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Abstract

The study of cilia motion analysis is crucial because cilia are found on almost all verte-

brate cells. Abnormal function of cilia can manifest as a variety of symptoms. Traditional 

study of cilia beat pattern and beat frequency for cilia motion analysis rely on manual 

labeling for locating cilia. However, manual segmentation of cilia is time consuming and dif-

ficult even for a professional. The time and effort needed for constructing cilia segmentation 

makes the study of cilia motion analysis extremely hard. Therefore, an automatic model for 

producing cilia segmentation is highly needed. In this work, Fourier methods are introduced 

to traditional convolution neural network for cilia segmentation utilizing the distinct struc-

ture of Cilia. Although the result is not as satisfactory as hoped, we manage to establish the 

theory support for our model, provide thorough analysis and hypotheses for the potential 

problem based on our results. The possibility of utilizing frequency spectrum in the applica-

tion of image segmentation in deep learning model is well explored in this work and thorough 

discussion and hypotheses for future work is discussed as well.
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Chapter 1

Introduction

This thesis proposes a new deep learning method that combines Fourier transform tra-

ditionally used in signal processing and deep learning model for modeling the cilia represen-

tation in frequency domain in order to help with the segmentation of cilia area in medical

videos. Chapter two gives some previous work related to image segmentation and spectral

analysis for dynamic texture. Chapter three introduces the data process, the design of basic

Fourier blocks and two Fourier models using those Fourier blocks that solves the segmenta-

tion problem from different perspectives. Chapter four gives introduction of the dataset we

use, demonstrates the results we have for both of the model, and raises hypotheses for the

potential problems. The remainder of this chapter gives brief introduction to cilia biology,

cilia motion analysis and provides the motivation of this work.

1.1 Introduction to Cilia

The cilium is a organelle with a fibrillar substructure [1, 2] that protrudes from surface

of lots of cells [3]. An example of cilia is in Figure 1.1. There are two types of cilia: motile

cilia and primary or non-motile cilia [2]. Although imaged to be ‘static’, primary cilia are

also dynamic and it helps to sense extracellular signals from the environment [4]. However,

we are not working with primary cilia in this thesis. What we are dealing with in this paper

is motile cilia which normally project on surface of a cell in large numbers and beat together

in coordinated waves [2]. Motile cilia functions in cell motility or movement of extracellular

fluids [3]. Cilia mentioned below in the rest of the thesis all refer to motile cilia.

Cilium beat at a certain tempo known as the cilia beat frequency (CBF). Cilia beating
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pattern is asymmetric and contains two distinctive strokes: effective stroke and recovery

strokes. Effective strokes are faster and stronger than recovery stroke as it produces a strong

force to propel mucus forward while recovery stroke is for cilia to return to the original

position in the underlying periciliary fluid against the flow [2]. Such beat pattern produces

net fluid flow in the direction of effective stroke. There are around 200 to 300 cilia on a

ciliated epithelial cell and those cilia must beat in same direction and in coordinated waves

to ensure proper fluid propulsion [2].

1.2 Cilia Motion Analysis

Ciliopathies include a group of disorders associated with genetic mutations resulting in

either abnormal formation or dysfunction of cilia. Cilia are found on almost all vertebrate

cells. Abnormal function of cilia can manifest as a variety of features that include characteris-

tically retinal degeneration, renal disease, cerebral anomalies as well as congenital fibrocystic

diseases of the liver, diabetes, obesity and skeletal dysplasias [5].

Primary ciliary dyskinesia (PCD) is a rare genetic disorder of dysfunctional respiratory

cilia. High-speed video-microscopy analysis (HVMA) of cilia beat pattern (CBP) and cilia

beat frequency has been recommended as a first-line diagnostic test along with transmis-

sion electron microscopy (TEM) in the study and diagnose of primary ciliary dyskinesia.

Further methods for primary ciliary dyskinesia diagnosis include immunofluorescence (IF)

microscopy, genetics and measurement of nasal nitric oxide (nNO) production [6].

Among videomicroscopy analysis methods, a lot of different models have been applied to

cilia motion analysis. S. Quinn et. al. uses differential image velocity invariants to classify

cilia motion [7]. In [8], it proposed a end-to-end pipeline with convolutional LSTM model

that provides automated analysis for cilia motion. Other attempts include analysis of cilia

movement on kymograph extracted from a sequence of digital images [2]. However, all these

models suffer from the difficulty of localizing cilia areas. It is mostly done by manual labeling

based on one frame of each video producing one static mask. Convolutional neural network
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for cilia segmentation in [8] uses static mask image as ground truth for each video during

training process.

However, this is problematic. Some of the videos are low quality with the problem of

camera drifting and being out-of-focus. Meanwhile, some cells move along with cilia. These

facts might result in incorrect ground truth masks which are problematic to the training

process. In addition, the natural characteristic of cilia being small relative to the size of

frames makes it hard to detect for non-experts let alone the problem of time-consuming even

for professionals.

1.3 Motivation

Manual labeling for cilia is, first of all, very difficult. The nature of cilia being small in

size makes it hard to be detected even by a professional. The poor video quality problems

like camera drifting, being out-of-focus increases the difficulty. Secondly, manual labeling is

extremely time consuming. It has been the most time consuming part for the cilia motion

analysis study. Since locating cilia is the first step towards the study of cilia motion analysis,

developing an automatic model for producing the cilia segmentation is highly needed. Last

but not least, using static masks for training the model for cilia segmentation in videos is

problematic. The cilia beat motion indicates that the area of cilia changes for each frame.

Therefore, the ground truth segmentation mask ideally should be slightly different for each

frame. However, most of all the models use only on static mask for each video. Additionally,

some part of the cell beat together with cilia. Using one static mask as ground truth for

the entire video can accidentally include part of the cell as being cilia resulting in incorrect

ground truth.

The fact that cilia has periodic beat pattern indicates pixels inside cilia area has distinct

1D signal along the time axis meaning they have rich temporal information. Such distinct

signal should result in high peeks in frequency spectrum obtained by fast Fourier transform.

Similarly, the distinct hair-like structure indicates distinct 2D signal of cilia, meaning cilia
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has rich spatial information. This should also result in high peeks in 2D frequency spectrum

from fast Fourier transform. Fourier transform transforming signals from spectral domain to

frequency domain is useful when the interested object has some distinction in the frequency

spectrum. Since both the temporal and spatial of cilia have distinct frequency in frequency

spectrum. Working in frequency domain with Fourier transform seems to be promising.

J. Zhang et. al. embedded Fourier analysis into recurrent neural network creating Fourier

recurrent unit [9]. It also proves that Fourier basis is more powerful than polynomials for

approximating functions. However, J. Zhang et. al. only explores temporal information for

one dimensional signals [9] while for the segmentation of cilia area in videos should consider

both spatial and temporal information because cilia motion could be subtle for cilia with

defect. Therefore, a model that simultaneously learns spatial and temporal feature is needed

in the application of cilia segmentation. Luckily, with 3D Fourier transform, the model can

simultaneously learn both spatial and temporal information easily.

1.4 Contributions

Our contributions in this thesis can be summarized as follows:

1. We introduce a new convolutional and pooling operation that allows convolutional

neural network to learn features entirely in frequency domain

2. We transform the octave convolution block to help with the memory issue in the

proposed Fourier convolution and pooling operation.

3. We propose a revised W-Net with the application of proposed convolutional and pooling

operation, and further reduce the number of parameters with octave convolution to

reduce redundancy in such neural network.

4. We propose a revised U-Net for partial reconstruction of the original video with cilia

area only with the application of Fourier convolution, pooling and octave operation.
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5. We give hypothesis for the potential problems shown in the results and analyze the

design of the methods in different perspectives.
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Figure 1.1: Example of cilia. The area highlighted by red lines is cilia.



Chapter 2

Related Work

In this chapter, a range of related work has been conducted for the problem of image

segmentation and spectral analysis will be introduced. This will include the related deep

learning approach for image segmentation. The introduction of spectral analysis for dynamic

texture will focus on the application of Fourier transform for such topic as well as its limi-

tations.

2.1 Image Segmentation

Image segmentation has been one of the most important topics in the image processing

field of study. Image processing aims at cluster pixels into image regions. Early stage studies

include thresholding based or edge based segmentation like watershed algorithm. Other mul-

tivariable clustering methods like K-means and expectation maximization can also be used as

unsupervised image segmentation algorithm. With the development of deep neural network,

performance of neural network models on image segmentation is largely improved from the

traditional methods. Convolutional neural network is often used in such topics and there are

couple of classic convolutional neural networks in the application of image segmentation like

U-Net that works on supervised image segmentation and has achieved significant improve-

ment in IoU (“intersection over union”) result from its prior sliding window convolutional

neural network on the ISBI cell tracking challenge 2015 [10]. Other convolutional neural net-

work like W-Net aims at providing unsupervised learning for image segmentation purpose

with the improved n-cut loss that optimizes cut for different groups using graph theory.

U-Net introduced in [10] contains two main paths. The first path is a contracting part
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which follows the typical architecture of a convolutional network. It consists of four stages

until a bottleneck is reached. In each stage, two 3×3 convolutions are applied first with each

followed by a ReLu unit and a 2× 2 max pooling operation with stride 2 for downsampling.

The contracting path is therefore also called downsampling path. Each stage in downsam-

pling path compresses the feature map to half while doubling the number of channels. When

a bottleneck is reached two 3× 3 convolutions are applied while keeping number of channels

the same. The second path is an expansive path also known as upsampling path. Similar to

contracting path, it also has four stages. Each stage consists of a upsamping of the feature

map from previous stage followed by a 2 × 2 convolutions that halves the number of chan-

nels. The resulting feature map is concatenated with the correspondingly cropped feature

map from the downsampling path. Following the concatenation, two 3× 3 convolutions are

applied with each followed by a ReLu activation function. In order to produce the segmen-

tation map, a 1 × 1 convolution is used to map the resulting 64-component feature vector

from the upsampling path to a desired number of classes. The loss function is to compute

the cross entropy between the final output feature map and the corresponding ground truth

mask.

X. Xia and B. Kulis proposes an Autoencoder styled network called W-Net for unsuper-

vised image segmentation including an encoder followed by a decoder and the segmentation

result is in the middle [11]. Both encoder and decoder have similar structure as U-Net [10]

described above. The last convolutional layer of the encoder is a 1×1 convolution which maps

the feature vector to a desired number of classes denoted as K, followed by a softmax layers

which re-scales them to range (0, 1). The decoder takes the output of encoder as its input.

The final convolution layer of the decoder is a 1× 1 convolution to map feature vectos back

to its original input. The loss function of W-Net, apart from the normal reconstruction loss

that is common to Autoencoder, consists of two parts. The reconstruction loss is computed

by mean square error of output feature map and input image. The other part it soft N-cut
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loss. The soft N-cut loss is a soft version of N-cut loss introduced by [12] since the original

N-cut loss is non-differentiable.

2.2 Spectral Analysis for Dynamic Texture

Static texture in images is described as repeated pattern that exhibits some extend of

variability in their appearance [13]. While dynamic texture, also known as temporal tex-

ture, is to extend the static texture to the spatio-temporal domain. Temporal variations like

motion and deformation are introduced in dynamic texture. Dynamic textures are defined as

sequences of images of moving scenes that show certain stationarity properties across time

[14].

The feature extraction in the study of texture analysis is essential. A large variety of

methods have been developed and can be applied to extract meaningful information from

the raw pixel values of the images. Signal processing approaches like filter banks, wavelets

and Fourier transform fall in the category called spectral analysis. These methods analyse

frequency or spatial-frequency content of textures in spatial domain like steerable filters, in

frequency domain like Fourier transform or in both of the two domains like Gabor filters and

wavelet transforms.

2.2.1 Fourier Transforms and Convolution Theorem

In mathematics, a basis is a finite or infinite set B = {~bi}i∈I of base vectors ~bi that spans

the whole space and is linearly independent. Therefore the basis must be an orthogonal set.

And in vector space theory, any vector ~v can be expressed as a linear summation of a finite

basis elements.

In Fourier theory, it makes use of such theory and creates a Fourier basis that contains

sinusoids of any frequency. Therefore, in Fourier theory, any periodic functions (with period

T ) can be expressed by sum of those Fourier basis and this is called Fourier series or Fourier

expansion.
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f(t) = a0 +
∞∑
n=1

an cos (
2πnt

T
) +

∞∑
m=1

bn sin (
2πmt

T
)

=
∞∑
n=0

an cos (
2πnt

T
) +

∞∑
m=1

bn sin (
2πmt

T
)

a0 =
1

T

∫ T

0

f(t)dt

an =
2

T

∫ T

0

f(t) cos (
2πnt

T
)dt, n ≥ 1

bm =
2

T

∫ T

0

f(t) cos (
2πmt

T
)dt, m ≥ 1

Utilizing Euler’s equation eit = cos t+ i sin t, we can know from the above Fourier series

equation that an are actually the real coefficients and bm are the imaginary coefficients. With

the help of the same equation, we can express sinusoids as cos t = eit+e−it

2
and sin t = eit−e−it

2i
.

Therefore, we can rewrite the previous Fourier series with complex numbers.

f(t) =
∞∑

n=−∞

Une
i 2πnt
T

Un =
1

T

∫ T

0

f(t)e−i
2πnt
T dt

However, Fourier series alone does not extend Fourier theory beyond periodic functions.

Fourier transform is the extension of the idea of Fourier series to non-periodic functions.

Letting the period expand from T to infinite expands the definition from periodic functions

to aperiodic functions and also fundamentally changes the nature of transformation from

time domain to frequency domain. This is called Fourier transform. The notation for Fourier

transform of function f(t) is F{f(t)}. The result of Fourier transform of function f(t) is a

function of frequency f therefore we can also represent it as F (f). F (f) is often called the

spectrum of f(t). There is also inverse Fourier transform which transforms result of Fourier
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transform F (f) back to its original function f(t), denoted as F−1{F (t)}. f(t) and F (f) are

also called a Fourier pair because they are distinct representation of the same underlying

identity.

F{f(t)} = F (f) =

∫ ∞
−∞

f(t)e−i2πftdt

F−1{F (f)} = f(t) =

∫ ∞
−∞

F (f)ei2πftdf

Fourier transform is defined on continuous signal or continuous function. In the applica-

tion of image processing, discrete Fourier transform (DFT) which deals with a finite discrete-

time signal is often used. Discrete Fourier transform is the sampled Fourier transform. Instead

of containing all frequencies, it contains only a set of frequencies. The number of frequencies

is the same of the size of image. Since gray-scale images are 2-D functions f(x, y) where x and

y are coordinates of pixel location and each f(x, y) is its corresponding pixel intensity value,

2D discrete Fourier transform is what has been used in the application of image processing.

For a square image of size N ×N , the 2D discrete Fourier transform and 2D inverse discrete

Fourier transform are defined as:

F (m,n) =
N−1∑
x=0

N−1∑
y=0

f(x, y)e−i2π(
xm+yn
N

)

f(x, y) =
1

N2

N−1∑
m=0

N−1∑
n=0

F (m,n)ei2π(
mx+ny
N

)

The complexity of computing the DFT is O(N2) as each pixel point is calculated twice.

Fast Fourier transform is an algorithm that is introduced for computing DFT with com-

plexity of O(N logN). There are many variants of fast Fourier transform algorithm. The

most classic one from [15] states that adding certain data sequence values after they have
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been multiplied by the same factors of fixed complex constants during the evaluation of

different DFT transform coefficients causes redundancies. And the efficiency of traditional

DFT is improved by re-ordering the data sequence and/or transform sequence to eliminate

such redundancies. We can also extend DFT to 3 dimensions by doing the same procedure

to the three axes.

Convolution theorem states that the Fourier transform of a convolution of two signals is

the point-wise product of their Fourier transforms. It is equivalent to say that convolution

in time domain is point-wise multiplication in the frequency domain. Therefore, in image

processing, if we define image as a 2-dimensional function f and define filter as g, we have

F{f ∗ g} = F{f}F{g}

To note that in convolution theorem, there is a constrain on the two signals that both of

them should be in the same length. Therefore, compared to convolution applied in normal

convolutional neural network, the definition of filter signal g is to pad the kernel used to

convolve the feature map with with value 0 to the same size as the feature map as shown in

Figure 2.1.

2.2.2 Drawbacks of Fourier Transform

The main drawback of Fourier transform in the application of image analysis is that

Fourier transform does not describe local features. A narrow frequency band-pass represents

a large spatial region. A small change in the frequency domain affects large area in the

spatial domain. However, for image segmentation and analysis of cilia texture, describing

local variations of the cilia texture is crucial. Ideally, texture operator of both spatial and

frequency domain should be localised. However, the localisation of a texture operator in both

spatial and frequency domain is limited due to Heisenberg’s uncertainty. The Heisenberg’s

uncertainty states that the localisation in both frequency and spatial domain is limited by a

lower bound on their product:
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Figure 2.1: Left: an example of feature map in traditional convolutional neural network.
Right: middle purple part (3 * 3) is an example of 3 × 3 convolution kernel. In order to
satisfy the convolution theorem, it should be padded to the same size as the feature map in
the left with value 0.

∆x∆y∆fx∆fy ≥ (
h

4π
)2

where ∆ refers to the uncertainty in the variable and h is Planck’s constant.



Chapter 3

Network Architecture and Pipeline

In this chapter, detailed network architectures and overall data processing pipeline are

included. General data preparation is discussed first. Small redesigned reusable component

blocks are proposed, followed by discussion of two models for the segmentation of cilia.

Starting with pre-processing process, the proposed Fourier convolution and pooling method

is introduced afterwards. Thirdly, octave convolution block is discussed. Following the octave

convolution block, the first model for unsupervised pixel-wise classification is introduced

along with the W-Net architecture that this first model is based on. Lastly, the second

model for supervised partial video reconstruction is presented. Introduction of both of the

model also includes their respective additional touch to the general data preparation method,

post-processing method.

3.1 Data Pre-processing

Because our videos are all in difference sizes. These videos are all resized to same size

for each frame and with same length, meaning all the videos are resized and truncated in

number of frames to (250, 250, 250). It makes sure the standard size for future process.

To prepare the data for the Fourier convolution neural network, Fourier transform should

be applied to map original videos to the frequency domain to to make the data mathemat-

ically suitable for the network to learn features in frequency domain. However, mapping

14
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original video data to frequency domain with Fourier transform alone is not enough. Addi-

tionally, certain processing should also be applied to address the problem of localisation of

Fourier transform.

3.1.1 Video Normalizing and Patching

The first step in pre-proceeing should be normalizing the data. In order to make sure

such process will not affect the data in frequency domain, a simple method is used. Each

video is subtracted by its mean and divided by its deviation.

In the previous chapter, we have discussed the drawback of Fourier transform, that it is

not able to describe localized features in spatial domain since a narrow frequency band-pass

represents a large spatial domain. Yet, in dynamic texture analysis and image segmentation,

we need operator to catch localised features to distinguish different features between inter-

ested object/texture and background area. Ideally, such operator should be localized both

in frequency and spatial domain but the localisation of operator is limited by a lower bound

on their product by Heisenberg’s uncertainty.

Patches are made from each video to extract both spatial and frequency information by

computing Fourier transform on those local neighbourhoods. Size of patches on each frame

should neither be too big nor too small. A big patch cannot catch the localised informa-

tion and a small patch can lose important frequency information. Therefore, the choice of

patch size should be decided with causality. For each frame of the video, the spatial infor-

mation requires small sized patches so that local spatial information could be caught which

is helpful to the model to distinguish interested object area or not. Because of the natural

repeated beating pattern of cilia, frequency in time domain of each pixel within cilia area

shows strong characteristic compared to non-cilia area and this characteristic is consistent

across time domain. Such strong characteristic is also helpful for classification of each pixel.

Therefore, unlike for spatial information where feature is not consistent because of different

objects presented in the image, we can have much longer patch size to catch rich temporal
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information. Therefore, the patch size is 25 × 25 on each frame and 100 in time. We used

tf.contrib.signal.frame(plane, length, step) to make the patches where plane is the

data to be patched, length is the size of the output patch, step is the length to move the

window for each patching. This function can only frame along one axis at a time so for our

3D data, we need to apply it 3 times. The patches in spatial is non-overlapping but it is

overlapped by 50 steps along time axis. Therefore, to conclude, for one video, we can produce

100 volume patches with size (100, 25, 25) spatially and each with 4 patches in time. We can

see the 4 volumes in time as 4 channels. Therefore, we can get volume data for each video in

100×100×25×25×4 dimension where (100, 25, 25) is the size of feature map (also meaning

the size of the volume data), 100 as the “batch” number and 4 is the number of channels.

This 100 “batches” will be the input of our network and we will only input this 100 patches

for one video for each batch. The meaning of batch here is a bit different from other the ones

we use for training other networks. This will be explain in later section where we introduce

the detailed structure of our model.

One of our goal is to learn spatial and temporal information. This can be realized by

trying to understand the distinct frequency representation of cilia area in 3 dimension. This

is why we made the patches of videos into three dimensional volumes.

In the actual implementation, FFT is computed with tf.spectral.fft3d. However, zero

frequency component, which is also called DC component in signal processing, is at top left

corner. In order to prepare for easier process for later stages, the result is shifted using

np.fft.fftshift by half of the size in both the directions so that we have a symmetric

frequency matrix. To conclude, after shifting, the zero frequency is in the center; frequencies

close to center is called low frequencies and frequencies that is around the edges are called

high frequencies.
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3.1.2 Fourier Transform and Complex Numbers

After normalizing and preparing patches to extract local information for each video, the

video patches should then be mapped onto frequency domain to allow future computation

in the Fourier convolutional neural network. Fast Fourier transform (FFT) method is used

to create the frequency representation of the video patches.

Resulting matrices of Fast Fourier transform all contain complex numbers. According to

convolution theorem, both video data and kernel should be transformed with FFT and then

be multiplied together. Ideally, we should have the transformed video data and directly

initialize kernels with complex number which represent the FFT result of the “kernels”

of the normal convolutional neural network. However, Tensorflow does not support kernel

initialization with complex numbers and backwards signals during back propagation cannot

be computed for complex numbers. Therefore, we need to seek for other methods.

Complex numbers are in the form of a + bi where i =
√
−1. Both a and b are real

numbers. a is called the real part and b is called the imaginary part. Complex numbers can

be thought of as vectors in the complex plane with basis vectors (1, 0) and (0, i). The length

of a complex number is called magnitude where |a+ bi| =
√
a2 + b2 and the angle from

the real-number axis is called phase where φ(a + bi) = tan−1( b
a
). The property of complex

includes the fact that when you multiple two complex numbers, their magnitudes multiply

as well: |z1z2| = |z1||z2|.

Utilizing such property, we can tackle the problem of complex number in Tensorflow. The

magnitudes of FFT results of the video patches are calculated for each video. Meanwhile,

kernels could be initialized with real numbers as usual which represent the magnitude of

FFT result of the “kernels” of the normal convolutional neural network. The multiplication

required by convolution theorem can be applied by multiplication of the two magnitude

matrices. The result means the magnitude of FFT result of resulting convoluted matrix.

Writing this to notations for clarification:
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Normal convolution: Fm(t) = Fm(t− 1) ∗Kernel(t)

Fourier convolution: |F{Fm(t)}| = |F{Fm(t− 1) ∗Kernel(t)}|

= |F{Fm(t− 1)}F{Kernel(t)}|

= |F{Fm(t− 1)}||F{Kernel(t)}|

(Equivalent to) FmFourier(t) = FmFourier(t− 1)KernelFourier(t)

Such process has another meaning at the same time. Auto-correlation is the correction

of a function with itself: f(t) ∗ f(−t). Power spectrum of a signal is the Fouier transform of

its auto-correlation functions.

P (s) = F{f(t) ∗ f(−t)}

= F (s)F ∗(s)

= |F (s)|2

The power spectrum is useful for detecting periodic patterns/texture in the image. In

our case, because of the hair-like appearance of cilia in the image, patches of cilia area

have strong periodic pattern. Similarly, the repeated beating pattern of cilia makes the pixel

values along time axis for each pixel location show strong periodic pattern as well. As the

power spectrum is the squared magnitude of the Fourier transform of the function. The

aforementioned process can also be seen as calculating square root of power spectrum of the

resulting convoluted function.
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3.2 Fourier convolution Block and Octave Block

This section will discuss about the proposed 3D Fourier convolution and transpose

3D Fourier convolution, as well as the Fourier octave convolution that aims at reducing

redundancy for the Fourier convolution operator. The octave block used is introduced in [16]

and we are utilizing it to work with our 3D Fourier convolution. As mentioned in previous

section, this is designed to learn three dimensional frequency which means that we are

trying to do equivalent operation in frequency domain as spatial 3D convolution operation.

We denote feature map as F with size (M,N,D) and denote kernel as K with the same size

(M,N,D).

3.2.1 3D Fourier convolution and pooling operator

With the convolution theorem, Fourier convolution operator could simply be multiplying

feature map with kernel of the same size as feature map. The result of multiplication has

the same size as feature map and kernel which is (M,N,D).

However, since we are dealing with image data, we have an additional axis which is the

channel size. Therefore, the true size of feature map would be (M,N,D, inChan) where

inChan stands channel size. However, this point-wise multiplication operation alone does

not support the change in the number of channel, which is crucial to any convolutional neural

network. In the traditional convolution operation in 2D CNN, the change of channel size can

be explained by an example. For example, if we are talking about using a 3× 3 Conv kernel

on a feature map of size (M,N, inChan), the size of kernel is actually 3× 3× inChan where

the 3 × 3 convolution operation results of inChan numbers of channels are summed up to

squeeze the channel size of resulting feature map to one. Then, by using outChan number of

such kernels in the same way, we can increase or decrease the channel size of the feature map.

In our fourier convolution, we can use the same strategy by using kernel of same size to do

the point-wise multiplication, summing all inChan channels to squeeze them down to one,
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Figure 3.1: 3D Fourier Pooling. (a) Overview of 3D Fourier Pooling; (b) View from three
orthogonal planes. Equal portion of both sides in each axis are truncated. This results in a
smaller volume inside the original feature map containing all the low frequencies. The size
of result feature map from pooling can be controlled by the pooling ratio.

and manipulate the channel size by applying the same operation outChan times. Whether

or not the summing operation affects the feature map the same way as it does for normal

convolution is still debatable and will be discussed in later sections. We can also change to

use a simple max pooling or average pooling along the channel axis to replace the addition.

The transpose 3D Fourier convolution can be realized by padding around the edge of

feature map with value 0 to the desired size first and then applying 3D Fourier convolution

to the padded feature map.

Pooling operation normally is used to reduce the size of feature map to reduce memory

used for computation and maintain the important and valuable information in the feature

map at the same time. In frequency domain, the image data is distributed differently com-
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pared to spatial domain. We can still reduce the data size but retain more information.

The low frequency data closer to center is the valuable information that we want to retain.

Therefore, we just need to truncate the outer layer of the matrices. Figure 3.1 illustrates

the 3D Fourier pooling operation. Therefore, given feature map of M × N ×D dimension,

the Fourier pooling operation that reduces the size of feature map to an arbitrary ratio p is

computed as follows:

mmin = (0.5− p

2
)×M , mmax = (0.5 +

p

2
)×M

nmin = (0.5− p

2
)×N , nmax = (0.5 +

p

2
)×N

dmin = (0.5− p

2
)×D, dmax = (0.5 +

p

2
)×D

We denote the Fourier pooling operation as fourierPool(X,p) where p is the variable

for ratio of output size to the input size and X is the input tensor.

3.2.2 Fourier Octave Block

The size of feature map can be reduced by Fourier pooling operator. However, since

Fourier convolution requires the kernel to have the same size as feature map, there is still

redundancy in kernel compared to spatial convolution operator. Here is the comparison of

number of parameters of one U-Net path for traditional convolution method and Fourier

convolution method in Table 3.1. In [16], it introduces a method called octave convolution

that reduces such redundancy. As an application of octave convolution in our proposed model,

the octave convolution discussed here could be slightly different from the original one.

The Fourier octave convolution aims at effectively processing the low and high frequency in

their corresponding tensor but also allow efficient communication between the two frequency

components. Suppose we have a feature map F with size (M,N,D,C) where M,N,D are

height, width and depth of the volume (time axis in our case) and C is the number of
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Table 3.1: Comparison of number of parameters of one U-Net downsampling path for tradi-
tional convolution method and Fourier convolution method.

feature channels. The first step is to factorize the feature map into high and low frequency

component. We denote F = {FH , FL} as the factorized frequency feature tensors. Such

factorization is only used in the first layer where low frequency group takes αC number of

channels and a Fourier convolution is applied followed by activation function and 3D Fourier

Pooling to get the most inner 0.5 low frequency information. Meanwhile, high frequency

is the remaining (1 − α)C channels and a 3D Fourier convolution is applied followed by

activation function ReLU.

The octave operation is given by FH = FH→H + FL→H and FL = FL→L + FH→L

respectively, where FA→B is denoted as update from group A to group B. In [16], it describes

FH→H and FL→L as intra-frequency information update and FH→L and FL→H as inter-

frequency information update.
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Figure 3.2: Octave Convolution in [16]. Our octave convolution is different in the convolu-
tion function f(X;W ). In the original octave convolution, it refers to the normal spatial
convolution operation. Here we refer to 3D Fourier convolution.

Kernel should therefore be factorized in the same way. We denote factorized kernel K =

{KH , KL}. KH is responsible for operation with FH and KL is responsible for operation

with FL. It can be further divided into intra- and inter-frequency part for each component

where KH = {KH→H , KL→H} and KL = {KL→L, KH→L}.

Figure 3.2 show the whole octave convolution update process. We used the proposed

3D Fourier convolution instead spatial convolution for FA→B. Applying Fourier convolution

operation within Octave convolution making it Fourier octave convolution, the computation

is done as follows:
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FH = FH→H + FL→H

= KH→HFH + upsample(FLKL→H , 2)

FL = FL→L + FH→L

= KL→LFL + fourierPool(FL, 0.5)KH→L

upsample(X,2) is transpose 3D Fourier convolution of the input tensor X that expands

the size of tensor to twice as its original size.

Table 3.2 shows the significant contribution octave block has to reducing the number of

parameters.

Table 3.2: Comparison of number of parameters of one U-Net downsampling path for vanilla
Fourier convolution method and octave Fourier convolution method. Because of the design
of octave operation, the octave Fourier convolution reaches bottleneck one stage earlier than
the vanilla Fourier convolution.

3.3 W-Net and Revised Fourier W-Net for Segmentation - First Model

3.3.1 W-Net
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Figure 3.3: W-Net architecture [11]. It is constructed by two U-Net forming an autoencoder
model. It is used for unsupervised image segmentation problems.

W-Net introduced in [11] has an overall autoencoder with two fully convolutional network

architectures tied together. Both of the fully convolutional network have similar structure

as U-Net introduced in [10]. The encoder network encodes the input image into a k-way soft

segmentation where k is the pre-defined number of classes. The decoder network takes in the

segmentation layer and reverse the process back to a reconstructed image. The reconstruc-

tion error between reconstructed image and input image is minimized. Also, a soft version

of normalized cut loss function on the encoder network is also jointly minimized with the

reconstruction error. Also, some post processing methods are used on the output segmen-

tation result. This will be discussed in next section. In this section, we only focus on the

detailed network structure and its revised version with aforementioned proposed methods

that allows the network explore features entirely in frequency domain.

The overall network structure can be seen in Figure 3.3 from where we can clearly see an
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encoder-decoder structure. Both encoder and decoder network contain two parts which are

called down-sampling and up-sampling. There are four stages in down-sampling path until a

bottleneck is reached. In each down-sampling stage, two 3× 3 convolutions each followed by

a ReLU activation function and batch normalization are applied with padding to ensure the

size of feature map remain unchanged. The first convolution doubles the channel size while

the second convolution does not change the channel size. A max-pooling layer that reduces

the feature map to half of its size is then applied and it also links one down-sampling stage

with the next one. Each of the feature map produced after completion of a down-sampling

stage before pooling layer is saved for later use. When the network reaches the bottleneck

after 4 down-sampling stages, two convolutions same as those in the down-sampling stage

are applied. The resulting feature map is then up-sampled by a transposed 2D convolution

layer to twice of its size while halving number of feature channels. The up-sampling process

connects the up-sampling stages. The up-sampled feature map is then concatenated with the

feature map of the equivalent stage in down-sampling saved previously. This is also called

the skip layer. Same process as in down-sampling stages are then applied.

The final layer of encoder network is a 1×1 convolution follower by a softmax layer. The

convolution layer maps each of the 64-dimensional feature vector to a specific number of k

classes. Output of softmax layer is the raw segmentation result.

Decoder network is very similar to encoder network. It reads the output segmentation

map from the encoder which has size 244 × 244 × K. However, the last layer of decoder

network is a 1 × 1 convolution to map the feature vectors back to a reconstruction of its

original input without an activation function.

Loss function of the W-Net consists of two loss. One is the reconstruction loss coming

from the autoencoder network which is computed as:
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MSE(X, X̂) = ||X − X̂||22

= ||X − UDec(UEnc(X;WEnc);WDec)||22

The other one is called soft N-cut loss which is a differentiable version of the normalised

cut (N-cut) loss introduced in [17]. Graph theory is applied in N-cut. The normalised cut

loss method tries to avoid bias of producing a lot of small partitions by calculating the cut

cost as a fraction of the total edge connections to all the nodes in the graph. This can be

computed as:

NcutK(V ) =
K∑
k=1

cut(Ak, V − Ak)
assoc(Ak, V )

=
K∑
k=1

assoc(Ak, V )− assoc(Ak, Ak)
assoc(Ak, V )

=
K∑
k=1

(1− assoc(Ak, Ak)

assoc(Ak, V )
)

= K −
K∑
k=1

assoc(Ak, Ak)

assoc(Ak, V )

= K −
K∑
k=1

∑
u∈Ak,v∈Ak w(u, v)∑
u∈Ak,t∈V w(u, t)

However, the original normalized cut loss is not differentiable and cannot be used to

calculate the corresponding gradient during backprogation in the network. Therefore [11]

introduces a differentiable version of this N-cut:
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Jsoft−Ncut(V,K) = K −
K∑
k=1

assoc(Ak, Ak)

assoc(Ak, V )

= K −
K∑
k=1

∑
u∈V,v∈V w(u, v)p(u = Ak)p(v = Ak)∑

u∈Ak,t∈V w(u, t)p(u = Ak)

where p(u = Ak) means the probability of u belonging to class Ak which is computed by

the encoder. Therefore, we can minimize the total cut between groups while maximizing the

total cut within groups at the same time by training the encoder to minimize the soft N-cut

loss.

3.3.2 Revised Fourier W-Net for Segmentation

The revised Fourier W-Net has similar structure as the original W-Net with the infusion

of Fourier theory and parts designed for segmentation. First of all, the overall structure of the

revised Fourier W-Net can be broken down to two main components. They are the 3D Fourier

W-Net and 2D segmentation W-Net. To continue with, both of the two main components

can be further divided into two paths. Each of the two components has a down-sampling

path and a up-sampling path. The two components are assembled as shown in Figure 3.4

where the 2D segmentation W-Net is embedded between the encoder and decoder of the 3D

Fourier W-Net with a data transform part as linkage.

Next sections will explain the detailed structure of 3D Fourier encoder and the transfor-

mation part that links the 3D Fourier encoder and 2D segmentation encoder. The reason

why we need these components will be given and the corresponding loss function will be

introduced. Since the 3D Fourier decoder is simply the inverse of its corresponding encoder,

structure of the decoder will not be discussed in detail. Same thing for the inverse data

transform. We use the original W-Net structure for the inner 2D segmentation network and

since we have introduced the original W-Net in detail in previous sections, we will not discuss

it either.
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Figure 3.4: The simple illustration of overall structure for the entire revised Fourier W-
Net for segmentation with one smaller W-Net embedded inside of another larger W-Net.
The blue parts on two sides are 3D Fourier W-Net which works entirely in frequency domain
with Fourier operations proposed. 3D Fourier Encoder is used for embedding in 3D frequency
domain for cilia. The green part in the middle is a smaller W-Net with traditional convolution
operation. It is used to compress embedding information along time axis to produce 2D
segmentation.

3D Fourier Encoder

Figure 3.5 shows the detailed structure of the 3D Fourier encoder. The 3D Fourier

encoder takes in 4D data with one axis for number of channels. In Figure 3.5, it shows

an example of a 3D volume in size (25,25,100) with 4 channels. All the 2D convolutional

operations used in original W-Net are replaced by the 3D octave Fourier convolution and

the original 2D pooling layers are replaced by the 3D Fourier pooling layers as well.

Divided by the bottleneck block, the left side is the down-sampling sub-component. Similar

to the original encoder in W-Net, each stage in down-sampling path consists of one 3D

octave Fourier convolution and one 3D Fourier pooling operation besides the first stage. The
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Figure 3.5: 3D Fourier Encoder of Revised W-Net. Arrows indicate an operation. Green
arrows are first/last year of octave convolution that breaks full feature map into low and
high frequency blocks or combines low and high frequency blocks back to one full feature map.
Blue arrows indicate 3D octave Fourier operation. Red arrows indicate 3D Fourier pooling
operation. Yellow arrows indicate transpose 3D octave Fourier operation. Gray arrows are
skip layers same as those in original W-Net. Each octave block contains two feature maps
boxed by dash lines.

transition from one stage to another is by applying one 3D octave Fourier convolution that

doubles the number of channels. This continues until we reach the bottleneck. Each set of

feature maps obtained right before the pooling layer of each stage is saved. Going from the

bottleneck, we have the up-sampling sub-component. In each stage of the up-sampling path,

the input feature map from previous stage will be concatenate with the corresponding feature

map saved in down-sampling stage, providing extra support for the process of up-sampling.

Then one 3D octave Fourier convolution is applied to shrink the number of channels to half.

Each stage except the last layer is linked by applying the transpose 3D Fourier convolution
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which doubles the size of the feature for all axis other than the channel axis and shrink

the channel size by half. Last layer of the up-sampling path combines the high and low

frequency components to produce one three dimensional embedding for the original data

with K channels. In the actual application, we set K = 1 because we only want to get a 3D

embedding of the cilia in frequency domain via Fourier infused W-Net.

Data Transform

In the video normalizing and patching section under data pre-processing, we discussed

how we prepare our original video data into 100 patches of volume size (100, 25, 25) with

channel of 4. It is mentioned that the 100 patches are seen as 100 batches and will be input

into our network together at once and we will only input this 100 patches for one video for

each batch. The reason why we say the meaning of batch is a bit different is that for the

3D Fourier encoder which produces the 3D embedding for the cilia, we want to see these

100 non-overlapping patches as being independent and identically distributed (i.i.d). This is

the characteristic of normal batches. However, going from 3D frequency domain to the inner

2D segmentation network, we want to put these 100 spatial patches back to the original

(250, 250) sized frame with time length of 100. So that we can combine all the local spatial

information we explored in the 3D Fourier encoder and look at the global spatial picture. In

this sense, the 100 patches are not independent and identically distributed (i.i.d) after the

transformation.

So the data transform is straightforward. The output from 3D Fourier encoder has size

of (100, 100, 25, 25, 1) meaning we have 100 “batches” of (100, 25, 25) volume data with

channel size 1. We use tf.contrib.signal.overlap_and_add(patches, step) to put back

the spatial patches. This function is the inverse of the frame function we used to make the

patches and we need to make sure the step is the same size as what we used for patching

so that we can get the correct size back and we need to apply it three times as we did for

patching. The size of the result feature map should be (1, 100, 250, 250). The time axis now
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becomes the channel axis and the 2D segmentation encoder is expect to explore the spatial

information for each frame and compress the information along the time axis to produce the

correct segmentation map simultaneously.

Loss Function

As is shown in Figure 3.4, we calculate the reconstruction loss and soft n-cut loss as

our loss function. However, a little difference from the soft n-cut loss in the original W-Net

where they compute the soft N-cut loss between the network input and the segmentation

output, we use one frame from the original video unframed to compute the soft N-cut loss

against the segmentation result. This is because the soft N-cut loss has assumption that

pixels that look similar and are closer to each other are more likely to be in the same class.

However, after transforming our data into frequency data with Fast Fourier transform, such

assumption does not hold in frequency domain any more. We have to go back to the raw

video frame where such assumption holds to calculate the soft N-cut loss. Therefore, our loss

function can be written as:

Jrecon = MSE(X, X̂)

= ||X − UFourierDec(UsegNet(UFourierEnc(X;WFourierEnc);WsegNet);WFourierDec)||22

Jtotal = Jrecon + Jsoft−Ncut

Post-processing

However, the problem of increased variance and large receptive field can lower the local-

ization accuracy despite of the proven success in capturing high level feature representation

of the input data for CNNs. Although the soft N-cut loss can help with the localization of

object boundaries, in [11], it has been proven that with the applying a fully connected Condi-

tional Random Field (CRF) after last layer of the encoder can largely improve segmentation
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with fine-grained boundaries.

Given the fact that we have an input image I with n pixels and a segmentation task

with K classes, in fully connected CRF, a segmentation is modelled as a random field

X = {X1, ..., xN} where each Xi takes one of the class values meaning the label of pixel

i. Therefore, solving argmaxP (X|I) gives a segmentation mask X given the input image I.

P (X|I) is modelled as a Conditional Random Field as Boltzmann distribution [18]:

P (X = x̂|I) ∝ exp(−E(x̂|I))

Therefore, solving argmaxP (X|I) is equivalent to solving argminE(x̂|I). The energy

function is given by [11, 18, 19]:

E(x̂|I) =
∑
i≤N

u(x̂i|I) +
∑
i6=j≤N

ψp(x̂i, x̂j|I)

where function ψu(x̂i|I) is called the unary potential and can be calculated as ψu(x̂i|I) =

− log p(u) where p(u) is the label probability calculated by softmax layer in the encoder

[18, 19].

The function ψp(x̂i, x̂j|I) is called pairwise potential which uses weighted sum of two

Gaussian kernels to measure the penalties when two pixels are assigned with different

labels[18, 19].

ψp(x̂i, x̂j|I) = µ(xi, xj)(w
(1)kα + w(2)kβ)

= µ(xi, xj)(w
(1)exp(−|pi − pj|

2

2θ2α
− |Ii − Ij|

2

2θ2β
) + w(2)exp(−|pi − pj|

2

2θ2γ
))
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µ(xi, xj) is label compatibility function. A widely used compatibility function is the Potts

model µ(xi, xj) = |xi 6= xj|. The first Gaussian kernel kα is the appearance kernel defined in

terms of the color vectors Ii and Ij and positions pi and pj with the assumption that nearby

pixels with similar color are likely to be in the same class. The second Gaussian kernel kβ is

the smoothness constrain that is aimed at removing small isolated regions. Parameters θα,

θβ, θγ and weights w(1), w(2) are all learnable [18, 19].

3.4 Revised Fourier U-Net for Partial Video Reconstruction - Second

Model

In previous section, we discussed the revised Fourier W-Net model with the application

of Fourier operation and octave blocks. This in theory allows the model to be able to work

entirely in the Fourier frequency spectrum and retrieve rich information encoded in the

frequency domain. Since the texture of cilia yields distinctive frequency in 2D spatial domain

and the natural beating behavior yields special frequency in time domain, combining spatial

information and time information simultaneously and working directly in 3D with the revised

Fourier W-Net model should help to classify the distinctive cilia frequency and give us a mask

of areas that correspond to cilia.

However, there are a few problems with such design. First of all, the intention of classifying

the frequencies that belong to cilia might result in losing the information of shape and

location of the cilia area in each frame. Secondly, following the convolutional theorem, we

replaced the normal convolutional operation with the point-wise multiplication of the whole

feature map and kernel of the same size. Since the data we use is magnitude data which

means, ideally, we should be dealing with positive numbers all the way through the entire

network. The activation function ReLu should not affect the backward signal a lot. This

means that when the back-propagation process starts, the gradient can easily explode or

vanish because of the successive multiplication along the way.
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Therefore, the partial video reconstruction model is proposed to deal with such problems.

The overall concept of this approach is to use a supervised approach to introduce information

of shape and location of the cilia and ask the network to reconstruct the corrupted version

of the original video given the original video where any area what is not cilia is masked

out. We still work entirely in frequency. However, changing the information in the original

video will affect vastly on frequency domain and such affect is not some simple masking but

change magnitude across the frequency domain. Therefore, we cannot treat this problem

as a classification problem but a reconstruction problem to reconstruct the masked video.

Since we are working entirely in frequency domain, we need to get real and imaginary parts

separately in the output instead of just magnitude.

3.4.1 Data Preparation

In order to adapt to the new model, we need to prepare another version of data. First

of all, we need to preserve both the real and imaginary part of frequencies. Remember

Heisenbergs uncertainty tells us to make patches out of the original video in order to ensure

some degree of localization. Therefore, the same patching approach is applied first and Fourier

transform is used to transform the original video patches to frequency domain. However,

instead of calculating the magnitude of frequency, we keep real and and imaginary part

and store them as our data. To conclude, after reshaping our original videos to 250 × 250

for each frame, we patch along the first two axis, namely making patches on each frame

with no overlapping and then patch along the time axis with 50 steps overlap. Again, we

treat the patching along time axis as channels. Therefore, we have patched data of size

(100, 25, 25, 100, 4) (i.e. (numberOfPatches,W,H,D, inChan)).

For the input data, the raw video is patched with the aforementioned approach. Then

Fourier transform is apply and DC components are shifted along D,W,H axis afterwards.

At this point, we have data with size (100, 100, 25, 25, 4) and with complex numbers. From

here, we can simply extract the real and imaginary part with .real and .imag to numpy
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arrays. Then, we’ll have an array of real part of the frequency with size (100, 100, 25, 25, 4)

and an array of imaginary part of the frequency with the same size. The array of imaginary

part is appended to the array of real part. Therefore, the final data size is (200, 100, 25, 25, 4).

For the ground truth output data that we need for the supervised approach, we need to

use the mask data to mask out the non-cilia part in the video. Then the same approach is

used to get the final output data size of (200, 100, 25, 25, 4).

In terms of the way used to normalize the data, we choose to normalize the real and

imaginary part separately.

3.4.2 Revised Fourier U-Net for Reconstruction

The detailed introduction of the original U-Net network structure will not be discussed

here since we have come across the same topic couple of times in the previous sections. Here,

we will discuss the minor change in the Fourier convolutional operation that we made to

adjust it to work with our new goal and data. Similarly to the previous Fourier convolutional

operation, we use convolution theorem to convert the traditional convolution to Fourier

convolution, namely, using point-wise multiplication on the frequency domain. This time,

however, instead of utilizing how magnitude of complex numbers react to multiplication, we

directly look into how the real and imaginary part communicate during multiplication of

two complex numbers. For example, assume we have two complex numbers M = a+ bi and

N = c+ di, multiplication of the two complex numbers will be:

MN = (a+ bi)(c+ di)

= (ac− bd) + (ad+ bc)i

Recall we stored the real and imaginary part of the patches. Therefore, assume the

data with size (200, 100, 25, 25, 4) is F , we already know that the first half is real part and
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second is imaginary part. Therefore, we can easily restore the original complex frequencies

by F [: 100, :, :, :, :] + F [100 :, :, :, :, :]i. Then, in the network, we can initialize two kernels to

represent real and imaginary part. Then calculate the real and imaginary part separately

like above and again, store the results by appending the imaginary part to the real part,

resulting in the output array of same size (200, 100, 25, 25, 4). This way, we avoid the trouble

that Tensorflow does not support complex numbers for back-propagation. Note here we

excluded the batch axis since it is handled the same way as discussed before and is irrelevant

to what we address here.



Chapter 4

Experiments

4.1 Dataset

Our dataset consists of 325 medical videos. Each has different frame size and time length.

Only primary cilium is included in our dataset. Our dataset contains several different types

of cilia motion with different beat frequency and different beat pattern. This includes cilia

with healthy beat pattern as well as unhealthy pattern including wavy or stiff pattern. An

example of each beat pattern is provided in Figure 4.1.

Remember our model uses 3D model. The reason why we want to work in the 3D dimension

is that we want to work in the spatial and temporal information simultaneously. Figure 4.2

show the three orthogonal panels for cilia with those three beat patterns. It clearly shows

the difference of the temporal information between those cilia of different patterns. For the

healthy cilia, temporal information in the cilia area shows strong repeated periodic response

that is highly coordinate across the whole cilia area. Both the beat frequency in time domain

and the texture in spatial domain will both have strong peak in the frequency of their separate

dimension. Therefore, this supports our theory that by working directly in 3D domain, the

strong frequency that correlates to 1D temporal information and 2D spatial information

will be mapped to one 3D frequency. Therefore, by analysing and looking for the strong

characters in the 3D frequency domain should be able to help us pin point the areas that

belong to cilia. Hence, this should help the network to produce the segmentation mask for

cilia area. However, for the wavy cilia, the response in temporal domain is somewhat periodic

but not coordinate which causes the chaos in the kymograph images. In terms of the stiff

cilia, there is little response in the time domain.

38



39

Figure 4.1: Three Types of Cilia Motion
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Figure 4.2: Three Orthogonal Panel Slices of Cilia. (a) one frame of healthy cilia example;
(b)/(c) corresponding health cilia kymograph; (d) one frame of wavy cilia example; (e)/(f)
corresponding wavy cilia kymograph; (i) one frame of stiff cilia example; (g)/(h) corre-
sponding stiff cilia kymograph.
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The Fourier frequency data also supports our theory. Figure 4.3 shows an example of

three sample points from a video in the dataset with healthy cilia. There are chances that

the cell itself will move along with the cilia. Therefore, the change of root part of cilia and the

change of the cell in time domain will be similar. Hence, looking at time domain alone cannot

solve our problem. In the case when we use 3D Fourier transform, we consider signals both

in spatial and temporal domain. Since cross correlation is the way of comparing similarity

between signals, Figure 4.4 shows the cross correlation results between the patches that

contains those three sample points. Although, as excepted, the difference along slice of time

domain is minor, the slice of cross correlation in spatial shows significant difference between

root and cell patches.

4.2 Results and Discussion of Problems

The results are not as satisfactory as we hoped for. There are couple of different problems

that can lead to such results.

4.2.1 Overfitting/Underfitting

For the pixel-wise classification model (first model), with the standard design discussed

in 3.3.2, the training loss goes down nicely as shown in Figure 4.5. However, the testing loss

goes to infinity quickly after 2 to 5 epochs. From such behavior, it seems that there is a

significant overfitting problem.

This can be explained by the design of the revised Fourier W-Net for segmentation. In our

theory, the convolution operation is done by point-wise multiplication. If we denote feature

map after convolution operation as Y n (n >= 1) where n is the number of layer and denote

W n (n >= 1) as the kernel used in each convolution layer. Note that X is the input to the

model and act(.) is activation function.
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Figure 4.3: An example of why time domain only does not work. (a) One video frame with
patch grid and three sample points; (b) Corresponding mask with patch grid and three
sample points; (c) Change of pixel value for the three sample points
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Figure 4.4: Correlation between patches containing the three sample points: An example of
why 3D Fourier transform works better
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Figure 4.5: MSE Loss of Revised Fourier W-Net for Segmentation. Upper: Without weight
regulation; Lower: With weight regulation
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Ŷ 1 = act(XW 1)

:

Ŷ n = act(Y n−1W n)

i.e. Ŷ n = act(...act(act(XW 1)W 2)...W n)...)

Note that data we use is magnitude which means it is all positive. Also, we use ReLu

as activation function. Since ReLu returns exactly the same input when it is positive (i.e.

y = x when x >= 0), this means Ŷ n ≈ XW 1W 2...W n. Therefore, when it comes to back

propagation and partial derivative, the successive multiplication of the kernels makes the

entire back propagation process unstable. The vanishing and exploding gradient problem

will be extreme. Hence the infinity of testing loss quickly after 2 epochs.

∂ 1
n

∑
n(Yi − Ŷ n

i )2

∂X
= − 2

n

∑
n

[(Yi − Ŷ n
i )
∂Ŷ n

i

∂X
]

We tried to apply L2 weight regulation after each layer and it solved the infinity testing

loss problem as seen in 4.5. However, the change of loss starts to move significantly slowly

within 100 epochs. Figure 4.6 shows the results of these two approaches from training stage.

However, for overfitting problems, the training results should be extremely good while testing

results are poor. In Figure 4.6, however, it seems that the model still works poorly in pro-

ducing segmentation mask. Therefore, this can very much be a underfitting problem instead.

4.2.2 Patching and Assumptions for Input

Our pre-processing requires to make 3D patches of the videos. Each input to the model is

the total 100 patches of a video. However, while inputting these 100 patches to the model as
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Figure 4.6: Mask result of the classification model with and without weight regulation

a batch, we actually make an assumption that we are treating the individual patches as i.i.d.

(i.e. independent and identically distributed). However, this does not hold. The patches with

cilia and those without are not identically distributed because such different characteristics

inspired our model to begin with. And patches of a video are not independent either since

pixels in an object are highly correlate.

However, without patching the video, our model could suffer from the problem in the poor

attention for localization. In addition, because of the requirement of point-wise multiplication

for Fourier operation, the kernel size is the same as the feature map. This means, without

patches, it takes up huge amount of memory. Also, before patching, we first resized all the

video frames into same size (250,250). This means the new pixel value has different meanings

from the original ones. This can also cause the artifacts in the results. A better approach

is to use the same patching methods on the original video completely removing the resize

steps.
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There is another concern with regard to the patchy behavior in the result from the first

model with weight regulation. The segmentation result might not caused by the patching

yet the segmentation result might still be the segmentation in frequency domain. Recall the

design of the first model, there is no explicit transform from the frequency domain to spatial

domain. The data transform block only resized data making time axis into channel axis so

that the inner 2D segmentation W-Net can squeeze down the information along time axis.

However, this way, even with the power of deep learning, still is not equivalent to inverse

Fourier transform which maps from frequency spectrum back to spatial spectrum. Therefore,

the result can still be the mask in frequency spectrum. Further investigation into the results

is still required to fully understand the problem.

In addition, the video data was treated as a big 3D volume where we apply 3D fast

Fourier transform to learn spatial and temporal information simultaneously. However, the

time axis can be conceptually different to the two spatial axes. It remains as a question that

whether it is appropriate to treat a video as a 3D volume.

4.2.3 Ways of Squeezing along the Channel

In our design, Fourier convolution operation is done the same as normal convolution

operation where, after applying one kernel, the entire feature map is added up together

along the channel axis to produce a feature map with one channel. The change of channel

size is then controlled by the number of kernels used in the process. However, doing the

same way may not hold for Fourier convolution. The Fourier convolution is defined by the

convolution theorem. However, such addition along the channel in frequency domain is not

entirely applicable.
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4.2.4 Memory Issue and Overparameterization

Last but not least, one of the biggest issue for Fourier convolution is the huge number

of parameters because we need to make kernel the same size as the feature map following

the convolution theorem. Comparing to tranditional convolutional neural network which

uses much smaller kernel size (i.e. 3× 3), Fourier convolution definitely requires much lager

memory. Therefore, it also suffers from the problem of Overparameterization which could

also be one of the reason for the severe overfitting/underfitting problem



Chapter 5

Conclusion and Future Work

In conclusion, we established a theory for introducing Fourier transform into a deep

learning model. We developed basic Fourier convolution operation that applies convolution

theorem to allow us work entirely in the frequency domain. We introduced octave convolution

to the Fourier convolution to help with the memory issue. In addition, revised Fourier W-

Net for segmentation is proposed. This model works in frequency domain and this model

is completely unsupervised with the application of n-cut to avoid small clusters. Another

revised Fourier U-Net for partial video reconstruction is proposed to deal with some potential

problems in the previous model.

There are still a few problems in the theory and models which cause bad performance

in the loss as well as the final segmentation from the network. It includes problems in four

main perspectives. First of all, the overfitting/underfitting of the model may be the most

important problem to look into. Secondly, the assumption on the data might also cause the

poor result. The patching method used to reduce the size might lead to the artifacts on

the result. In the design of Fourier convolution operation, the way of squeezing down along

channel axis can be different. Further proving for how different ways of squeezing influence

the parameter training process should be explored in future work. Last but not least, the

memory issue caused by the huge number of parameter should be dealt with in the future

work.

Future work should start with further analysis of the problem and results. Several prob-

lematic behaviors of model should be identified from the segmentation result. Other better

algorithm should be developed in the future work to avoid the successive multiplication in

49
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the model. Assumptions on the data should be carefully addressed to fit better in the model.

New methods to overcome the problem of artifacts in the result are also desired in the future

work.
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