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CHAPTER 1  

INTRODUCTION 

 
Remote sensing has been used in agriculture to map the health status of crops for 

many years. Early detection of crop stress is important for environmental and economic 

concerns. Crop stresses are influenced by plant biochemicals such as chlorophyll, and 

these biochemical contents can be estimated from spectral reflectance characteristics of 

plants (Hatfield and Pinter, 1993). This mapping procedure consists two stages: image 

processing and spectral data analysis. 

 
1.1 Image processing 
 

Two types of remote sensing technologies have been used in acquiring spectral 

images. One type uses broadband spectral imaging from aircraft or satellites. This 

approach has been successfully used for years. But its sensitivity is limited by the 

relatively low spatial and spectral resolution of the satellite images (Moran et al., 1997). 

This technique is suitable to monitor forest damage and crops grown in large areas.  

The other group is ground based, which use narrow spectral imaging bands with 

imaging cameras located just a few meters above the crop canopy (Carter and Miller, 

1994). Higher spatial and spectral resolution can be achieved with this approach. Recent 

literature has shown that the narrow bands may be crucial for providing additional 

information with significant improvements over broad bands in quantifying agricultural 

crops. 

A suitable multi-spectral imaging system is critical in order to apply spectroscopy 

technique at the plant canopy level. Recently, due to the advancement in optics and 
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computer miniaturization, researchers have integrated both satellite-based and ground-

based technologies. This combines the advantages of both narrow band and broad band 

spectroscopy techniques and encouraging results have been obtained.   

Evans et al.(1998) developed a hyper-spectral imaging system based on a liquid 

crystal tunable filter (LCTF) (See Figure 1-1). This system, which is used in this study, 

uses LCTF to achieve variable and narrow band filtering of the reflected light. Images are 

taken with video cameras located a few meters from the plants, achieving maximum 

spatial and spectral resolution. Several applications of this system for evaluating plant 

biochemical data and stress status have been reported (Thai et al., 1998, 2000). 

 

1.2 Spectral data analysis 
 

To map multi-spectral images of plants to their health status, spectral data 

extracted from these images are usually analyzed based on absorption/reflectance or 

fluorescence. A vegetation index is calculated using reflectance values under two or more 

spectral wavelengths according to different mathematic formulae. Usually vegetation 

indices are more sensitive than the reflectance at a single wavelength. 

To better understand the spectral reflectance characteristics of plants, a number of 

vegetation indices (VI) have been developed by remote sensing researchers. Vegetation 

indices such as NDVI, RVI have been widely used to quantify plant biochemical data and 

detect plant health status (see Wiegand et al., 1991; Thenkabail et al., 2000). 

Previous remote sensing research has identified the best wavelengths in the 

visible-near infrared spectrum for plant nitrogen content: the visible 534-640 nm and far-

red/NIR 680-750 nm wavelength ranges are found to be the most sensitive to plant 
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nutritional stress. The red edge between 680 nm and 750 nm, a sharp change in leaf 

reflectance was identified and used for stress detection (Filella and Penuelas, 1994). 

Different statistical models have been developed to determine the relationships 

between vegetation indices and plant biochemical data. Linear regression is commonly 

used to determine the basic relationships, while nonlinear models such as exponential 

models are applied to further improve fitting. Artificial Neural Networks have also been 

successfully used in spectral data analysis (Thai, et al., 1998). 

When dealing with various vegetation indices, comparisons among statistical 

models are usually needed in order to evaluate their performance. Simple enumeration 

(exhaustive search) is effective for a small set of data, but an optimal search strategy 

needs to be derived for a large set of data in order to save time or even make the analysis 

possible. 

Genetic Algorithm (GA), which imitates the process of natural selection and 

evolution, is an efficient search method. In GA, each individual is regarded as a potential 

solution for the current problem. GA works by generating a new generation through 

processes of evaluating, selecting, mutating and recombining of individuals. The 

evaluation and selection is based on the values of individual “fitness”. The optimal 

individual represents the best solution for the problem and will be eventually generated 

after a number of generations. GA is especially powerful when used in large, complex 

search space where exhaustive search is either difficult or impossible to do.  

In our study, we use both exhaustive search performed by conventional statistical 

methods and genetic algorithm search to identify optimum statistical models as well as 

optimal wavelengths. 



 4 
 

1. 3 Objectives of this study 
 

Our study aimed to determine the optimal vegetation indices and wavelengths that 

could be used in spectral imaging to best characterize the plant nitrogen stress levels. 

More specifically, the objectives of our work were: 

1. Develop statistical models to correlate the nitrogen stress levels of bush bean 

plant with vegetation indices based on different wavelengths. Identify the best 

model with the highest correlation using exhaustive search. The model 

development and the selection of the best model are performed in separate 

procedures. 

2. Implement a genetic algorithm that integrates all functions performed by the 

statistical models described above. The model development and model selection 

are performed in one procedure. 

3. Evaluate the performance of these two approaches based on runtime and 

accuracy. 

This thesis is organized as follows: chapter 1 is literature review. A detailed description 

of the research procedure is presented in chapter 3 and chapter 4. Chapter 3 covers 

objective 1 mentioned above while Chapter 4 covers objective 2. A summary of our study 

is given in chapter 5. Chapter 6 briefly introduces our future research direction.  Figure 1 

– 2 illustrates the outline of this study. 
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CHAPTER 2 

LITERATURE REVIEW 

 
This chapter introduces some remote sensing techniques for plant stress detection 

and described two spectral data analysis approaches used in our study: polynomial 

regression and genetic algorithm.  

 

2.1 Research background 
 
2.1.1 Research techniques for plant stress detection 
 
 Plants under stress usually do not function efficiently and certain biochemical 

changes can be detected using remote sensing technologies. Plant stresses are due to 

factors such as disease, nutrition deficiency and dehydration. 

 Two spectral methods are commonly used in remote sensing research: 

fluorescence and absorption/reflectance. It was found that the plant chlorophyll and blue-

green fluorescence generally increases under stress. Thus red + far-red chlorophyll 

fluorescence and blue-green fluorescence can be used in plant stress detection. 

Fluorescence techniques are best suited for characterizing transient photosynthetic plant 

functions (Ning et al., 1995, Gitelson et al., 1999). 

 The reflectance technique focuses on the relationship between plant reflectance 

and plant photosynthetic function. Stress due to stress factors such as nitrogen deficiency 

reduces chlorophyll and as a result, modifies reflectance. This reflectance response is 

spectrally similar among agents of stress and plant species. Based on the proposition that 

the amount of reflectance is a function of the amount of the biochemical contents in the 
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plant tissue, these biochemical contents can then be estimated by the measurement of 

reflectance. Reflectance techniques can measure more readily the permanent structures of 

the photosynthetic system such as chlorophyll and water content, which influence the 

survival and yield of the crop. A lot of successful research has been done with reflectance 

techniques, and good correlations between reflectance and many important biochemical 

variables such as biomass, nitrogen concentration and chlorophyll content have been 

found (Carter and Miller, 1994, Johnson and Billow 1996, Yoder and Pettigrew-Crosby, 

1995).   

 

2.1.2 Spectral characteristics important for stress detection 
 

Agriculture remote sensing is commonly applied in the visible, near-infrared and 

thermal infrared portions of the spectrum for quantifying the biochemical contents of 

healthy and stressed plants. Green plants absorb most of the red light but very little near 

infrared light from sunshine for photosynthesis. Therefore the sensor above the crop 

receives very little red light reflected from the crop. On the other hand, most near infrared 

light is reflected. Conversely, plants in stress such as nitrogen deficiency will often have 

less chlorophyll and appear to be chloretic or yellow and can thus be detected by a 

decrease in red light absorbance and infrared light reflectance. Due to this important 

feature, the red edge is typically used for stress detection (Fillela and Penuelas, 1994).  

 To enhance the plant stress signal, the measured spectral reflectance data from 

two or more spectral wavelengths are computed into vegetation indices according to 

different mathematic formulae. Most vegetation indices use the red spectral band, which 

represents the chlorophyll level, and the near infrared (NIR) band, which represents the 
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green vegetative biomass. These bands contain more than 90% of the information on a 

plant canopy. Many vegetation indices have been developed. Some very common used 

vegetation indices are listed in Table 2-1, among which the NDVI index is the most 

widely used index and has been found to perform best in several studies. 

Table 2-1 Some commonly used vegetation indices and their formulae 

 
Index      Formula 

Ratio Vegetation Index (RVI)   NIR / RED 

Normalized Difference    (NIR –RED) / (NIR + RED)  
Vegetation Index (NDVI) 

Nitrogen Reflectance Index (NRI)  (NIR/GREEN) / (NIR/GREEN) ref 

 

2.1.3 Optimum wavelengths and vegetation indices found by previous studies 
 
 Reflectance spectroscopy has been used to estimate nitrogen concentration and 

assist nitrogen management in agriculture and environmental research for many years. A 

number of optimal spectral bands and vegetation indices have been reported by previous 

studies. 

 Yoder and Pettigrew-Crosby (1995) reported that with first-difference 

transformations of log (1/reflectance), the spectral bands that correlated log 

(1/reflectance) highly with nitrogen concentration in the visible-near infrared (VIS-NIR) 

region were located at near 530-540 nm, 650 nm, 690 nm, 720-800 nm, 1200nm, 2070-

2210 nm. 

 Claude and Pierre (1991) studied the relationship between leaf reflectance and 

leaf nitrogen concentration of broadleaf tree seedlings at the 400-800nm region and found 
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that the highest correlations were measured in the red region of the spectrum at 

wavelengths 600 – 700nm. 

 In their studies of foliage, Johnson and Billow (1996) used NIR and visible 

diffuse reflectance spectral data scanned from 400 to 2498 nm. They identified the 2100-

2350 nm region as the optimum wavelengths by regression analysis.   

 Studies by other researchers also showed different wavelength selection. These 

differences could be explained by many factors, including differences in water content, 

plant anatomy, and the concentration of cell constituents. 

 In addition to the search for the optimum wavelengths by reflectance 

measurement, many studies have been done to search for the best vegetation index.  

Wanjura and Hatfield (1987) tested the sensitivity of three commonly used 

vegetation indices, RVI, NDVI and GVI (Greenness Vegetation Index), to crop biomass 

of four different species. It was reported that RVI was more sensitive to high levels of 

biomass and LAI (leaf area index). However, when crops were small, NDVI and GVI 

may be the best estimators of LAI and ground cover. 

Lawrence and Ripple(1998) examined the use of seven types of vegetation indices 

for predicting vegetation cover in field studies and found that among the ratio-based 

vegetation indices, the simple ratio (RVI) and NDVI performed best under conditions of 

high substrate and vegetation heterogeneity. 

 Thenkabail et al. (2000) compared three types of vegetation indices (NDVI, 

Optimum Multiple Narrow Band Reflectance (OMNBR), and soil-adjusted vegetation 

indices) and recommended twelve types of narrow band NDVI predicators for crop 

variables. They also showed that OMNBR had the “over fitting” problem. 
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 Studies by these researchers indicated that the performance of vegetation indices 

depended on which crop variable was to be estimated, the plant species, the atmospheric 

condition and optical properties of the soil background. Different vegetation indices 

should be selected for specific site studies. 

 

2.2 Statistical analysis: polynomial regression 

To determine the relationship between vegetation indices and an interested 

biochemical variable, it is usually necessary to perform regression or other statistical 

analysis.  

Regression is a way to study the relationships among variables. Simple linear 

regression models with a log-transformed response variable have been traditionally used 

in vegetation index studies (Anderson et al., 1993; Chen and Cihlar, 1996). Some 

previous studies using stepwise linear regression already identified some optimum 

spectral bands and vegetation indices and established some sensitive predicators (Yoder 

and Pettigrew-Crosby, 1995; Lawrence and Ripple, 1998; Thenkabail et al., 2000). 

Our study, however, adapted polynomial regression as the statistical analysis 

method. 

A regression model contains a number of independent variables X1, X2, …, Xn, 

which are used to explain or estimate some characteristics of the dependent variable. We 

can define the general linear regression model in terms of X variables as: 

Yi = β0 +  β1Xi1 + β2Xi2 + … + βn-Xin + εi 

Where: 

 β0, β1, …, βn are parameters (coefficients) to be determined 
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 εi are normal error terms 

 i = 1, 2, …, n 

 This general linear regression model with normal error terms encompasses a 

variety of situations. In general, the variables X1, … Xn do not have to represent different 

independent variables, which is the case for polynomial regression models. They contain 

squared and higher-order terms of the independent variable, making the response function 

curvilinear. The following is a polynomial regression model with one independent 

variable: 

Yi = β0 +  β1Xi + β2Xi
2 + … + βn-1Xi

n-1+ βnXi
n + εi 

The order of the independent variable is referred to be the degree of the polynomial 

regression model. 

 Polynomial regression models have two basic types of uses: 

1. When the true response function is a polynomial function. 

2. When the true response function is unknown (or complex) but a polynomial 

function is a good approximation to the true function. 

The second type of use, where the polynomial function is employed as an 

approximation when the shape of the true response function is unknown, is very 

common. 

To test the fitness of a polynomial regression model and compare the performance 

of different polynomial regression models, several statistical tests can be used, such as 

coefficient of multiple determination, partial F-Test, prediction error sum of squares 

(PRESS). The following is the formula for the coefficient of multiple determination: 
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R2 = 1 – SSE/SST 
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where p is the degree of freedom. 

 The use of polynomial models is not without drawbacks. Such models can be 

more expensive in degree of freedom than alternative nonlinear models or linear models 

with transformed variables (Neter et al., 1990). Fitting a polynomial regression with 

orders higher than three is rarely done as the interpretation of the coefficients becomes 

difficult and interpolation tends to become erratic. 

 Determining the relationship between vegetation indices and biochemical 

variables using polynomial regression has been reported by previous studies, and the 

results were generally better than simple linear regression models (Lawrence and Ripple, 

1998).   
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2.3 Genetic Algorithm 

Genetic algorithm (GA) is a powerful and widely applicable stochastic search and 

optimization technique. The GA search algorithm is inspired by genetic evolution and the 

process of natural selection.  

 For a particular problem, the genetic algorithm maintains a population of 

individuals for a generation. Each individual represents a potential solution to this 

problem at hand. Each individual is evaluated to give some measure of its “fitness”. 

Some individuals are transformed by means of genetic operations to form new 

individuals of the next generation. These new individuals are evaluated and transformed 

in a similar way. A new population is then formed by selecting the fittest individuals 

from the parent population and the offspring population. After several generations, the 

algorithm converges to the best individual, which generally represents an optimal 

solution to the problem. In summary, the population survive, breed, and change in a 

progression towards an optimal goal, similar to the natural selection and evolution 

process. Three typical operators in GA are called  selection, crossover and mutation. 

 Selection refers to survival of the fittest. Individuals in the current population are 

selected for high fitness and put into a mating pool for further operations. Selection 

directs genetic algorithm toward promising regions in the search space. 

 Crossover is the recombination of two individuals (parents) to form new 

individuals (children). Children contain information from fit parents and are usually 

equally good or better than the parents. 
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 Mutation randomly change the structure of an individual. It is a way to add new 

genetic material to a population. Its main purpose is to keep the population diverse during 

the search. Mutation is also used to help the GA avoid getting stuck at a local optimum. 

A typical generational GA can be illustrated by the following figure: 

 

                      Selection                  

                                           Crossover 

 

                     Selection                        Mutation                                      

                                 

                  Figure 2-1  Generational GA working procedure. 

 

The advantage of GA lies on its efficiency since it does not need to exhaust all 

possible search space to get the best solution. GA can handle discrete, continuous and 

mixed variable spaces and is relatively easy to implement. GA is also robust and less 

sensitive to noisy conditions.  

On the other hand, GA is a heuristic search, that is, it is a simplification or 

educated guess that reduces or limits the search for solution. Heuristics do not guarantee 

the optimal solution, or even feasible solution and are often used with no theoretical 

guarantee. Therefore GA will not guarantee to find the true optimal solution. GA is also 

relatively slower due to genetic operations and searching from a population, and thereby 

not suitable for easy problems. 

 
 
Generation 
        T 

C1 

C2 

Newborn 

 
 
Generation 
      T+1 
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GA is especially suitable for problems with multiple search variables and large 

search space. Problems with multiple constraints that must be satisfied at the same time 

can usually be solved by GA. The time saving in GA compared with exhaustive search 

for large search space problems is remarkable. GA-based programs have been applied to 

problems in optimization, machine learning and evolving system modeling. Many 

successful applications of GA search have been developed in industrial engineering in the 

past decades. Examples include the travel salesman problem, which gives the shortest 

path among many cities in a given order, the bin pack problem, which consists of placing 

a number of objects into a number of bins such that the total weights of the object in each 

bin does not exceed its capacity and the number of bins used is minimized, the airline 

crew scheduling problem, which assigns a set of m flights that must be flown over a 

given time period to a set of n crews to minimize the operation cost. Genetic algorithm 

usually performs a lot better than conventional search strategies in these problems.  
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CHAPTER 3 

STATISTICAL METHOD FOR DETERMINING 

OPTIMUM VEGETATION INDICES AND WAVELENGTHS 

 

To detect plant stress caused by nitrogen deficient, an important issue is to choose 

a sensitive vegetation index and related optimal wavelengths. Under these two conditions 

a good correlation between nitrogen stress levels and vegetation index can be established 

with more accuracy. Therefore first we need to develop a correlation analysis between 

nitrogen stress levels and vegetation index.  

In this chapter, after an introduction to the procedure of spectral data acquisition 

(image processing), we analyze these data using polynomial regression, develop 

statistical models, and select the optimum models by exhaustive search. 

 

3.1 Materials and image processing 

Bush bean plants (Phaseolus vulgaris L. var. Newport) were grown inside a 

greenhouse and in Perlite containers during the summer of 1997. There were 6 replicates 

of 4 treatments for a total of 24 plants. The plants were fed with a complete hydroponics 

nutrient solution except that nitrate and ammonium salt quantities were adjusted to 

provide 4 levels of nitrogen treatments: 30, 60, 90, 120 ppm (see Theisen et al., 1998 for 

cultural details). On day 47 after seeding, the plants were scanned by a multi-spectral 

imaging system from 695 nm to 795 nm in steps of 5 nm (from 760nm to 770 nm steps of 

2 nm were used), under natural sunlight and inside the greenhouse (see Thai et al., 1998). 
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Our spectral imaging system interfaced a Liquid Crystal Tunable Filter into a 

monochrome video imaging system. This system implemented a scheme for leveling the 

system response across wavelengths in the face of varying illumination, filter 

transmittance, camera lens aperture setting, and gain response (see Evans et al., 1998). 

Spectralon standard targets from Labsphere were used in our study. The nominal 

reflectance factors of the steps in the multi-step Spectralon targets were 2% reflectance 

for Black target and 99% reflectance for White target. These reflectance factors were 

used later in computing the reflectance factor of each plant canopy. The 99% target was 

used for the “control white” region of interest (ROI) when we scanned from 695 nm to 

795 nm. Our image scanning scheme was designed to maintain a given gray value for the 

“control white” ROI at all wavelengths by controlling the camera gain settings and the 

LCTF attenuation factor. 

For each of the 24 plants, NDVI images were computed from the scanned image 

at 695 and 760 nm with the following equation (see Carter and Miller, 1994; Wiegand et 

al., 1991): 

)695@Im760@(Im
)695@Im760@(Im

Im
nmagenmage
nmagenmage

ageNDVI
+
−=   (1) 

Figures 3-1 to 3-2 show the four NDVI images of bush bean plants under four 

different nitrogen treatments. One can see that the gray values of the plant canopy in 

these NDVI images became brighter with the increase of nitrogen concentration. 

Next, we isolated the pixels of the plant canopy using a simple gray value 

thresholding scheme to form a mask that will be used to extract the plant canopy pixels at 

all other wavelengths scanned images. During this image processing step, the mean gray 

value for each plant canopy GVPlanti at each wavelength λi was collected. Mean gray 
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values of ROIs positioned over the “control white” and “control black” standard targets 

were also collected and saved respectively as GVWhitei and GVBlacki for each 

wavelength λi. We defined RWhitei, RBlacki, RPlanti as the corresponding reflectance 

values for the “white” target, “black” target and the plant at each wavelength λi. Using 

calibration data from Labsphere for their standard targets, we could compute the values 

of RWhitei and RBlacki at any wavelength λi. Since the camera response was found to be 

linear (Evans et al., 1998), a correspondence could be made between the image gray 

values and the reflectance values of the objects involved. We could write the following 

equation for each wavelength λi: 

ii

ii

ii

ii

RBlackRWhite
RBlackRPlant

GVBlackGVWhite
GVBlackGVPlant

−
−

=
−
−

    (2) 

Then compute the reflectance value RPlanti as following: 
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ii
i RBlackRBlackRWhite
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RPlant +−
−
−

= )(*
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)(

 (3) 

 Using equation (3) we computed the percentage reflectance for 24 wavebands 

under 4 different nitrogen levels. Thus the following four vegetation index values can be 

calculated: 

 
21

21)_(
RR
RR

differencenomalizedNDVI
+
−

=     (4) 

 RVI (ratio) = R1 / R2                                                                        (5) 
 
 DVI (difference) = R1 – R2                                                              (6) 

 R (reflectance) = Ri                                                                           (7) 

 Here R1 and R2 corresponded respectively to the reflectance values under two 

different wavelengths ë1 and ë2.  
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Figure 3-1 NDVI image of Bush Bean plants @ 695 nm, 760nm, with nitrogen 

treatments 30 ppm (top) and 60 ppm (bottom) 
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Figure 3-2 NDVI image of Bush Bean plants @ 695 nm, 760nm, with nitrogen 

treatments 90 ppm (top) and 120 ppm (bottom) 
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3.2 Statistical analysis and exhaustive search 

3.2.1 Spectral reflectance characteristics  

Before locating individual optimum wavelength, we plot wavelengths versus 

reflectance values under different nitrogen treatments as a first step (see Figure 3-3). The 

wavelength portion of 695-750 nm had higher change in reflectance per wavelength unit 

difference than the other portions. The plot showed the typical ramp of the plant “red 

edge”, which is a region of high chlorophyll absorption in green vegetation. This is 

consistent with previous researches (Boochs et al., 1990; Fillela & Penuelas, 1994), and 

gives us a visual feeling of the location of the optimum wavelength.   
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Figure 3-3 Plot of percent reflectance vs. wavelength for plant1 under 

four nitrogen treatments 
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3.2.2 Computation of vegetation indices 

Statistical analysis need to be performed on individual band and index to identify 

the optimum wavelengths and vegetation indices. All possible two-bands wavelength 

combinations will be involved for each vegetation index. These combinations need to be 

computed before further correlation analysis. 

 Three distinct types of vegetation indices, NDVI, RVI and DVI, were computed 

from equations (4), (5), (6) using 24 spectral bands of percentage reflectance data. For 

each index, there are 276 (24 * 23 / 2) possible combinations of two different 

wavelengths, which were computed with a VBA (Visual Basic for Applications) macro 

program inside Microsoft Excel 2000. 

 For each vegetation index, we grouped combinations of all the four treatment 

levels and sorted them by wavelength. Thus we got 276 * 4 = 1104 sets of data, of which 

each set had 24 values (6 plants * 4 treatments) and represented the corresponding 

vegetable index values under four different nitrogen treatment levels. Polynomial 

regression analysis was then performed on each dataset. Table 3-1 shows the NDVI 

values of four nitrogen treatments for wavelength combination 695 nm and 760nm, and 

for each of the 6 plants tested.  

 

Table 3-1 NDVI (695 nm, 760nm) values for different nitrogen treatments  
 
wavelength plant1 plant2 plant3 plant4 plant5 plant6 treatment 

695, 760 0.676157 0.685291 0.673049 0.711778 0.69331 0.695768 30

695, 760 0.755439 0.787415 0.765097 0.766605 0.777407 0.770381 60

695, 760 0.765168 0.802903 0.793288 0.79669 0.840219 0.816067 90

695, 760 0.851377 0.814104 0.804599 0.809205 0.818001 0.848814 120
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3.2.3 Polynomial regression and exhaustive search 

Polynomial regression is a commonly used approximation method when the 

relationships between the independent variables and the dependent variables are 

uncertain. That is, the mechanism of the true response function is unknown. Visual 

examination of the plots of nitrogen treatments vs. different vegetation indices under 

wavelengths 695 nm and 750 nm from our dataset indicated that there was a non-linear 

relationship between nitrogen treatments and vegetation indices (see Figures 3-4 to 

Figure 3-7). We therefore fit the data with polynomial regression models. This was 

performed by using the software package Statistical Analysis System (SAS) version 8.0. 

 

NDVI vs. ppm Nitrogen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150

Nitrogen Concentration (ppm)

N
D

V
I

NDVI

 

Figure 3-4 NDVI vs. ppm Nitrogen under wavelengths 695 nm, 760 nm 
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RVI vs. ppm Nitrogen

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150

Nitrogen Concentration

R
V

I

RVI

 

Figure 3-5 RVI vs. ppm Nitrogen under wavelengths 695 nm, 760 nm 
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Figure 3-6 DVI vs. ppm Nitrogen under wavelengths 695 nm, 760 nm  
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Reflectance vs. ppm Nitrogen
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Figure 3-7 Reflectance vs. ppm Nitrogen under wavelength 695 nm 

 

Polynomial regression models are often fitted with the hierarchical approach in 

which higher powers are introduced one at a time and tested for significance, and if a 

term of a higher order is included (say, x3) then all terms of lower order (x and x2) are 

also included. We started with first degree polynomial and increased the polynomial 

powers until the fourth degree.  

The Adjusted coefficient of multiple determination (adjusted R2) for all possible 

two-band vegetation indices were determined and sorted. The model selection criteria 

were set to both maximize adjusted R2 and keep the P value significant (P value < 0.05). 

Residual and data plots were also used to guide regression analysis and model selection. 

Optimum bands and indices were obtained by comparison among the adjusted R2 values 

of all significant models. This was essentially an exhaustive search procedure because it 

compared adjusted R2 for all possible wavelength combination of four different 
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vegetation indices. The best statistical model for each vegetation index with the 

corresponding adjusted R2, wavelengths were listed in Table 3-2. 

Table 3-2 Optimum spectral bands and regression models for nitrogen 

treatments against individual vegetation indices 

 
Index  best bands (nm) adjusted R2  regression model 

NDVI  710, 720   0.9096              NDVI=0.087+0.02ppmN-0.67E-5ppmN2 

RVI  700, 750  0.9144              RVI = 0.29 – 0.003ppmN + 0.00001ppmN2  

DVI  715, 750  0.8715   DVI = 0.11 + 0.002 ppmN 

Reflectance 700   0.7276   Reflectance = 0.17 – 0.0007 ppmN 

 

 From Table 3-2, DVI and Reflectance were simple linear regressions, while the 

final models for NDVI and RVI included second-degree polynomials. These four final 

models were plotted in Figures 3-8 to 3-11.  

All vegetation indices under the corresponding best wavelengths correlated well 

to nitrogen treatments. The adjusted R2 values ranged from 0.7276 to 0.9144. NDVI and 

RVI performed better than the other two indices. This was consistent with Lawrence and 

Ripple’s study (1998). The best wavelengths identified were: 700 nm, 710 nm, 715 nm, 

720 nm, 750 nm, which were also close to those found by some other researchers 

(Tucker, 1979; Yoder and Pettigrew-Crosby, 1995; Thenkabail et al., 2000).  

The overall results of this comprehensive analysis were illustrated in contour plots 

of the R2 values for each wavelength pair (see Figures 3-12 to 3-14). An examination of 

these results for different vegetation indices showed a remarkable strong relationships 

region center at the red-NIR 695 nm to 750 nm.  
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Figure 3-8 Relationship between NDVI and nitrogen concentration under 

wavelengths 710 nm and 720nm 

 

 

Figure 3-9 Relationship between RVI and nitrogen concentration under 

wavelengths 700 nm and 750nm 
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Figure 3-10 Relationship between DVI and nitrogen concentration under 

wavelengths 715 nm and 750nm 

 

 

Figure 3-11 Relationship between reflectance and nitrogen concentration under 

wavelengths 700nm 
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Figure 3-12 Contour plot showing the correlation (R2) between nitrogen 

concentration and NDVI values calculated for 276 wavelength combinations. The 

area filled with solid line indicates the region with high R2 values (R2 > 0.874) 
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Figure 3-13 Contour plot showing the correlation (R2) between nitrogen 

concentration and RVI values calculated for 276 wavelength 

combinations. The area filled with solid line indicates the region with 

high R2 values (R2 > 0.876) 
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Figure 3-14 Contour plot showing the correlation (R2) between nitrogen 

concentration and DVI values calculated for 276 wavelength 

combinations. The areas filled with solid line indicate the region with 

high R2 values (R2 > 0.844) 
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3.2.4 log-transformed polynomial regression 

Regression models with a log-transformed response variable (log-transformed 

models) were used in many previous studies and were reported to perform better than 

non-transformed model (Yoder and Waring, 1994; Anderson et al., 1993). In our study, 

we also developed log-transformed polynomial regression models and selected the best 

model by exhaustive search to see if we could improve regression results. 

Using the same spectral reflectance data, we first calculated the inverse-log of 

vegetation indices (log 1/VI), then each data set, which represents the log-transformed VI 

under four nitrogen treatments for a specific wavelength pair, was fitted with first, 

second, third and fourth degree polynomial models. The general regression formula was: 

log (1/Y) = β0 +  β1X + β2X2 + … + βp-1Xp-1+ βpXp  + εi 

Where p indicated the degree of polynomial. The model selection criteria and the 

exhaustive search procedure were the same as those described in section 3.2.3. 

Table 3-3 shows the result for the log-transformed polynomial regression. The 

final regression model for NDVI under wavelengths 710 nm and 720 nm explained 

substantially more variation than the other three vegetation indices, with an adjusted R2 of 

0.9167. NDVI, RVI and DVI were second-degree polynomial regression. Reflectance 

was a simple linear regression. All models were statistically significant, and the adjusted 

R2 values ranged from 0.7294 to 0.9167. 

Comparing results of Table 3-2 and Table 3-3, we found that log-transformation 

could improve regression results for NDVI and DVI, but did not improve the 

performance of RVI. The optimum wavelengths and polynomial models selected by both 

approaches were similar except for RVI. 
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Table 3-3 Optimum spectral bands and regression models for nitrogen 

treatments against individual log-transformed vegetation indices 

 
Index  best bands (nm)      adjusted R2  regression model 

NDVI  710, 720  0.9167           log1/NDVI=2.28-0.013ppmN+0.00005ppmN2 

RVI  710, 720  0.9087  log1/RVI=0.17+0.04ppmN-0.00001ppmN2 

DVI  715, 750  0.9138  log1/DVI=2.39-0.02ppmN+0.00009ppmN2 

Reflectance 700   0.7294  log1/Reflectance  = 1.27 + 0.006ppmN 
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CHAPTER 4 

GENETIC ALGORITHM FOR DETERMINING 

OPTIMAL WAVELENGTHS AND VEGETATION INDICES 

 

 In this chapter, we applied genetic algorithm to perform statistical analysis and 

model selection. The problem formulation, GA working procedure, and experimental 

trials will be described in different subsections. We also discussed the experimental 

results and compared GA’s performance with the SAS procedure obtained in the previous 

chapter based on accuracy and runtime.  

 
4.1 GA search system architecture  

To identify the best wavelengths, vegatation index and regression model, the 

complete spectral reflectance data were fed as input to the GA, from which some datasets 

were randomly chosen. Each dataset represented vegetation index values of different 

nitrogen treatments under a particular wavelength pair.  Each dataset was then evaluated 

by the fitness function. The fitness function performed statistical analysis and returned a 

value as a measure of merit of the current regression model. The GA search was directed 

by the fitness selection and went toward the more optimal (fit) direction until it found the 

optimal solution. The overall GA search system architecture is illustrated in Figure 4-1. 

In general, a genetic algorithm has the following components (Michalewicz, 

1996): a genetic representation of solution to the problem, a way to create an initial 

population of solutions, an evaluation function rating solutions in terms of their fitness, 

genetic operators that alter the genetic composition of offsprings during reproduction and 
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values for the parameters of genetic algorithm. We formatted our problem based on these 

components. 

 

 

                                                                 fitness    

                                                                  

 

Figure 4-1 Outline of the Genetic Algorithm search process 

 

4.2 Problem formulation 

1. Representation 

A vector of integers was used to represent a GA individual. Individuals 

were encoded by integer permutation. The goal of the GA was essentially to 

search for a permuted individual that best satisfied all the problem constraints. 

Each individual consisted of four variables. The first and the second represented 

the two wavelengths, the third represented vegetation index type, the fourth 

represented the regression model (i.e. the degree of the polynomial), as shown in 

Figure 4-2. 

 

Gene         1                     2                       3   4 
      
String 
 

Figure 4-2 A GA representation for an individual. 

 

wavelength1  wavelength2   vegetation index   regression model 

Spectral 
data 

  GA Best wavelengths 
Best index type 
Best model type 

   Fitness 
  function 
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The values of wavelength1 and wavelength 2 range from 1 to 24, which 

represent all 24 spectral bands used in our study. The values of vegetation indices 

range from 1 to 4, with each representing one type of vegetation index. The values 

of regression model range from 1 to 4, which represented first, second, third and 

fourth degree polynomial regression models. 

An example of an individual could be {1, 12, 2, 3} where (1, 12) meant 

the first wavelength (695 nm) and the twelfth wavelength (750 nm), 2 meant RVI, 

and 3 meant third degree polynomial regression. 

2. Fitness function 

The fitness function took two wavelengths, one vegetation index type and 

one regression model type as input. It then selected all reflectance values (i.e. all 6 

tested plants) under four nitrogen treatments by the two wavelengths. Depending 

on the type of the vegetation index, the vegetation index value could be computed 

by equations 4, 5 or 6. This gave a set of data which could be used for regression 

analysis. After computation similar to the polynomial regression procedure with 

the specified degree (Younger, 1979), the fitness function returned a value that 

represented the correlation between the nitrogen treatments and the vegetation 

index chosen. This value is based on the adjusted coefficient of multiple 

determination (adjusted R2). Since the adjusted R2 value varied from a very 

narrow range of 0 to 1, the selection pressure towards the optimum was small. 

This problem was called “poor scaling” (Goldberg, 1989). We multiplied the 

value of adjusted R2 by 1000 as the measurement of fitness before the individual 
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input was evaluated. The objective of GA was to maximize the thus modified 

adjusted R2. 

Note that another statistical test, the P value, which indicates whether a 

model is significant or not, should also be considered as a model selection 

criterion since a non-significant statistical model (P value > 0.05) was 

meaningless. But the computation of the P value was too complex to be 

implemented in our current system. Therefore we use only adjusted R2 as the 

regression model selection criterion, i.e, the measure of merit of the fitness 

function.    

3. Selection 

 In GA, selection means survival of the fittest. The effect of selection is to 

gradually bias the sampling procedure toward individuals whose fitness is 

estimated to be above average. Over time, the fitness of the population will 

become more and more optimal. Some commonly used selection types are 

Roulette wheel selection, Tournament selection, Rank and scaling. The Roulette 

wheel selection (Holland et al., 1986) was used in our study since it was relatively 

easy to implement. This method reproduced a new generation proportional to the 

fitness of each individual. A model roulette wheel was made to display fitness 

probabilities of individuals. The selection process was based on spinning the 

wheel the number of times equal to population size, each time selecting an 

individual for the new population. The drawback of this selection method was that 

early on there was a tendency for a few super individuals to dominate the 

selection process. Later on, when the population was largely converged, 
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competition among individuals was less strong. Strategies such as fitness sharing, 

fitness scaling to be described later can be used to overcome this drawback.  

4.  Operators 

a. Crossover operator: Crossover operator is the major operator of GA 

(Goldberg et al., 1993). It changes the composition of offspring by 

exchanging and recombining genes of parents. There are several crossover 

operators such as point crossover, random crossover and uniform 

crossover. Figure 4-3 illustrates single point crossover used in our study, 

which involves cutting the chromosomes of the parents at a random point 

and exchanging the sub-chromosomes of parents. 

Crossover        Crossover 
   Point          Point 
 
      

Parents  3 6 2 3           7 4 1 2 
 

Offspring  3 6 1 2           7 4 2 3 
 
  

Figure 4-3  Single point crossover 
 

b. Mutation operator: the mutation operator mutates one or more genes in an 

individual and randomly changes the individual. It is used together with 

crossover to explore the entire solution space and to avoid local optimum. 

Mutation also prevents the loss of diversity in the population. It is usually 

used as a background operator to overcome some drawback of crossover. 

Some commonly used mutations are random mutation, uniform mutation, 

and boundary mutation. Figure 4-4 shows the random mutation operator 

used in our study. 
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    mutation site                                    mutation site 

 
                                                                                                                                                                                                        

          8521                                                 8531 
 

Figure 4-4 Random mutation operator 
       

4. Repair 

Using integer permutation encoding for individual representation, 

infeasible or illegal individuals can be generated during population initialization, 

crossover or mutation. Infeasible individual refers to the individual lying outside 

the feasible solution region of a given problem. Illegal individual refers to 

individual that does not represent a solution to a given problem (Gen and Cheng, 

2000). For example, an individual {3, 3, 2, 1} was generated in our problem by 

integer permutation. This was an illegal individual and did not represent a 

solution to our problem because the first two numbers should represent two 

different wavelengths and should not be identical when vegetation index 2 (RVI) 

was used. 

Integer permutation encoding also leads to redundant individuals. For 

example, individual {1, 2, 3, 2} and individual {2, 1, 3, 2} are essentially the 

same individual since wavelength pair 1-2 and 2-1 are identical for vegetation 

index value computation. They map into the same solution for our problem. 

Repair techniques are usually adopted to solve the above problems. GA 

can be improved by adding a repair operator that applies certain constraints to 

individuals. These constraints convert an illegal individual to a legal individual 
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and ensure that no redundant individual is generated. Some examples of repair 

operation are: 

{3, 3, 2, 1}   à    {3, 3, 4, 1} 

{1, 5, 4, 2}   à    {1, 5, 2, 2} 

{5, 1, 2, 3}   à    {1, 5, 2, 3} 

In the first two examples illegal individuals are converted to legal ones. In 

the third example a redundant individual is repaired to avoid duplication. After 

repair operation, only legal and unique individuals are kept, resulting in a reduced 

search space and better performance. 

5. Special GA operations 

To make the GA more robust and efficient, in addition to the conventional 

operations such as selection, crossover, mutation, three “safeguard” operations 

were used in our program to avoid local optimum and maintain population 

diversity. 

a. Fitness scaling: this was done to keep appropriate levels of competition 

throughout a simulation. This operation applied linear scaling on the raw 

fitness value. We simply calculated the scaled fitness f' from the raw 

fitness f using a linear equation: 

f' = af + b 

The coefficients a and b could be calculated based on the number of 

expected copies desired for the best population member, which was 

denoted by c. They were chosen to enforce equality of the raw and the 

scaled average fitness and cause the maximum scaled fitness to be a 
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specified multiple of the average fitness. In our study, c was set to1.8, a 

and b were calculated according to different mathematic formulae (see 

Goldberg, 1989 for calculation details). 

On the early stage, fitness scaling prevented the early domination of 

extraordinary individuals. On the later stage, it encouraged a healthy 

competition among near equal individuals.     

b. Fitness sharing: if a population contained identical individuals, only one of 

them received the fitness value calculated in the normal way, the others 

were assigned degraded fitness to reduce their reproductive abilities. In 

our program, we defined the fitness decreasing factor as the percentage of 

decreased fitness to be applied, which was provided by the user. In our 

study, the fitness decreasing factor was set to 10%. Identical individuals 

received degraded fitness base on the fitness decreasing factor. 

Fitness sharing helped to maintain the population diversity, and reduce the 

chance of a whole population being dominated by a single, relative 

superior individual. 

c. Diversity restoration: this operation monitored the evolution process of 

GA. When it found that there was not any progress in the recent n 

generation (n was provided by the user), it automatically applied mutation 

on the population. This mechanism reduced the tendency for GA to get 

stuck at a local optimum. 
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6. Termination criterion 

GA converges when a target value was reached or certain convergence 

criterion was met. GA could also be stopped when the maximum number of 

evaluations has been exhausted. Two termination criteria were used to in our 

problem: 

a. The GA stopped when this condition was met: average fitness / maximum 

fitness > t in the population, where 0.95 < t < 1. In our experiment, t was 

set to 0.98. At this point the population loses diversity and practically 

converges to a single point in the search space. 

b. A target value (which is the best adjusted R2 value found by the SAS 

procedure) is given to GA. The GA will not stop until it finds this target 

value. 

7. Evaluation  

The evaluation of GA’s performance is based on how long it takes to find 

the optimal solution and how good is the solution. Since CPU time depends on 

each individual computer’s hardware and operating system, we use iteration 

number to measure the speed of convergence. One iteration means one call to the 

fitness function from a unique individual, which corresponds to one execution of 

a specific degree of polynomial regression in the SAS procedure. Using 

termination criterion a described above, the difference between the adjusted R2 

found by GA and the one provided by SAS is a good indicator for GA’s 

performance. Using termination criterion b, iteration number for convergence can 

be used to evaluate the performance of GA. 
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4.3 Genetic algorithm working procedure 

The genetic algorithm approach to determine optimum wavelengths and 

vegetation indices works as follows: 

1.   Generate an initial population of N random solutions. Set the generation 

number to T.  

2.   Select two solutions, P1 and P2, from the population using Roulette Wheel 

selection. 

3. Combine P1 and P2 to form a new solution, C, using the single point crossover 

operator. 

4. Mutate C randomly with the random mutation operator. 

5. Make C legal and non-redundant by applying the repair approach. 

6. Repeat steps 2 to 5 to generate a new offspring population of the same size N. 

7. Sort generation T and its offspring by the fitness values.  

8. Construct generation T+1 by keeping g% solutions on the top of generation T 

and replace the remaining individuals with (1-g)% solutions of the top of the 

offspring population, where g is generation gap. 

9. Repeat above steps until the termination criteria is satisfied.  

 

4.4 Experimental procedure 
 

1. Source code modification. 

The software package “GA-playground” written by Ariel Dolan 

(http://www.arieldolan.com/ofiles/gaa.html) was used to perform GA search. This 

package was implemented in JAVA. In addition to providing the fitness function, 
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some modifications need to be made for our problem requirement. In the original 

GA-playground, the stopping criterion of GA was set to an exit value which must 

be provided by the user. We modified the source code and add another option so 

that the GA could converge when the termination criterion a described above was 

met, which did not require a user provided exit value. The code which calculated 

iteration number was rewritten so that only fitness function calls from unique 

individuals were counted. A repair operator was added to GA to avoid illegal and 

redundant individuals.  

2. GA parameter setting 

To run the GA, a text file with GA parameters setting information must be 

provided to the GA-playground for GA initialization and configuration. An allele 

definition file that defines the range of each allele (variable) was also needed to 

generate the initial population.  

The user must set several parameters before using the GA-playground 

program (see Table 4-1). Generation gap represents the percentage of individuals 

to copy to the new generation T+1 from the old generation T. Crossover rate and 

mutation rate represent the percentage of individuals undergo crossover and 

mutation. Parameter setting may be adjusted to get the best result. Table 4-1 lists 

our final parameter settings. The graphic user interface (GUI) of this program 

shows current search status (see Figure 4-5).  
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GA type:   Generational GA with generation gap 
Initial pool:   Randomly 
Stop GA:   1. Until converge; 2. Target value 
Population size:  100 
Number of gene:  4 
Objective:   Maximize 
Crossover type:  Single point crossover 
Mutation type:   Simply random 
Selection type:   Roulette Wheel 
Generation gap:  5-25% 
Crossover rate:  1.0 

 Mutation rate:   0.02 

 

 

 

Figure 4-5 The GA-playground user interface 

 

Table 4-1 GA parameter setting 
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4.5 Result and discussion 

The experimental tests were run on a personal computer with a 166 MHz Pentium 

processor under Windows 2000 operating system.  

We did two experiments using different termination criteria. In the first 

experiment, the target value (exit value) was not provided to the GA. GA stopped after 

convergence, that is, when the ratio average fitness / maximum fitness is greater than 

0.98. The result found by GA was compared to the result found by the SAS procedure. In 

the second experiment, the target value (the best adjusted R2 from SAS) was provided to 

GA. We evaluated GA’s performance based on its convergence iterations.  

1. Run GA until convergence 

We run GA 100 times with each generation gap setting of 5%, 10%, 15%, 20% 

and 25%. The convergence criteria was set to: average fitness / maximum fitness > 0.98. 

Table 4-2 showed the result. 

Table 4-2 GA experimental result using termination criteria: average fitness / 

maximum fitness > 0.98.  

 
generation average      percentage of mean  Best  best    best 
gap (%) iteration     true optimum R2 error bands(nm)   VI   model                 

5  2228  94  0.000055 700, 750  RVI      2  

10  2164  90  0.000132 700, 750  RVI      2 

15  1354  81  0.000239 700, 750  RVI      2  

20  851  60  0.000424 700, 750  RVI      2 

25  691  37  0.000804 700, 750  RVI      2 

 
 
2. Stop GA when reaching the target value (adjusted R2 = 0.9144). We run GA 100 times. 

The generation gap was set to 20%. Table 4-3 lists the result. 
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Table 4-3 GA Experimental result using termination criteria: exit value = 0.9144 
 
Experiment  iteration   best bands  best  best 
Number  number  (nm)   VI  model 
1   740   700, 750  RVI  2 
2   1046   700, 750  RVI  2 
3   156   700, 750  RVI  2  
4   555   700, 750  RVI  2  
5   116   700, 750  RVI  2 
.   .   .   .  . 
.   .   .   .  . 
.   .   .   .  . 
99   317   700, 750  RVI  2 
100   499   700, 750  RVI  2 

Average iterations: 560 
 

Accuracy and runtime 

From the result of experiment one, one can see that as the iteration number 

increased, GA approached the true optimal solution (See figure 4-6). Big generation gap 

led to fast convergence but less true optimal solutions percentage wise, while small 

generation gap led to relatively slow convergence but more true optimal solutions. This 

was consistent with De Jong’s work (1975) that the nonoverlapping population model 

was best in most optimization studies.  

We defined the term mean absolute R2 error to measure the difference between 

the GA solution and the true optimal solution, which could be represented as:  

 mean absolute R2 error 
n

GAsolutionnSASsolutio
n

i
∑

=

−
= 1

||
   

In our experiment, the minimal mean absolute R2 error achieved by GA was 

0.000055 with generation gap 5%. As the iteration number decreased, the mean absolute 

R2 error increased, which indicated that there was tradeoff between runtime and accuracy. 
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Figure 4-6 The effect of iteration number and generation gap on the percentage 

of true optimal solution 

 

From the result of experiment two, the convergence number of iterations for GA 

ranged from 116-1959. The average convergence iteration was 560. In the polynomial 

regression procedure performed by SAS, where all possible two-bands vegetation indices 

were exhausted, the total iteration number (number of polynomial regressions executed) 

were 276 * 4*4 = 4416, where 276 represented the combinations of all wavelength pairs, 

the first 4 stood for the four types of vegetation indices, and the second 4 stood for four 

types of polynomial regression models. GA saves almost 85% of the time in the 

searching. From runtime point of view, GA outperforms SAS procedure.  

From our experiments, GA identified the optimal wavelengths 700 nm and 750 

nm. RVI was the best vegetation index found by GA. The final regression model for RVI 

was second degree polynomial: 

          RVI = 0.29 – 0.003ppmN + 0.00001ppmN2  
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Besides efficiency, another advantage of GA was simplicity. Unlike the 

regression procedure performed by SAS, which required additional computation to find 

all two-bands combinations for different vegetation indices before statistical analysis, no 

pre-computation was needed by GA since the individual encoding (integer permutation) 

of GA had automatically handled this. GA also performed statistical analysis and fitness 

selection at the same stage rather than in two separate stages, which was unavoidable in 

the SAS procedure. Therefore GA was simpler and more efficient since it integrated data 

pre-processing, statistical analysis and model selection in a single procedure. 

One major limitation of the current GA implementation was that the fitness 

function was not complete. It used only adjusted R2 as model selection criteria. This may 

lead to infeasible solutions. In experiment 1, GA may select an insignificant solution 

(third degree polynomial model) due to the lack of significant test in the fitness function. 

Further implementation of the fitness function that included a significant test will be 

needed to overcome this limitation.  
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CHAPTER 5 

SUMMARY AND CONCLUSION 
 

In this thesis, we developed two approaches to identify optimum spectral bands 

and vegetation indices that could best characterize the relationship between vegetation 

indices and the bush bean plant nitrogen treatments levels. The first one was an 

exhaustive search approach, using a SAS procedure of polynomial regression on 

individual bands. The other was an optimal stochastic search using genetic algorithm 

(GA). 

Our study employed a hyper-spectral imaging system based on a liquid crystal 

tunable filter and involved 24 discrete spectral bands in the VIS-NIR spectrum and 4 

types of vegetation indices (NDVI, RVI, DVI, Reflectance). 

In the first approach, all possible two-bands vegetation indices under four 

nitrogen treatments with 6 plants in each treatment were computed. Polynomial 

regression was then performed on individual bands to find the relationship between 

vegetation indices and nitrogen treatments. The optimum spectral bands and vegetation 

indices were identified by exhaustive search. The result indicated that all vegetation 

indices correlated well with nitrogen treatments under the corresponding optimum 

spectral bands. The second degree polynomial regression model of RVI under 

wavelengths 700 nm and 750 nm performed best with an adjusted R2 of 0.9144.  

Depending on the type of vegetation indices, other optimal spectral bands were also 

determined: 710 nm, 715 nm, and 720 nm.   
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In the second approach, genetic algorithm was used to search for the optimal 

solution. Integer permutation encoding was used for the representation of GA individuals. 

Single point crossover and random mutation were applied. A repair operator was also 

added to avoid illegal and redundant individuals. The fitness function performed 

polynomial regression analysis. Each individual was evaluated by the rescaled adjusted 

R2 value. Two experiments were carried out with different termination criteria. In the first 

experiment, we ran GA until the convergence condition, average fitness / maximum 

fitness > 0.98, was met. GA achieved 0.000055 mean absolute R2 error with generation 

gap 5%, and 94% of the solutions were true optimal solutions. As the generation gap 

increased, the convergence number of iterations decreased, but the mean absolute R2 

error increased. Therefore there was a tradeoff between runtime and accuracy.   In the 

second experiment, we ran GA until it found the same best adjusted R2 provided by the 

SAS procedure. GA found the best solution in significantly less iteration than the SAS 

procedure.  

Comparing the performance of these two approaches, we may conclude that both          

can be used to fulfill our goal. The SAS procedure provided accurate result and true 

optimal solution, but it could not be performed in a single procedure therefore was not 

efficient and practical. The GA search combined data pre-processing, polynomial 

regression and regression model selection in one procedure therefore saved time. But it 

may select an insignificant model due to the limitation of the current fitness function 

implementation. There was a tradeoff between accuracy and runtime for these two 

approaches.    
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                                                            CHAPTER 6 

FUTURE RESEARCH 

 
Using current available data, we have identified the optimum wavelengths and 

vegetation indices, and established the statistical models that correlated nitrogen stress 

levels with vegetation indices. This is the calibration stage. Our future research direction 

will focus on validating current model and improving GA: 

1. Test the established model by cross-validation if more data are available, that is, 

apply the model to some new data and evaluate the performance of the model. 

2. Improve GA by adding P value as a model selection criterion. This ensures that 

the final model selected by GA is statistically significant.  

3. After cross-validation test, use the established model to predict nitrogen 

concentration given the spectral data.  
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