constants) have similar function. To parallel the usage of time-varying

24

acceleration coefficients in PSO (Ratnaweera, 2004), we implement a similar strategy (called

Time-Varying Parameters for clarity) for the RWPSO’s social coefficients. The TVP requires an

input sstart and sfinish, from which the coefficient at time t, s(t) is calculated and linearly increased

throughout the algorithm’s runtime. The simple calculation is based on:

𝑠(𝑡) = 𝑠2,*3, +	
𝑡 ∗ 	4𝑠4)")25 − 𝑠2,*3,7

𝑡6*7
	

Because RWPSO and the baboon modified B-RWPSO both use maximum number of iterations

as a stopping criteria, calculation of social coefficient at any iteration is based on tmax, the total

number of allowed iterations.

3.1.4 Reversion

Reversion refers to a technique employed in search algorithms to “kick” a solution from

its current location in the search space to a previous recorded best solution. Search reversion has

been employed primarily with s-metaheuristics. In such cases, reversion interrupts a search

sequence by re-initiating the search process from a previously found high-quality or best

solution. Reversion techniques often introduce another parameter to the search algorithm, as the

reversion rate has been found to have a significant effect on solution quality (Bettinger &

Demirci, 2015). In PSO, a particle’s immediate position, however, undergoes much more

movement than a candidate solution would in other types of search. A type of reversion that has

been adapted for the particle swarm by researchers is the concept of velocity “reinitialization”. In

the context of probability-based PSO, this reinitialization may have a far more significant impact

on particle’s locations than would a change to particle trajectory in a continuous search space.

Following the strategy employed in Ratnaweera (2004) we apply a velocity reinitialization when

the velocity (probability) of any location k for dimension i in a particle becomes 0. If this

25

happens, the entire dimension i for that particle has the velocity for each location k in the

dimension reset to the reciprocal of the total number of locations. One advantage of the baboon

algorithm reinitialization-style reversion is that the reversion technique is implicit in the

algorithm, and built into the particle behavior. As such, no parameter testing is needed.

3.1.5 Concept and Implementation

 While the essence of the Baboon-Based Roulette Wheel Particle Swarm Optimization is

the baboon information-pooling and modified communication procedures drawing from

Collective Intelligence, the other modifications are also important as potential changes that could

improve the canonical RWPSO. Here, we include a workflow depicting the sequence and

structure of the algorithm.

1) Initialize Population, initialize velocities

2) Record particles’ best, global best

3) Update particles position based on velocities (this equation is uniform)

4) Call initiators, store their velocity update factors based on standard equation, update

initiator velocities

5) If baboon has initiator in neighborhood à becomes follower. Else à update baboon

velocity based on standard equation.

6) Update follower baboons’ velocities (depending on # of baboons in neighborhood)

7) If termination criteria not reached à loop to step 2. Else à end program

The B-RWPSO was implemented in Python, as was the base RWPSO. Individual baboons

(forest plans) were list objects with index corresponding to forest stand number, and the value at

a given index in the list corresponding to the time period for harvest of that stand.

26

3.2 NETWORK INFLUENCE TYPE (LEARNING STRATEGY)

We build a doubly informed B-RWPSO, developing a neighborhood-in-neighborhood

approach to define hierarchical levels of social influence. Existing research by Kennedy and

Mendes (2006) describes how problem and neighborhood topology can cause differences in the

search ability and convergence speed of a fully-informed particle swarm compared to a singly-

informed, best-of-neighborhood (canonical) particle swarm. The learning strategy of a particle,

or network influence type, thus has important, domain-specific effects on algorithm performance.

3.2.1 Doubly Informed Roulette Wheel Velocity Update Function

We develop a modification of the canonical “best-of-neighborhood” PSO that adds social

influence from both the leading particle in the local neighborhood and the leading particle in the

whole swarm. This PSO sociometric configuration is referred to as “doubly informed particle

swarm.” The Fully Informed Particle Swarm (FIPS), which affords social influence from each

particle in the swarm on every other, can perform very well on certain types of problems

(Mendes & Kennedy, 2004). However, the fully-informed learning strategy is extremal and

prone to very poor performance in other scenarios. The Unified Particle Swarm Optimization

presented a successful attempt to balance the influence of the local and global leaders in a

continuous search space (Parsopolous and Vrahatis, 2005). However, depending on the

unification factor used in UPSO to weight lbest vs. gbest, the equation used by UPSO will not

always maintain the roulette wheel nature of velocities in a dimension. Given the

parameterization of RWPSO’s social and cognitive coefficients, we are able to develop an

alternative method of incorporating influence from both a neighborhood and global leader. The

doubly-informed learning strategy can be derived by easily adapting the existing roulette wheel

27

velocity update equation to develop a new function that compromises between the strong social

influence of the FIPS and the streamlined best-of-neighbor PSO:

𝑣),$(𝑡) = 	𝑣),$(𝑡 − 1)

+ 𝑚:𝑠4𝐵(𝑔) , 𝑘) − 𝐵(𝑥)(𝑡 − 1), 𝑘)7 + 𝑛4𝐵(𝑙) , 𝑘) − 𝐵(𝑥)(𝑡 − 1), 𝑘)7

+ (1 − 𝑠 − 𝑛)4𝐵(𝑝) , 𝑘) − 𝐵(𝑥)(𝑡 − 1), 𝑘)7?	

where	𝐵(𝑥) , 𝑘) = 	 D
1				𝑖𝑓	𝑥) = 𝑘
0				𝑒𝑙𝑠𝑒									

	

The new velocity update function adds two new parameters, n and li, which represent the

neighborhood influence factor and value at dimension i of neighbor best recorded solution l.

While this new partially-informed velocity update equation still incorporates a particle’s personal

memory and the swarm’s leader, it additionally weights the best position found by any particle’s

leading neighbor. The neighborhoods for this latter social influence are decided in

implementation. In order for every particle to be connected to the influence of the global leader,

the neighborhood topology is necessarily gbest. However, with neighborhood-in-neighborhood

hierarchical influence structure, we designate additional social neighborhoods of arbitrary size

(assigned by nominal adjacency of particles, as in lbest). The employ of influence from social

neighbors can improve the balance of exploration and exploitation in the algorithm because

social neighbors are distant at runtime, but slowly congregate throughout execution. If an

algorithm properly converges, social neighbors become physical neighbors. Thus the neighbor’s

influence encourages global exploration early on and exploitation later.

In the context of the B-RWPSO, the neighborhood inside the global neighborhood is

equivalent to the baboon social neighborhoods. The baboon social neighborhood is defined

statically as baboons 1 through 0.05 ´ ps, 0.05 ´ (ps + 1) through 0.1 ´ ps, and so on where ps

28

denotes the population size input parameter specified at runtime. The Doubly Informed Particle

Swarm network influence type is uniquely compatible with the baboon-based strategy because

baboons can be influenced by neighbors chosen both democratically and meritocratically. With

the usage of DIPS velocity update, baboons without any neighboring movement initiators still

receive supplementary social influence from others in their neighborhood.

29

CHAPTER 4

RESULTS AND DISCUSSION

4.1 TESTING ON EXAMPLE FORESTS

In evaluating heuristics, there are different levels of testing that can be performed to

assess the quality of the solutions derived. The preferred method of performance validation in the

forest planning domain involves comparison against a mixed integer formulation of the same

problem (Bettinger et al., 2009). Alternatively, comparison against a linear programming

solution of the relaxed version of the problem can also provide a lower-bound, best-case

benchmark for minimization problems. In the case of the 3 test forests, we used a linear

programming solution as the “target volume” and harvest goal in the B-RWPSO objective

function. For the B-RWPSO, we ran each algorithm 10 times on problems using the 625- or 73-

stand forests, and 20 times for problems using the 40-stand forest. We recorded the best solution

found by each execution in addition to charting the population’s convergence in 20- or 5-

iteration timestamps. In order to ascertain “fair” testing compared to the RWPSO, we normalized

the number of fitness evaluations allowed for each execution—on the 73-stand and 40-stand

forests, this upper bound number of fitness evaluations was 800,000, while the more complicated

625-stand forest was allowed 1,000,000 fitness evaluations. The number of fitness evaluations is

a product of population size and epochs/generations of runtime.

In line with findings from the canonical RWPSO, we tested with a static social

coefficient of 0.25 as baseline best performance for the RWPSO. With time-varying parameters

(TVPs), a wider range of coefficients (including start and end values) were tested. To compare

30

other algorithmic setups, an identical set of time-varying roulette wheel parameters was

implemented across all experiments, due to the superior performance found when testing with

TVPs (setting: m = 0.1, sstart = 0.1, sfinish = 0.35, maxiterations = 5000]). However, these TVPs

used for the testing in Table 2 were not the optimal parameters, and simply used as a point of

reference to compare different experimental conditions. These parameters were held constant to

allow for fair comparison between experimental conditions attached to any version of the tested

algorithms—RWPSO and B-RWPSO. The grid of experimental settings included:

{Baboon-information pooling: y / n [B-RWPSO vs. RWPSO]}

{Velocity-initialization: nonzero-biased start (pb) / random-start (rsv)}

Tables 2 through 4 show the best and worst solution found across some of these separate

executions, the average of their best solutions, and their standard deviation. We compared the

results of the B-RWPSO to the best result found by from mixed integer programming in

Bettinger & Zhu (2006) (Table 1). We also compared the results of the B-RWPSO to the original

RWPSO (Smythe, 2012) and the forestry-specific Raindrop Optimization algorithm (Bettinger &

Zhu, 2006).

Test Forest Objective
Function Value

Harvest Volumes
Period 1 Period 2 Period 3 Total

625-stand
Mixed Integer 64,859,941,092 2,796,070 2,834,340 2,851,350 8,661,760
B-RWPSO 71,662,208,452 2,778,050 2,842,570 2,842,100 8,462,720
73-stand
Mixed Integer 5,500,330 33,049.5 32,933.6 33,399.4 99,382.5
B-RWPSO 5,500,330 33,049.5 32,933.6 33,399.4 99,382.5
40-stand
Mixed Integer 98,439 8,981.5 8,903.6 8,987.5 26,872.6
B-RWPSO 90,489 8,879.4 9,010.8 9,034.5 26,924.7

Table 1: Best Mixed Integer Solution vs. best B-RWPSO solution (best parameter setting)

31

 The B-RWPSO outperformed mixed integer programming on the simple 73-stand and

40-stand forests. This aligns with expectations and some of the results displayed over the original

RWPSO, as PSO is well-known to operate very effectively on small problems. While the B-

RWPSO still lags behind the mixed-integer solution for the large 625-stand forest, it only differs

by 2.29% in absolute terms of real-world harvested volume. While the more productive solution

of mixed-integer programming would be preferred on this problem, these results demonstrate

that it is possible for PSO-based algorithms to achieve high-quality (although somewhat less than

optimal) results, even on complex and high-dimensional problems. This is still a very useful

finding, as heuristics hold the greatest potential value when deployed on complex, high-

dimensional problems for which integer programming formulations are difficult or impossible to

design. Furthermore, B-RWPSO, like the original RWPSO and other probability-based PSO

variants, is conceptually simple to implement because of its nature-inspired mechanisms. The B-

RWPSO has an even greater advantage over other PSO variants because the expression of

movement over the problem’s probability space helps potential users gain clarity into how the

algorithm attains solutions. This quality of B-RWPSO should be particularly valued in situations

like forest planning.

One other testing consideration was the initialization of velocities (Tables 2-4). The

roulette wheel nature of RWPSO demands that the set of probabilities (velocities) across all

locations in a dimension must sum to one. Smythe (2012) defaulted the initial velocities vi,k(t=0)

to a uniform assignment of the reciprocal of the number of total locations for each location k:

[vi,0(0), vi,1(0), vi,2(0), vi,3(0)] = [0.25, 0.25, 0.25, 0.25]

This previous literature also suggested that a velocity initialization bias against assignment of the

“0” location actually improved convergence speed and solution quality, and found an ideal start

32

bias of vi,0(0) = 0.04 when testing vi,0(0) values along the grid vi,0(0) ∈{0.01, 0.04, 0.07, 0.10}

with the three other assignments given equal probabilities to round out the roulette wheel

(Smythe, 2012). We instead randomly initialized velocities by a random roulette wheel

generation process.

0 ≤ vi,0(0), vi,1(0), vi,2(0), vi,3(0) ≤ 1

subject to: vi,0(0) + vi,1(0) + vi,2(0) + vi,3(0) = 1

We found that randomly initialized roulette wheel velocities actually perform better than

the original RWPSO’s nonzero-bias velocity initialization setting. This contradicts the

assumption and previous findings that a forest planning problem would perform better with an

initial set of roulette wheel velocities biased against unscheduled, or 0-value, locations. This

results in part due to the spatial constraints in the problem; initializing the population with

random values allows for more diversification through the search space because throughout the

algorithm’s execution, fewer moves are restricted by adjacency constraints. This finding sheds

light into the interaction between the competing algorithm behaviors of following spatial

adjacency constraints and maximizing harvest value. We demonstrate that the evolutionary

movement of solutions in SI and other generation-based algorithms interacts with non-native

constraint handling strategies, an important consideration for working with algorithms like PSO

variants, which lack such an in-built constraint handling mechanism. In harvest scheduling

problems, the constraint-preserving method may reduce computational expense by internalizing

adjacency checks, but can also limit the exploration capacity of the algorithm. A randomly

generated initial population enables the most exploration behavior when coupled with random

starting velocities; the global exploration of the algorithm can further be improved with

introduction of the baboon information-pooling modification. These novel features for

33

probability-based PSO help the swarm to converge faster (Figure 6) and to a better final solution

(Figures 4,5,6). Besides the value of the baboon communication strategy in identifying the most

appropriate region for convergence (via enhanced exploration), the baboon modification also

improved exploitation within a promising region, ensuring that particles could escape shallow

local troughs to find a superior solution in the surrounding area (Figures 4-6).

Alg. Best (Minimum) Worst Average Std. Dev.
RO 90,499.90 xx 160,698.00 46,879.00
RWPSO (pb) 90,489.90 144,672.94 107,518.32 22,730.86
RWPSO (rsv) 90,489.90 142,610.82 105,407.40 19,501.98
B-RWPSO (pb) 90,489.90 101,863.07 92,636.65 4,345.05
B-RWPSO (rsv) 90,489.90 101,863.07 94,280.96 5,686.59

Table 2: Summary statistics for different algorithms applied to the 40-stand Northern Forest

Alg. Best (Minimum) Worst Average Std. Dev.
RO 5,500,330.28 xx 6,729,995.00 1,472,126.00
RWPSO (pb) 5,500,330.28 7,065,589.17 6,015,657.39 628,686.90
RWPSO (rsv) 5,560,961.74 6,904,719.75 6,116,777.79 449,938.51
B-RWPSO (pb) 5,500,330.28 5,921,566.64 5,584,577.55 188,382.63
B-RWPSO (rsv) 5,500,330.28 6,449,654.99 5,606,465.47 297,180.39

Table 3: Summary statistics for different algorithms applied to the 73-stand Western Forest

Alg. Best (Minimum) Worst Average Std. Dev.
RO 61,913,898,152 xx 66,142,041,314 2,895,384,577
RWPSO (pb) 85,439,462,612 113,493,797,732 103,248,427,772 9,370,587,523
RWPSO (rsv) 86,452,695,062 94,258,971,212 91,056,808,979 4,087,614,009
B-RWPSO (pb) 86,974,967,972 97,131,895,032 89,912,416,257 4,831,133,090
B-RWPSO (rsv) 75,481,397,552 81,546,025,732 79,357,171,382 1,588,931,575
B-RWPSO
(optimal setting)

71,662,208,452 81,451,900,072 77,703,271,168

3,768,686,890

Table 4: Summary statistics for different algorithms applied to the 625-stand Southern Forest

On the lower-dimensional 40- and 73- stand forests, B-RWPSO runs up against the

integer optimum for the problem. While a better “best solution” may not be possible, the B-

RWPSO still improves performance compared to RO and the original RWPSO, because B-

RWPSO achieves even better average values and a smaller standard deviation. For these simpler

34

harvest scheduling problems, B-RWPSO achieves a very tight distribution of test values. A small

standard deviation in the distribution is especially relevant to the forest planning context because

it indicates consistency, reliability, and stability in the heuristic’s performance, which allows for

increased trust to be placed in the quality of the generated solutions.

4.1.1 Baboon Information-Pooling

 To compare the isolated effect of the baboon information-pooling without the

confounding effects of other modifications of RWPSO, we run additional tests directly

comparing B-RWPSO and RWPSO under otherwise identical experimental settings and

parameter setups. We applied these comparison test cases on the high-dimensional 625-stand

forest, where the most significant gains can be made to canonical PSO variants. RWPSO, like

other types of PSO, struggles on higher-dimensional problems, and is most prone to premature

convergence in these complex search spaces. The results from these tests are shown in Tables 5

through 7. Each algorithm was run 10 times for each of the experimental configurations. For

each experimental setting, we applied the Shapiro-Wilk normality test on the set of 10 best-found

solutions for each of the two algorithms (B-RWPSO and RWPSO) to determine if the sample of

best solutions was normally distributed. All of the data listed in Tables 5 through 7 met the

normality criteria with 𝛼 < .05. With the assumption of normality in the sampled solution sets,

we compared the difference between B-RWPSO and RWPSO for each parameter configuration

with a two-tailed t-test. For all settings, we observed statistically significant differences (p <

0.01) between the RWPSO with baboon information-pooling (B-RWPSO) and standard RWPSO

(Tables 5,6,7). The results from these t-tests indicate that the distribution of solutions produced

in B-RWPSO was significantly different from the distribution of solutions produced by RWPSO.

35

Algorithm Best (Minimum) Worst Average Std. Dev.
B-RWPSO 75,481,397,552 81,546,025,732 79,357,171,382 1,588,931,575
RWPSO 86,452,695,062 94,258,971,212 91,056,808,979 4,087,614,009

Table 5: B-RWPSO vs. RWPSO for time-varying parameters m = 0.1, sstart = 0.1, sfinish = 0.35,
populationsize = 200; randomly initialized velocity (denoted rsv); and gbest topology with 10-
baboon social neighborhoods. p = 0.0033

Algorithm Best (Minimum) Worst Average Std. Dev.
B-RWPSO (pb) 86,974,967,972 99,595,892,492 92,481,591,283 5,093,623,123
RWPSO (pb) 85,439,462,612 113,493,797,732 103,248,427,772 9,370,587,523

Table 6: B-RWPSO vs. RWPSO for time-varying parameters m = 0.1, sstart = 0.1, sfinish = 0.35,
populationsize = 200; biased-start velocity (denoted pb); and gbest topology with 10-baboon
social neighborhoods. p = 0.0041

Algorithm Best (Minimum) Worst Average Std. Dev.
B-RWPSO 75,727,943,532 85,773,854,952 80,345,507,369 2,910,402,975
RWPSO 87,444,889,432 108,579,847,892 97,228,699,815 8,933,066,422

Table 7: B-RWPSO vs. RWPSO for time-varying parameters m = 0.1, sstart = 0.1, sfinish = 0.35,
populationsize = 200; randomly initialized velocity (denoted rsv); gbest topology with 10-
baboon social neighborhoods; and velocity reinitialization “reversion”. p = 0.0047

Notably, the standard deviation of results from the RWPSO with randomly initialized

velocity was smaller than even the standard deviation of the B-RWPSO when B-RWPSO was

initialized with the anti-zero starting velocity. Random initialization of velocity dramatically

improved performance of both RWPSO and B-RWPSO compared to when each algorithm used

the anti-zero velocity bias. On the other hand, the velocity reinitialization (reversion mechanism)

actually resulted in inferior performance for both the B-RWPSO and RWPSO. It did not generate

substantively different solutions than the B-RWPSO without reinitialization, but had a somewhat

inferior standard deviation. However, for the RWPSO, velocity reinitialization significantly

decreased performance of the algorithm.

36

4.1.2 Time-Varying Parameters

 The effect of time-varying parameters was also tested. Although there appears to be a

slight improvement with time-varying parameters compared to static parameters, it is not a

statistically significant difference (Table 8). Likewise, when changing just the sfinish value in the

experiments, there was very little difference in the performance of the algorithm (Table 9).

Although these modifications may not improve performance, this demonstrates that the B-

RWPSO is fairly robust to parameterization, which may be useful for deploying the algorithm in

a variety of different contexts. The B-RWPSO can be more confidently deployed on a wider

variety of problems without extensive parameter testing.

Algorithm Best (Minimum) Worst Average Std. Dev.
B-RWPSO (TVAC) 86,974,967,972 99,595,892,492 92,481,591,283 5,093,623,123
B-RWPSO (Static) 87,247,858,452 108,539,881,992 94,639,708,121 6,465,199,136

Table 8: B-RWPSO with time-varying parameters [m = 0.1, sstart = 0.1, sfinish = 0.35] vs. static
parameters [m = 0.05, s = 0.25], populationsize = 200; anti-zero biased initial velocity (denoted
pb); gbest topology with 10-baboon social neighborhoods. p = 0.3077

Algorithm Best (Minimum) Worst Average Std. Dev.
B-RWPSO
(sfinish = 0.25)

75,152,559,312

83,336,276,292

78,998,328,472

3,409,541,240

B-RWPSO
(sfinish = 0.30)

71,662,208,452

81,451,900,072

77,703,271,168

3,768,686,890

B-RWPSO
(sfinish = 0.35)

75,727,943,532

85,773,854,952 80,850,313,079

3,216,510,214

B-RWPSO
(sfinish = 0.40)

74,963,047,112

81,727,568,792

79,611,413,707

3,140,539,631

Table 9: B-RWPSO with time-varying parameters {m = 0.1, sstart = 0.05 and sfin	∈ [0.25, 0.3,
0.35, 0.4]}; populationsize = 200; randomly initialized velocity (denoted bsv); gbest topology
with 10-baboon social neighborhoods; velocity reinitialization “reversion”

4.1.3 Convergence Behavior

The fitness vs. iteration curves depict the mean best objective found at an iteration for all

10 sample runs of an algorithm at a given parameter setting. On the y-axis is the mean calculated

37

value of the objective function, while the x-axis shows number of iterations in various step sizes.

(for the 625-stand forest, each tick mark represents 20 iterations, i.e., if the label is 50, we are on

the 1000th iteration; for the 40- and 73-stand forests, each tick mark represents 5 iterations.)

Figure 4: Fitness vs. Iteration curves for B-RWPSO vs. RWPSO on the 625-stand forest, for
identical settings besides baboon information-pooling (time-varying parameters m = 0.1, sstart =
0.1, sfinish = 0.35, populationsize = 200; randomly initialized velocity (denoted rsv), and gbest
topology with 10-baboon social neighborhoods.)

For the 625-stand forest, RWPSO and B-RWPSO overlap in the timing of their rapid

climb (descent in this case of a minimization problem). At about 1000 iterations, the rate of

improvement of solution quality slows down, although B-RWPSO is able to find a superior final

solution. For the 73-stand forest, RWPSO actually approaches the local optimum faster than B-

RWPSO; however, it suffers premature convergence and plateaus at an inferior final solution

compared to B-RWPSO.

38

Figure 5: Fitness vs. Iteration curves for B-RWPSO vs. RWPSO on the 73-stand forest, for
identical settings besides baboon information-pooling (time-varying parameters m = 0.1, sstart =
0.1, sfinish = 0.35, populationsize = 200; randomly initialized velocity (denoted rsv), and gbest
topology with 10-baboon social neighborhoods.)

 Finally, B-RWPSO converges very quickly on the 40-stand forest and with sharp

precision. Although B-RWPSO was allowed up to 800,000 or 1,000,000 fitness evaluations for

each of these problems, the algorithm finds a solution much quicker than the evaluations allotted.

With a population size of 200 for each of these configurations, both B-RWPSO and RWPSO had

largely converged by iteration 250, 1000, or 2000 (respectively for the 40-, 73-, and 625-stand

forests). These equate to just 5,000, 200,000, and 400,000 fitness evaluations (far less than half

the number of evaluations we allowed). We notice that the improvement in performance of the

baboon modification over original RWPSO is least significant on this simplest of the test

problems.

39

Figure 6: Fitness vs. Iteration curves for B-RWPSO vs. RWPSO on the 40-stand forest, for
identical settings besides baboon information-pooling (time-varying parameters m = 0.1, sstart =
0.1, sfinish = 0.35, populationsize = 200; randomly initialized velocity (denoted rsv), and gbest
topology with 10-baboon social neighborhoods.)

 These figures depict the exploratory behavior of the algorithms at different iterations, in

order to establish a uniform point of comparison between progressive stages of the B-RWPSO

and RWPSO. However, the two algorithms differed in total runtime, and so B-RWPSO will

reach a given iteration more quickly than the canonical RWPSO. Over the runs used in Figure 4

for the 625-stand forest, the baboon modification sped up average algorithm run-time by 22.8%.

This advantage is valuable in business applications that favor quick planning.

4.2 NETWORK INFLUENCE TYPE COMPARISON

 In FIPS, each particle is informed by the success of all of its neighbors each iteration

(Kennedy & Mendes, 2006). Canonical singly informed particle swarm only includes social

influence from the global leader in the swarm at each iteration. Doubly informed particle swarm

40

seeks to balance competing strands of social information by including social influence from both

the global leader and a neighborhood leader. We tested these three informational structures on

the 625-stand forest:

{Network influence type (static neighborhood) : “best of neighborhood” canonical

singly-informed gbest / fully-informed gbest / doubly-informed lbest & gbest }

Network Influence
Type
(Learning Strategy)

Best (Minimum) Worst Average Std. Dev.

Singly informed
(gbest)

75,481,397,552 81,546,025,732 79,357,171,382 1,588,931,575

Doubly informed
(lbest & gbest)

79,531,304,832 86,521,861,392 81,941,154,536 2,977,877,438

Fully informed
(gbest)

77,680,411,052 80,199,673,252 79,777,328,125 1,920,888,834

Table 10: Comparison of Network Influence Types on B-RWPSO with identical parameter
settings (time-varying parameters m = 0.1, sstart = 0.1, sfinish = 0.35, populationsize = 200;
randomly initialized velocity (denoted rsv), and gbest topology with 10-baboon social
neighborhoods.)

Suitability of a problem to any given network topology and influence type has

historically varied by domain. The effects of changing the network’s sociometry—whether

positive or negative—can be dependent on the topology of the solution space as well as other

features of the problem. In the tested cases of harvest scheduling for forest planning, network

influence type was not a significant factor in the particle swarm’s search behavior. This may be

related to the graph-coloring constrained search space, which likely restricts search.

41

CHAPTER 5

CONCLUSION

 We develop a new particle swarm velocity update mechanism based on the

communication behavior of wild baboons and apply this modification to a probability-based PSO

variant used in harvest scheduling applications for the forest planning problem. Baboon-Based

Roulette Wheel Particle Swarm Optimization (B-RWPSO) improves the performance of

traditional discrete and probability-based PSO algorithms on a variety of problems, with a

particular improvement on complex, high-dimensional harvest scheduling problems. We

demonstrate that bio-inspired and nature-inspired strategies may continue to improve existing

evolutionary optimization heuristics. Addressing spatial constraints may be difficult in nominal

variable problems because boundaries in the solution space are disjoint from real-world

geographical boundaries. For probability-based algorithms that traverse over the probability

space of the problem, there may be further conflicts with constraint-handling efforts to restrict

search to feasible regions.

Our experimental results overturn previous assumptions about harvest scheduling

problems that the ideal velocity initialization should be biased against unscheduled (or 0-valued)

dimensions. Rather, we find that random initialization of velocities (and greater preference

toward 0-valued dimensions in early iterations) can actually improve performance of probability-

based RWPSO and B-RWPSO. Although this testing only incorporated three harvest scheduling

problems, with simplifications compared to real-world planning needs, our results shed light into

potential synergies between methods for spatial constraint-handling and algorithm design. These

42

findings suggest a need for further research into the complex interactions between spatial

constraints, optimization objectives, and constraint-handling methods. Additionally, our

implementation of a search reversion mechanism via velocity reinitialization resulted in inferior

results. Further work may investigate whether this type of reinitialization may be refined,

perhaps in a phased implementation, so that it is selectively applied to improve the search.

 We also extend research into the role of social influence topology on social interactions

in the particle swarm; because the appropriateness of social connectivity is highly dependent on

the domain or problem, we test what procedure for information influence will perform best in

harvest scheduling with a neighborhood-in-neighborhood approach to include both global and

neighbor influence. Finally, while the baboon modification described here was only implemented

on the discrete RWPSO, the conceptual baboon information-pooling could hold promising

results for canonical and continuous variants of PSO. Among other recent innovations in nature-

inspired optimization, the integration of models of collective intelligence may help coordinate

information-sharing patterns between sophisticated individuals, especially in complex emerging

fields like multi-population swarm intelligence. The baboon modification may also be suitable

for Pareto-based multi-objective exploration because subgrouping can enhance exploration of the

solution space, and potentially discovery of diverse points along the Pareto frontier.

43

REFERENCES

Bettinger, P., Demirci, M., and Boston, K. (2015). Search reversion within s-metaheuristics:
Impacts illustrated with a forest planning problem. Silva Fennica, vol. 49(2): 1-20.
https://doi.org/10.14214/sf.1232

Bettinger, P., Sessions, J., and Boston, K. (2009). A review of the status and use of validation
procedures for heuristics used in forest planning. Mathematical and Computational Forestry and
Natural-Resource Sciences, vol. 1(1): 26-37.

Bettinger, P. and Zhu, J. (2006). A new heuristic for solving spatially constrained forest planning
problems based on mitigation of infeasibilities radiating outward from a forced choice. Silva
Fennica, vol. 40(2): 315-333.

Borges, P., Eid, T., and Bergseng, E. (2014). Applying simulated annealing using different
methods for the neighborhood search in forest planning problems. European Journal of
Operational Research, vol. 233(3): 700-710. https://doi.org/10.1016/j.ejor.2013.08.039.

Cui, G., Qin, L., et al. (2008). Modified PSO algorithm for solving planar graph coloring
problem. Progress in Natural Science, vol. 18(3): 353-357.

Eberhart, R., and Kennedy, J. (1995). A new optimizer using particle swarm theory.
Proceedings 6th International Symposium Micro Machine and Human Science, Nagoya,
Japan. 39-43.

Freitas, D., Lopes, L.G., Morgado-Dias, F. (2020). Particle Swarm Optimisation: A historical
review up to the current developments. Entropy, vol. 22(3): 362.
https://doi.org/10.3390/e22030362

Hu, X. and Eberhart, R. (2002). Solving constrained nonlinear optimization problems with
particle swarm optimization. In Proceedings of the 6th World Multiconference on Systemics,
Cybernetics and Informatics (SCI), Orlando, FL, USA. vol. 5: 203–206.

Kennedy, J. (2000). Stereotyping: Improving particle swarm performance with cluster analysis.
Proceedings of the Congress on Evolutionary Computation (CEC), vol. 2: 1507–1512.

Kennedy, J. and Mendes, R. (2006). Neighborhood topologies in fully informed and best-of-
neighborhood particle swarms. IEEE Transactions on Systems, Man, and Cybernetics, vol. 36(4):
515-519.

44

Krause, J., Ruxton, G.D., and Krause, S. (2010). Swarm intelligence in animals and humans.
Trends Ecol Evol. vol. 25(1): 28-34.

Lawler, E.L. and Wood, D.E. (1966). Branch-and-bound methods: A survey. Operations
Research, vol. 14: 699-719.

Liu, H., Wang, Y., Tu, L. et al. (2019). A modified particle swarm optimization for large-scale
numerical optimizations and engineering design problems. J Intell Manuf, vol. 30: 2407–2433.
https://doi.org/10.1007/s10845-018-1403-1

Mendes, R., Kennedy, J., and Neves, J. (2004). The fully informed particle swarm: Simpler,
maybe better. IEEE Trans. Evol. Comput. vol. 8: 204–210.

Parsopolous, K., and Vrahatis, M. (2005). Unified Particle Swarm Optimization for solving
constrained engineering optimization problems. ICNC 2005, vol. 3612: 582-591

Ratnaweera, A. and Halgamuge, S.K. (2004). Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary
Computation, vol. 8(3): 240–255.

Santos, C.D., Przybyzin, S., Wikelski, M., Dechmann, D.K.N. (2016). Collective decision-
making in homing pigeons: Larger flocks take longer to decide but do not make better decisions.
PLoS ONE, vol. 11(2): e0147497. https://doi.org/10.1371/journal.pone.0147497

Shi, Y. and Eberhart, R.C. (1999). Empirical study of particle swarm optimization. Proceedings
of the Congress on Evolutionary Computation, vol. 3: 101–106.

Smythe, J., Potter, W., and Bettinger, P. (2012). Application of a new multi-valued Particle
Swarm Optimization to forest harvest schedule optimization. In Proceedings of the 9th
International Conference on Genetic and Evolutionary Methods (GEM'12). Computer Science
Research, Education and Applications (CSREA) Press, Las Vegas, NV.

Strandburg-Peshkin, A., Farine, D., et al. (2015). Shared decision-making drives collective
movement in wild baboons. Science, vol. 348(6241): 1358-1361.
https://doi.org/10.1126/science.aaa5099

Sun, C., Zeng, J., and Pan, J. (2011). An improved vector particle swarm optimization for
constrained optimization problems. Information Sciences, vol. 181(6): 1153-1163.
https://doi.org/10.1016/j.ins.2010.11.033

Vasquez, J., Valdez, F., and Melin, P. (2014). Comparative study of social network structures in
PSO. Recent Advances on Hybrid Approaches for Designing Intelligent Systems. vol. 547: 239-
252. https://doi.org/10.1007/978-3-319-05170-3_17

