
FISSION: An Evolutionary Method for Fuzzy Learning

by

Eric A. Morris

(Under the direction of Walter D. Potter)

Abstract

This paper presents an evolutionary method of configuring fuzzy inference systems, entitled

FISSION (Fuzzy Inference System Setup by evolutION). The primary goal of FISSION is to provide

a robust software tool applicable to a wide range of supervised training scenarios. Another aim is

to produce human-interpretable fuzzy inference systems with a limited number of fuzzy sets and

inference rules, which nonetheless attain a high degree of accuracy. In order to accomplish these

goals, this paper draws on techniques related to genetic programming, real parameter optimization,

and user interface design. User-friendly software has been developed which implements many of the

ideas discussed herein, and this paper presents an application of the software to predict the rate of

biosolids composting.
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Chapter 1

Introduction

A central problem in the field of Artificial Intelligence involves capturing mathematical, natural, and

mental processes. Artificial neural networks are very effective at automatically finding functional

relations between a set of input values and their resultant outputs. However, the trained network

sheds very little light on the process itself; it is merely a mathematical abstraction. Fuzzy inference

systems (FIS), on the other hand, provide a clearly understandable mapping from input variables

to outputs by using fuzzy sets, also known as “linguistic variables,” (Zadeh 1975) along with if-

then rules. Unfortunately, the FIS cannot train itself and often the exact calibration information is

difficult to elicit from a human expert (Sugeno 1985).

A hybrid machine learning/fuzzy inference system is an attractive proposal with the potential

to produce an optimal predictive or classifier model which can be easily interpreted and verified by

humans. Effective training processes for such a model are useful in advancing the study of human

learning and understanding. Evolutionary computing provides a robust global optimization strategy

that is simple and flexible enough to apply to the problem of FIS calibration. This paper presents

such a method, entitled FISSION (Fuzzy Inference System Setup by Evolution).

1.1 Project Goals

The goal of this project was to develop a general evolutionary method for fitting an FIS to a given

data set. A similar approach was originally proposed by Pham et al. and Thrift (both 1991), and has

been developed by several papers in the past decade. This project proposes a unique combination

of hybrid chromosome representation, overfitting prevention methods, and flexibility. The latter

characteristic means that FISSION should produce reliable models in a wide variety of supervised

training scenarios. Model reliability is herein measured by root mean squared (RMS) error. It will

also be convenient at times to cite the R2 value (squared correlation coefficient) for a model. These

1



2

statistics will be compared to results obtained using a neural network based FIS generator called

ANFIS (MathWorks, 2005).

A secondary goal has been to make the fuzzy models as human-understandable as possible. In

general, this involves minimizing the number and complexity of the inference rules and fuzzy sets.

FISSION incorporates features to promote this “parsimony” criterion, allowing the user to specify

the maximum number of rules and to penalize models based on complexity.

1.2 Model Representation

The models developed by FISSION are Takagi-Sugeno style fuzzy inference systems. In short,

they consist of three components: nonlinear input membership functions, if-then fuzzy rules, and

linear (or constant) output membership functions. All components are trained simultaneously, but

are represented differently. The output of an FIS is given by a linear combination of the output

member functions, determined by the firing strength of the rules. It represents a prediction of the

observed output variable based on the inputs given.

The input membership functions are represented by a string of real numbers, which gives their

parameterization. They represent levels of fuzzy set membership for each input. These are configured

by the evolutionary algorithm (EA) using standard real-parameter crossover.

Sets of fuzzy inference rules are represented in binary tree format. Each FIS contains a single

tree representing a set of rules. The antecedent of a rule contains references to input member

functions joined by the logical connectives {AND,OR, NOT}. The consequent of each rule is its

corresponding output membership function. Rules are configured using genetic programming.

Finally, the output functions are represented as a string of real numbers, like the input mem-

bership functions. However, they represent constant or linear functions of the original input values.

They are also trained differently; after each iteration of the EA, they are configured using the

Kalman method of least squares. This approach is similar to the one taken by ANFIS.

1.3 Model Evaluation

Evolutionary algorithms are population-based search strategies. The search begins with the gen-

eration of an initial population of individuals. FISSION evaluates the fitness of each individual
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based on RMS error and (optionally) parsimony. Individuals with higher fitness are more likely to

be selected to reproduce and/or survive (a fundamental characteristic of evolutionary algorithms).

The best individuals obtained in the course of training are remembered. When the training is fin-

ished, these elite individuals are tested on previously unseen data. The resulting RMS error is used

to judge the completed model.

FISSION has been tested using supervised training data from the field of biosolids composting

(Liang et al. 2003a). The data set consists of inputs to a composting system, (namely moisture, time,

and temperature) and the resultant O2 uptake rate (an indicator of microbial activity). Liang et al.

(2003b) presents the results of using an artificial neural network (ANN) to predict O2 uptake rate

based on the provided inputs. Improved (unpublished) results have been obtained by using ANFIS

to generate a fuzzy inference system to perform the prediction. However, the high performance

models obtained all had some undesirable characteristics, such as an excessive number of rules.

FISSION addresses some of these issues while maintaining similarly low error rates.



Chapter 2

Fuzzy Inference Systems

Fuzzy logic is based on the concepts of fuzzy set theory, which was developed by Zadeh (1965). A

fuzzy set S differs from a traditional “crisp” set in that an element belongs, or fails to belong, to

S to a certain degree. More precisely, membership in S is defined by a function fS : R → [0, 1],

where 1 indicates full or certain membership and 0 indicates no membership. In fact, the domain

of the membership function need not be all of the real numbers; it may comprise some subset of

R, or may even be defined only on a discrete/countable set.

2.1 Fuzzy Set Theory

Operators are defined on fuzzy sets, analogous to the way they are defined on crisp sets. Assuming

fuzzy sets S and T and membership functions fS : D → [0, 1] and fT : D → [0, 1], membership in

the union, intersection, and complement are defined for all x ∈ D as follows:

fS∪T (x) = fS(x) + fT (x)− fS(x) · fT (x) (2.1)

fS∩T (x) = fS(x) · fT (x) (2.2)

f∼S(x) = 1− fS(x) (2.3)

Alternatively, membership in the union and intersection can can be defined for all x ∈ D by:

fS∪T (x) = max(fS(x), fT (x)) (2.4)

fS∩T (x) = min(fS(x), fT (x)) (2.5)

Membership functions can take on a wide variety of shapes, such as triangular, trapezoidal, bell

curved, or sigmoidal. Any curve which can be parameterized by a continuous or piecewise function

of the form shown above could conceivably be used as a fuzzy set. For example, a bell-shaped

4



5

(Gaussian) fuzzy set S can be parameterized by:

fS(x;µ, σ) = e
−(x−µ)2

2σ2 (2.6)

where x ∈ (R), µ is the mean (peak) of the bell curve, and σ is the standard deviation. Note that

this is an example of a normal fuzzy set; that is, it has at least one element with membership level

equal to 1. As a design decision, all membership functions used in FISSION are normal.

While fuzzy set theory is useful in its own right, the primary concern of this project is the

application to fuzzy inference systems (also called fuzzy controllers). Engelbrecht (2003) defines a

fuzzy controller “as a nonlinear static function that maps controller inputs onto controller outputs.”

In the case of FISSION, the inputs are variables in the problem domain and the outputs are the

values we wish to predict.

2.2 Fuzzy Controllers

Typically, a fuzzy controller defines several fuzzy sets (characterized by their membership functions)

for each input. Some of the first work on fuzzy controllers per se was done by Mamdani et al. (1975).

In Mamdani’s design, membership functions are defined on controller outputs as well as the inputs.

In this scheme, fuzzy rules have the following form. Note that InputMF(i, j) denotes the jth

membership function defined for input i. Similarly, OutputMF(i, j) denotes the jth membership

function defined for output i:

1. IF Input1 IS InputMF(1,1) AND Input2 IS InputMF2(2,1)
THEN Output1 IS OutputMF(1,1)

2. IF Input1 IS InputMF(1,2) OR Input2 IS InputMF(2,2)
THEN Output1 IS OutputMF(1,2)

3. IF NOT Input1 IS InputMF(1,3) THEN Output1 IS OutputMF(1,3)

When evaluated on a particular set I of input values, each rule R gains a firing strength

F (I, A) which is determined by the antecedent A. The firing strength of an individual assertion

(e.g. Input1 IS InputMF(1,1)) is computed by evaluating the specified membership function on

the specified input value. The firing strength of the entire antecedent is found by combining the

strengths of the assertions using set operations corresponding to the logical operators. In particular,
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intersection (∩) corresponds to AND, union (∪) corresponds to OR, and complement (∼) corresponds

to NOT. So, taking into account the preceding discussion of fuzzy set theory, the above rule #1 can

be evaluated as follows. As regards notation, F represents a function that operates on a set of input

values and an antecedent or part of an antecedent. Assume that:

F (I, ’Input1 IS InputMF(1,1)’) = 0.5 (2.7)

F (I, ’Input2 IS InputMF(2,1)’) = 0.2 (2.8)

Then it follows that

F (I,AR1) = F (I, ’Input1 IS InputMF(1,1)’)× (2.9)

F (I, ’Input2 IS InputMF(2,1)’) (2.10)

= 0.1 (2.11)

Once firing levels have been found for all rules, defuzzification takes place to determine the

value Z for each output. In the Mamdani design, this process involves taking the union of modified

versions of the output fuzzy sets, then finding the centroid of this (combined) region. Typically,

the output membership functions are truncated or scaled according to the firing levels of the rules

which specify them as consequents. A new, combined output membership function C is created as

the union of these modified functions. To find the centroid Z, integration is performed as follows.

Here D is the domain of the output being computed:

Z =
∫
x∈D xfC(x)dx∫
x∈D fC(x)dx

(2.12)

2.3 The Takagi-Sugeno Controller

In 1985, Takagi and Sugeno introduced an alternative to the Mamdani approach which is more

efficient computationally (Ying et al. 1999) and allows the controller outputs to vary directly with

the input values. Instead of using fuzzy sets for the output membership functions, each rule gives

a crisp output directly. These rule outputs are then combined to find the controller output.

In a zero-order Takagi-Sugeno system, the consequent of each rule Ri is a single constant ci.

The output Z of a system with Nr rules can be computed by

Z =
∑Nr

k=1 Fkck∑Nr
k=1 Fk

(2.13)
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On the other hand, in a first-order Takagi-Sugeno system with Nin inputs Ik, the consequent of

every rule is a linear combination c0+c1I1+ ...+cNinINin of the origninal input values. Accordingly,

the controller output is given by

Z =
∑Nr

k=1 Fk(c0 + c1I1 + ... + cNinINin)
∑Nr

k=1 Fk

(2.14)

FISSION uses the Takagi-Sugeno approach because the evolutionary training procedure needs

to evaluate fuzzy models very frequently. Hence, a more efficient FIS will receive more training in

a given amount of time. In addition, there is some intuition that this approach will yield a superior

model. As Engelbrecht (2003) states, “for Takagi-Sugeno controllers, the fact that the consequent

of rules is a mathematical function, provides for a more dynamic control.”



Chapter 3

Evolutionary Algorithms

An evolutionary algorithm is an optimization procedure designed to find global extrema within a

search space by simulating the process of natural selection. An EA has three major components:

an population of individuals coded by some representation, a fitness function for evaluating the

desirability of an individual, and finally, a set of genetic operators which control how genetic infor-

mation is passed from one generation to the next. The EA is a probabilistic optimization technique.

It relies upon the Schema Theorem which states that segments of a representation which contribute

to high fitness grow exponentially in number as the search proceeds. The schema theorem holds

for a particular problem if the chosen genetic operators do not disrupt the representation of such

“building blocks.” (Holland 1975)

The power of the EA is best demonstrated in nonlinear search spaces with multiple local optima.

More traditional search methods (such as gradient descent) tend to converge on suboptimal solutions

in such problems. The advantage of the EA is its property of “implicit parallelism”, which means

that the algorithm can explore multiple areas of the search space simultaneously. In addition, the

EA does not rely on derivative information, which may be misleading. In fact, EAs have been used

to find the global extrema of several mathematical functions which are considered very deceptive

(De Jong 1975).

On the other hand, EAs have a number of disadvantages as well. They rely only upon fitness

information to make moves in the search space; there is no guarantee that the search is moving in

a “good” direction at any given time. Again, contrast this to gradient based methods which always

move towards a (local) optimum. Holland’s early (1975) experiments dealt with populations of fixed-

length bit strings. Also, because of the large population sizes needed to solve many problems, EAs

are very computation-intensive. The combination of these two factors can lead to slow performance

8
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in some cases; traditional optimization methods are typically more efficient, though often less

robust.

3.1 The Simple GA

The study of evolutionary algorithms was initiated by John Holland in 1975. His early experiments

involved fixed length binary representation for individuals (also referred to as chromosomes to

indicate the genetic analogy of the representation). Selection, crossover, and mutation operators

are defined on this “simple genetic algorithm.” Of course, the fitness function is problem dependent,

but so-called standard fitness functions v (Koza 1992) map v : RN → [0, 1], where N is the length of

the chromosome, and 1 represents maximal fitness while 0 stands for minimal fitness. Of course, it

is not always possible to couch the fitness function in these terms, since the maximum or minimum

fitness may be unknown or unbounded. The GA proceeds roughly as follows:

1. Generate a random initial population of chromosomes.
2. Evaluate the fitness of each individual. If an

individual is better than any previously seen, remember it.
3. Select two parents from the population.
4a. With a certain probability, breed the two parents and

place the offspring in the next generation. With a certain
probability, mutate the offspring.

4b. Otherwise, place the two parents unchanged in the next
generation.

5. If the next generation is not yet full, go to step 3.
6. Copy the next generation as the current generation.
7. If the GA is not finished, go to step 2.
8. Report the best individual seen.
9. End.

Holland used fitness proportional (“roulette wheel”) selection to choose individuals for mating.

In this scheme, an individual is selected with probability directly proportional to its value as assigned

by the fitness function. Crossover was performed by selecting a random point p ∈ Z, 0 < p < N ,

and swapping the portions of the parent chromosomes to the right of p. This method is referred

to as one-point crossover. Finally, mutation involved choosing a single bit (allele) from the child

chromosome and flipping its value (from 0 to 1 or vice-versa).
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3.2 EA Enhancements

Many enhancements have been suggested to Holland’s basic GA. In particular, a plethora of genetic

operators have been proposed which yield superior performance on a variety of problem domains.

Several of these will be discussed in a later section. Turning to the issue of representation, there

are two topics of particular interest to the FISSION project: real coding and genetic programming.

Real coded genetic algorithms use vectors of floating point values for chromosome representa-

tion instead of binary strings. Janikow et al. (1991) showed that real coded GAs can be just as

effective as their binary counterparts while using a more intuitive representation. In addition, the

designer need not worry about the issue of Hamming peaks which appears in binary coding. While

traditional crossover and mutation methods are generally applicable to real-coded GAs, some alter-

native schemes have been proposed to increase performance. These are motivated by the density of

the real numbers; the initial population is unlikely to contain a representative sample of the contin-

uous range of allele values. Specific examples of such operators will be discussed in the chapter on

implementation. FISSION uses real coding to represent input and output membership functions.

In genetic programming (GP), chromosomes are represented by trees (in the graph theoretic

sense). GP was pioneered by John Koza (1992), who advocates its use for a wide variety of problems.

This method has the advantage of not imposing so rigid a structure on the chromosome. The layout

and size of the chromosome evolve along with the information contained within. One particular

advantage of GP is that variable-size genomes can be handled elegantly. There is no need to resort

to what Goldberg et al. (1989b) refers to as a “messy GA,” with a varible length chromosome string.

Standard crossover and mutation operators are defined for trees. Tree crossover corresponds roughly

to the two-point crossover used with standard representations. Mutation can take on a variety of

forms which will be discussed later. Since a set of fuzzy if/then rules has a quite intuitive tree

representation, it is logical to use GP when training an FIS using evolutionary methods. FISSION

uses GP to train rule sets in symbiosis with sets of input membership functions.



Chapter 4

Training Fuzzy Inference Systems: Previous Concepts

Both neural network based and evolutionary methods have been applied to the problem of training

fuzzy inference systems. Some of these methods operate mainly on the fuzzy sets of an FIS, while

others are designed to find optimal rule sets. FISSION attempts to combine the best features of

several previous approaches.

Typically, the problem of fuzzy inference system calibration falls under the category of super-

vised training. Supervised training can be viewed as a search over the space of possible FIS con-

figurations, directed by a data set. Every pattern (row) in the data set contains input and output

values. At each step of the training, the model makes a prediction based on each input pattern.

The predictions are compared to the observed output values, producing an error value. The error

value, in turn, is used to guide the search. In the case of an evolutionary training procedure, each

pattern in the data set is referred to as a “fitness case.”

4.1 Training with ANFIS

Perhaps the best known example of automatic FIS configuration is ANFIS, which ships with the

Matlab Fuzzy Logic Toolbox (MathWorks 2005). It has been shown that fuzzy inference systems

are equivalent to multi-layer artificial neural networks in computational power (Jang 1993a). Based

on this result, ANFIS models an FIS as a neural network, which is trained by a mixture of back-

propagation gradient descent and least squares. In particular, the input membership functions are

configured by backpropagation and the output membership functions by Kalman least squares.

The rule set in ANFIS does not change during training. Rather, the set consists of the km

possible conjunctions where m is the number of inputs, and k is the number of membership functions

per input. (The number of rules can be reduced by using the built-in clustering option.) Cordon et

al. (2004) would consequently classify the ANFIS training mechanism as an “adaptation” process

11
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rather than a “learning” one. FISSION, on the other hand, is intended to implement a learning

process by generating an effective (and compact) set of rules.

ANFIS offers a wide variety of training options, of which many are duplicated in FISSION. These

include input membership function type, AND method, OR method, defuzzification method, and

output function type, to name a few. FISSION uses a customized version of the Kalman least squares

code designed for ANFIS to determine output membership functions. While ANFIS provided the

original motivation for FISSION, the resemblance ends here. The latter has much more in common

with several EA-based approaches developed in the past fifteen years.

4.2 EA-based Training

The earliest methods for evolutionary configuration of fuzzy inference systems were mainly con-

cerned with finding optimal rules. The problem of learning fuzzy rules falls under the more general

category of evolving optimal rule-based systems (RBS). According to Cordon et al. (2004), there

are three main categories of EAs designed to configure RBS.

The earliest is the so-called Michigan approach, due to Holland et al. (1978). In this method,

each rule is represented by an individual in the population. Some optimal subset of the population

constitutes the rule base for the RBS. The main challenges in this approach are fitness assignment

to individual rules and choosing the optimal subset of individuals (Carse et al. 1996).

Introduced by Venturini (1993), the second category of RBS evolution is known as “iterative

rule learning.” In this approach, each rule is represented as a separate individual as in the Michigan

scheme. However, the initial population consists of one or only a few individuals. Each generation,

more rules are added to the population. In this way, a “core” of high fitness rules are generated

early in the search. The core is constantly expanded as the algorithm proceeds.

On the other hand, the “Pittsburgh” approach (Smith 1980) represents an entire rule set in

a single individual of the population. This solves the problems of fitness assignment and rule set

determination, but introduces complexity for the genetic operators. Crossover, in particular, tends

to disrupt high-fitness individuals by breaking up good rule combinations. Additionally, Pittsburgh

style systems tend to have longer training times because of the complexity of each individual (Carse

et al. 1996). However, these difficulties can be overcome by using techniques such as the permutation
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operator (Goldberg 1989a, Grefenstette 1987). Koza (1992) suggests presenting only a subset of the

fitness cases for each evaluation. FISSION uses the Pittsburgh approach, incorporating variations

on these suggested improvements.

The first work in the realm of fuzzy rule learning was done by Pham et al. (1991) and Thrift

(1991). Both of these approaches used the Pittsburgh learning scheme, although they incorporated

slightly different rule representations. Thrift used a “relational matrix” chromosome, where a matrix

represents a single FIS rule set for the two input cart centering problem. Pham employed a decision

table similar to the one used in ANFIS to represent FIS rules. His training scheme had two training

stages: the best individuals from the first stage constituted the entire population of the second

stage. As Cordon et al. (2004) points out, both of these representations are monolithic in the sense

that the rules cannot be divided among multiple individuals.

Recently, there has been growing interest in genetic programming for configuring RBS. One

of the first examples can be found in (Alba et al. 1999). In this approach, (fuzzy) rule sets are

viewed as abstract computer programs, represented by type constrained syntactic trees (Cordon et

al. 2004). Genetic programming is the central theme in FISSION, and a detailed description of the

tree representation is given in section 5.2.2.

Of course, fuzzy inference systems incorporate fuzzy sets as well as inference rules. These sets

can be parameterized by numerical values, so they can be optimized by real coded GAs of the

sort described by (Goldberg 1989a). Although some approaches, e.g. (Karr 1991), optimize the

fuzzy sets separately from the rule base, there is some intuition that a combined approach would

have greater fitting potential. As Homaifar et al. (1995) demonstrates, optimizing the components

together is superior to the approach of first optimizing the membership functions, then generating

the rule base. Interdependencies between the two are fully explored using such a combined approach.

Drawing inspiration from Liska et al. (1994), FISSION uses a two-chromosome approach to represent

global membership functions separately from the inference rules. However, Liska used two standard

chromosomes instead of the hybrid approach employed in FISSION.

The alternative to global membership functions of the type used in FISSION is incorporating

membership functions within the rules themselves. This method was employed with some success
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by Cooper et al. (1994). However, this feature resulted in an excessive number of fuzzy sets when

incorporated experimentally into FISSION.

Although all of the approaches mentioned above use the Mamdani FIS, there is also precedent

for using EAs to configure Takagi-Sugeno fuzzy systems (Lee et al. 1993). Lee also included in

his method the feature of penalizing FIS models which were too complex. FISSION implements a

similar strategy.



Chapter 5

Software Design and Implementation

The FISSION software is designed with usability, flexibility, and accuracy in mind. It comprises

two major components: a DLL (dynamic link library) containing training and inference functions,

and a GUI (graphical user interface) for exposing these functions in a user-friendly way. Users load

data and set training options using the GUI, and the data are subsequently processed by the DLL

functions. Visual feedback and results are then displayed in the GUI.

5.1 Component Interaction

A DLL is a Windows file containing reusable code which is linked to an executable program at run

time rather than compile time. Hence, the DLL code can be compiled once and used concurrently by

multiple programs. Every DLL exports a number of functions which can be called by any program.

In FISSION, a DLL is used to encapsulate the code for training an FIS. This design decision

has a major benefit: the GUI code can be kept entirely separate from the computationally intensive

training code. This means that the two components can be implemented in different languages. In

FISSION, the GUI is written in C#, which provides intuitive and powerful tools for user interface

design, as well as features like automatic memory management. C# programs compile to Microsoft

CLR (Common Language Runtime) bytecodes which are converted to native code at runtime. This

procedure is called Just In Time (JIT) compilation. The DLL, on the other hand, is written in C++,

which compiles to entirely native code. Because the code is compiled all at once, C++ compilers can

make very significant optimizations which improve speed and reduce memory usage. In addition,

programs compiled in C++ do not perform run-time checks such as array bounds checking. This

omission also serves to increase speed, although it makes writing bug-free code much more difficult.

Combining an executable GUI written in C# with a DLL written in C++ allows FISSION to

take advantage of the strong points of both languages. However, it also introduces an extra layer

15
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of complexity. Functions written in C++ cannot be called directly from C# code; parameters and

return values must be converted into formats which the older language (C++) can understand. This

process is known as marshalling. Other considerations stem from the fact that C# code is managed,

meaning that the .NET framework takes care of memory management, while C++ is unmanaged,

indicating that the programmer must perform memory management manually. However, the .NET

framework takes care of most of these issues automatically. For instance, when a managed object is

passed to unmanaged code using a function call, the object is “pinned down” in memory, meaning

that the CLR cannot move it around for the duration of the call. This allows the unmanaged code

to access the object using a standard pointer.

Once the technicalities of communication between components is resolved, there remains the

issue of protocol. In other words, a set of common structures must be defined to allow the GUI to

send commands to the DLL, and to allow the DLL to report back to the GUI. FISSION defines

two structues which contain control parameters and one which contains report values.

The structures FISConfig and EAConfig contain attributes which control how fuzzy inference

and training are carried out. The effect of each attribute is determined by its type. Boolean (1 or

0) attributes turn certain features on and off. Integer attributes can either select between a number

of options for a certain feature or specify a whole number value. Double precision (real) attributes

specify real number values. The particular meaning of each attribute will be made clear in the

discussion of its relevant feature. The attributes and their data types are listed in table 5.1.

On the other hand, the structure ReportStruct encapsulates attributes which describe the state

of the training process. These values can be obtained by the GUI at any time by calling functions

exported by the DLL. The report attributes are also specified in table 5.1.

Of course, in addition to the three structures just mentioned, simple data types (e.g. integer,

boolean) can be (and are) used for communication between the GUI and DLL. These primitives

can be viewed as “common structures” as well, since they generally have the same meaning in

both languages. Single-dimensional arrays (lists) of simple types can also be passed as parameters

without explicit marshalling. Multi-dimensional arrays (matrices), on the other hand, have to be

manually marshalled into single dimensional arrays before being sent. FISSION accomplishes this

by writing consecutive rows of an N by M matrix into a list of length N×M . The multi-dimensional
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Table 5.1: Control and Report Parameters
FIS Control Parameters

name type description
globalInputMFs boolean Use global input membership functions or not
linearOutput boolean Use linear or constant output functions
maxInitialRuleDepth integer (value) Maximum rule depth for initial population
maxInputMFs integer (value) Maximum # of membership functions per input
maxOverallRuleDepth integer (value) Maximum rule depth during training
maxRules integer (value) Maximum number of rules
mfType integer (select) Type of input membership function to use
numInputs integer (value) Number of inputs to the FIS
numOutputs integer (value) Number of outputs from the FIS
numSetOps integer (value) Whether to use =, > and < (3) or just = (1)
parsimonyFactor double precision Impact of rule parsimony on fitness
probor boolean Use probabilistic-or for union (or maximum)
prod boolean Use product-and for intersection (or minimum)
pSelectInternal double precision Probability of selecting internal node
rampedInit boolean Used ramped half-and-half (or random growth)
reorderTree boolean Use permutation operator (or not)
wtaver boolean Use weighted average (or weighted sum)

EA Control Parameters
name type description
blendParam double precision Parameter for blend and arithmetic crossover
crossType integer (select) Type of crossover to use
maxGens integer (value) Maximum number of generations to train
mutType integer(select) Type of mutation to use
numSubsets integer (value) # of training subsets to use for Kalman procedure
pCross double precision Probability of performing crossover
pMut double precision Probability of performing mutation
popSize integer (value) EA population size
realParamUniform boolean Crossover affects whole chromosome (or not)
selType integer (select) Type of selection to use
steadyState boolean Use steady state (or generational)
tourneySize integer (value) Size of tournament in selection

Report Parameters
name type description
fitness double precision Best individual’s fitness
MAE double precision Best individuals’s MAE
MSE double precision Best individuals’s MSE
nEvals integer (value) Number of fitness evaulations performed
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array can then be reconstituted on the receiving side. This technique is needed for passing the input

matrix from the GUI (which loads that data set) to the DLL (which processes it).

5.1.1 DLL Component

The FISSION DLL implements three major parts (see Appendix B for the C++ code). The first

is a set of classes (types) representing a Takagi-Sugeno style fuzzy inference system. The second is

another set of classes which implement a hybrid evolutionary algorithm. Finally, the DLL contains

a number of exported functions which group the FIS and EA capabilities into use cases. These

functions can be called by the GUI (or any other program which may be written to take advantage

of them). Information is passed from the GUI to the DLL via structures containing certain control

parameters.

5.2 Takagi-Sugeno FIS

The main class in the FIS implementation is entitled SugenoFIS. This class is responsible for storing

the components of a particular FIS, namely the input and output membership functions, as well

as the fuzzy rule set. It also contains functions which perform fuzzy inference on a data set using

the components just listed. Finally, SugenoFIS is responsible for determining a near-optimal set of

output membership functions given a set of input membership functions and a set of rules. This is

accomplished by using the Kalman method of least squares.

5.2.1 Fuzzy Set Representation

Input membership functions are represented as strings of double precision values. The entire string

is referred to as the input chromosome I. The number m of inputs represented is given by the

control parameter numInputs and the maximum number q of membership functions per input by

maxInputMFs. Each membership function is specified by up to 4 parameters, depending on the

type of function. Hence, the length of the input chromosome for a given FIS is 4mq, and the lth

parameter of the kth membership function defined on the jth input is located at i = 4jq + 4k + l.

Conversely, the ith position of the chromosome gives the value of the l = i mod 4 parameter of the

k = i−l
4 mod q membership function defined on the j =

⌊
i
4q

⌋
input. Of course, the range of valid
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values for each position i is determined by the type of membership function being used, which is

specified by the control parameter mfType.

Four types of input membership functions are supported by the current version of FISSION.

They are referred to as “triangular” (f1), “trapezoidal” (f2), “Gaussian” (f3), and “generalized

Gaussian” (f4). The definitions for the first three are similar to functions found in the Matlab

Fuzzy Logic Toolbox (FLT) (MathWorks 2005). The last is an exponential modification of the

‘gbell” function from the FLT, which uses a sigmoid function. Each of these functions takes at

most four parameters. The first parameter specifies the center of the membership function, and

subsequent parameters are all positive and define points on the curve relative to the center. For

example, in the triangular membership function, the second parameter is subtracted from the first

(center) to obtain the left “foot” of the triangle, and the third parameter is added to the first to get

the right “foot.” This approach has the advantage that the list of parameters need not be sorted

before the membership function is applied. Here follow definitions of each type of membership

function, applied to an input x, in terms of the parameters p1 · · · p4:

f1(x; p1, · · · , p4) = max
(

min
(

x− (p1 − p2)
p2

,
(p1 + p3)− x

p3

)
, 0

)
(5.1)

f2(x; p1, · · · , p4) = max
(

min
(

x− (p1 − p3)
p3

, 1,
(p1 + p2 + p4)− x

p4

)
, 0

)
(5.2)

f3(x; p1, · · · , p4) = e
− (x−p1)2

2p2
2 (5.3)

f4(x; p1, · · · , p4) =





e
− (x−p1)2

2p2
3 if x < p1

1 if p1 ≤ x ≤ (p1 + p2)

e
− (x−(p1+p2))2

2p2
4 otherwise

(5.4)

Input membership functions can be randomly generated, which is useful for creating the random

initial EA population. The entire chromosome is generated at once. The first position in each param-

eterization designates the “center” (one of the maximum values) of the membership function, and

subsequent positions are defined relative to the center. The center parameters of the membership

functions are initially evenly distributed across the input space, then each center is modified by a

normal random variable with standard deviation equal to 1
20 of the size of the space. The other
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parameters are chosen uniformly from an interval about their respective centers. Non-center param-

eters may have different interpretations for different membership function types; for instance, the

second parameter of a Gaussian membership function represents a standard deviation, while the

second parameter of a triangular function represents the left “base” coordinate of the triangle.

However, defining the parameters in this relative way makes a single random generation procedure

compatible with all types of membership functions.

Output membership functions are represented similarly to the input ones. The output chromo-

some P consists of a string of double precision values, as before. The current version of FISSION

supports only one output, and the number of output membership functions r is given by the con-

trol parameter maxRules. This is because each rule has its own output function in a Takagi-Sugeno

style FIS. If the control parameter linearOutput is set, then the length of the chromosome is

r(m + 1), reflecting the fact that each output membership function is a linear combination of

the inputs. In this case, the ith position in the output chromosome contains the coefficient of the

(i mod (m+1))−1 input for the
⌊

i
m+1

⌋
membership function. When i mod (m+1) = 0, the position

contains the constant value for the membership function. On the other hand, if linearOutput is

not set, then the chromosome will simply have length r, since each function is a constant. Hence,

the output membership function gv for a rule v, applied to input pattern X, is defined as follows:

gv(X;P ) =





Pv if not using linear output

Pv(m+1) +
∑m

j=1 XjPv(m+1)+j otherwise
(5.5)

5.2.2 Fuzzy Rule Representation

Fuzzy rules are represented in FISSION as binary trees. That is, each node in the tree has at

most two children. Each SugenoFIS instance has its own tree which contains up to maxRules rules.

Nodes within a tree are represented by a data structure containing information about the expression

represented. Each node contains pointers to its parent and children, as well as subtree information

and values (see table 5.2). Not all fields in the data structure apply to every node. There are three

main types of nodes: if/then, antecedent, and terminal.

An if/then node represents the root of a fuzzy rule. The left (first) child of an if/then node

is an antecedent node, and is mandatory. The right (second) child is another if/then node, and
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Table 5.2: Rule Node Properties
property name type description
parent pointer Refers to the node’s parent
child1 pointer Refers to the node’s left child
child2 pointer Refers to the node’s right child
depthBelow integer (value) Depth of the subtree rooted at the node
nodesBelow integer (value) Number of nodes in the subtree rooted at the node
role integer (select) if/then, antecedent, or terminal
subRole integer (select) AND, OR, NOT, IS, INPUT, or MF
value integer (value) Index of an input or membership function.
operation integer (select) =, <, or >

is optional. If the right child is omitted, the rule represents the last in the tree. An if/then node

may have no parent, in which case it is the root of the entire tree. A terminal node must have as

its parent the IS subcategory of antecedent nodes.

A terminal node represents a leaf in the tree, specifying either an input or a membership

function. This is determined by the subRole field, which selects between INPUT and MF. The property

value has meaning for terminal nodes, specifying either an input index j, 0 ≤ j < m, or a

membership function index k, 0 ≤ k < mq.

The antecedent nodes stand for fuzzy logical operators. This type is further categorized by

the subRole property, based on the operator represented. Possible operators are AND, OR, NOT, and

IS. These connectives function as described in section 2. An antecedent node may be the child

of an if/then node or another antecedent node. The left and right children of AND and OR nodes

are mandatory and must be other antecedent nodes. NOT is similar, except that (being a unary

operator) it cannot have a right child. IS takes a terminal node of subtype INPUT as its left child,

and a terminal node of subtype MF as its right child. Both children are mandatory. The meaning of

IS is determined by the operator property, which selects between =, <, and >.

Since the evolutionary algorithm used for training involves a randomly generated initial popu-

lation, FISSION requires a method for generating random fuzzy rule trees. The obvious recursive

procedure is:
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PROCEDURE grow_tree(parent_node)
IF can_generate_non_terminal(parent_node) THEN
parent_node->left_child = CALL generate_left(parent_node)
CALL grow_tree(left_child)
parent_node->right_child = CALL generate_right(parent_node)
CALL grow_tree(right_child)

ELSE
parent_node->left_child = CALL generate_terminal_left(parent_node)
parent_node->right_child = CALL generate_terminal_left(parent_node)

END IF
CALL update_fields(parent_node)

END PROCEDURE

The procedure grow_tree would be called with a randomly generated root node as its argument. A

branch of the recursion would end when no legal non-terminal children can be created. Of course,

the secondary procedures called by grow_tree have to be implemented so that all the constraints

discussed above are satisfied.

Koza (1992) suggests two variations of this basic “grow” procedure. The first, which he refers

to as the “full” method, forces generate_left and generate_right to pick non-terminal children

unless a tree size constraint would be violated. This approach results in maximal trees, in that

every leaf occurs at maximum depth. From a genetic programming perspective, this maximality

can be beneficial because it ensures that a large amount of genetic material is available. Koza’s

second variation, entitled “ramped half-and-half,” assumes that there are P trees to be randomly

initialized, and that a maximum depth of D has been specified. The method forms D groups of P
D

individuals, so that the ith group will be initialized with maximum depth i. In addtion, half of each

group will be initialized using the standard “grow” approach, and the other half with the “full”

method.

FISSION provides the option of using either grow or ramped half-and-half by means of the

rampedInit control parameter. The maximum tree depth during initialization is specified by the

maxInitialRuleDepth parameter.

5.2.3 FIS Evaluation

Once an FIS model has been generated by the evolutionary algorithm and its output functions have

been set by the Kalman procedure (see section 5.3), it is ready for evaluation on a data set. A data
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set for FISSION consists of an n×m matrix X of inputs and a length n vector Y of output values.

Each row i, 0 ≤ i < n represents an input pattern (vector containing a value for each input). The

evaluation procedure applies the configured FIS to a data set and reports the resulting RMS error,

R2, and MAE (mean absolute error) values.

The first step in the FISSION model evaluation is to compute a firing strength matrix F from

the input matrix X. F will be an n × r matrix where Fi,v is the firing strength of the vth rule

applied to the ith input pattern. F is computed recursively as described in section 2. In particular,

the calculation of Fi,v requires the values of all input membership functions applied to the input

pattern Xi. These values are represented in the length mq vector fi, where q is the maximum

number of membership functions per input. The vector fi only needs to be computed once per

input pattern, and can be used to compute Fi,0 · · ·Fi,r−1. The following procedure computes Fi,v

from fi using the antecedent nodes of rule v:

PROCEDURE F(node, f)
IF node->sub_role=AND

RETURN and_op( F(node->left, f), F(node->right, f) )
ELSE IF node->sub_role=OR

RETURN or_op( F(node->left, f), F(node->right, f) )
ELSE IF node->sub_role=NOT

RETURN not_op( F(node->left, f) )
ELSE IF node->sub_role=IS

RETURN is_op( f[node->left->value * q + node->right->value] )
END IF

END PROCEDURE

The application of and_op, or_op, and not_op proceed as described in section 2, and are controlled

by the prob and probor parameters. The function is_op applies the fuzzy operator specified in the

node’s operator field. Operator = causes is_op simply to return the input membership function

value f . Operator > relies on the center c of the membership function. If the given input is to the

left of c, is_op returns 0. Otherwise, is_op returns 1− f . The < operator is defined symmetrically.

These operators, in effect, turn a closed fuzzy set (having finite size) into an open one (having

infinite size). The control parameter numSetOps controls whether or not > and < are used.

FISSION does not include ≤ or ≥ operators. This design decision was made for two reasons:

(1) because this functionality can already be achieved using an OR node and (2) the meaning of
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such operators is not intuitive. One obvious candidate for the ≥ operator is max(=, >). However,

the shape of the fuzzy set produced by this transformation is somewhat strange. In particular, it

has a local minima when f = 0.5.

Once the matrix F has been computed, all of the information needed to perform fuzzy inference

is available. If the wtaver (weighted average) control parameter is set, each value Fi,v is normed in

the following way:

F
(new)
i,v =

F
(old)
i,v∑r−1

j=0 F
(old)
i,j

(5.6)

Otherwise, no adjustment takes place (weighted sum). The FIS output zi on an input pattern Xi

is given by the formula:

zi =
r−1∑

v=0

Fi,vg(Xi) (5.7)

After the entire vector Z has been computed, the RMS error and MAE are computed with respect

to the vector Y of observed outputs:

ERMS =
n−1∑

i=0

(Yi − Zi)
2 (5.8)

EMAE =
n−1∑

i=0

|Yi − Zi| (5.9)

R2 =

(∑n−1
i=0 yizi − nŷẑ

)2

(∑n−1
i=0 y2

i − nŷ2
) (∑n−1

i=0 z2
i − nẑ2

) (5.10)

At this point, the FIS evaluation is complete, and the RMS error value is reported for use in

the EA fitness function. FISSION also provides an FIS evaluation procedure which does not require

an observed output vector Y . This function is used when the model has already been fully trained

and the observed outputs for a data set are not known. In this case, FISSION reports the predicted

value vector Z.

5.3 Output Function Optimization

FISSION does not use its EA to find an optimal output chromosome. Function optimization is a

difficult problem for an EA in its own right and would result in prohibitively long training time if
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coupled with the search for effective fuzzy sets and inference rules. In addition, any randomly gen-

erated population will contain only a few fuzzy inference systems with acceptable output functions

(ones which approximately map the range of input values onto the the range of observed outputs).

The fitness proportional selection of such individuals would quickly destroy essential fuzzy rule

diversity in the population. Hence, FISSION uses linear least squares to determine the output

chromosome of an FIS after the input membership functions and rules have been configured by the

EA. Once this is accomplished, the fitness of the individual can be computed.

5.3.1 Fuzzy Inference as Matrix Manipulation

A reformulation of the FIS evaluation procedure is necessary in order to see how linear least squares

can be applied to this problem. Recall that our objective is to minimize the mean squared prediction

error on an input i:

Ei = (yi − zi)2 (5.11)

Expanding this expression yields

Ei =

(
Yi −

r−1∑

v=0

Fi,rgi,v

)2

(5.12)

=


Yi −

r−1∑

v=0

Fi,r


Pv(m+1) +

m−1∑

j=0

Xi,jPv(m+1)+j







2

(5.13)

=


Yi −

r−1∑

v=0


Fi,rPv(m+1) +

m−1∑

j=0

Fi,rXi,jPv(m+1)+j







2

(5.14)

At this point, we recognize that multiplication (dot product) is occurring between two vectors of

length r(m + 1):

Ei = (Yi −Ai · P )2 (5.15)

where P is the output chromosome and Ai is defined by

Ai,k =





Fi,b k
m+1c if k ≡ 0 (mod m + 1)

Xi,(k mod (m+1)−1)Fi,b k
m+1c otherwise

(5.16)

The FIS evaluation procedure can now be couched in terms of matrix arithmetic (here V denotes

the norm of vector V ). The primary fitness measure (RMS error) is given by
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E =
√

Y − PA (5.17)

Having constructed the matrix A, and given the vector Y of observed outputs, it is possible to

apply any one of several least squares procedures to find the output chromosome P . The simplest

such method involves creating an r(m + 1) × r(m + 1) partial derivative matrix M . The kth row

in the matrix represents the partial derivative of equation 5.14 with respect to Pk. The partial

derivatives are set to zero and the constant terms for each row are placed in the vector V . The

resulting system represented by M and V can then be solved by the Gauss-Jordan method. Other

similar approaches are possible using different matrix decompositions, such as SVD (singular value

decomposition). Unfortunately, all of these methods make some assumption about the rank of the

matrix used. If the matrix is rank-deficient, Gaussian elimination will fail. Even if the matrix is only

nearly rank deficient, inaccurate results are possible. In addition, such regression-type methods are

prone to overfitting since they operate on all the data at once. Early versions of FISSION tested

linear least squares regression based on both QR decomposition and Gaussian elimination, resulting

in good accuracy but typically poor generalization.

5.3.2 The Kalman Filter

An alternative is the Kalman filter (Kalman 1960), a recursive predictor/corrector approach orig-

inally designed for digital signal processing. This is the approach used by ANFIS to tune linear

parameters (nonlinear parameters are configured using backpropagation). FISSION integrates, with

modifications, a similar implementation by Jyh-Shing Jang (1991b), which appears to be a pre-

cursor to the one used in ANFIS. This implementation is classified as a “discrete” as opposed to

an “extended” Kalman filter, since it performs only linear least squares fitting. It is important to

note that while the output functions in a Takagi-Sugeno style FIS are linear, the overall system

may be non-linear because of the input membership functions and the fuzzy logical operators which

combine them.

The purpose of the Kalman filter is, paraphrasing Welch et al. (2004), to estimate the state

x ∈ Rn of a discrete time controlled process governed by a linear stochastic difference equation

using a measurement z ∈ Rm. In the case of FISSION, the “state” to be estimated is the optimal
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output chromosome P , and the “measurement” used is the observed output value. “Time” passes as

the procedure moves through the training patterns. The term “linear stochastic difference equation”

means that the state at time t is a linear function of the state at time t− 1, and that the process

is subject to normally distributed white noise. The matrix A as described above is used to relate

the state estimation (output chromosome) to the measurement (observed output value).

A critical component of the Kalman filter is the error covariance matrix S. S is a square

(r(m + 1)× r(m + 1)) matrix whose entries are initialized to 0 at the beginning of the procedure,

except for the main diagonal, whose entries are initialized to ∞ (in practice, simply a large value,

e.g. 106). P is initialized so that all of its entries are 0. The filter proceeds according to the following

recursive equations, until all n rows of A have been presented:

Si+1 = Si − SiAiA
T
i Si

AT
i SiAi + w

(5.18)

Pi+1 = Pi + Si+1Ai(Yi −AT
i Pi) (5.19)

Note that the fraction in equation 5.18 connotes scalar division; AT
i SiAi is a single element

and w is the “measurement noise covariance” (Welch et al. 2004). The parameter w is not of great

importance when there is only one measurement; it serves only to influence how much new patterns

affect the covariance matrix. In Jang’s code, this parameter is set to 1 and is referred to as the

“forgetting factor.” Equation 5.19 can be viewed as adjusting the output chromosome proportional

to the error (computed by Yi − AT
i Pi) in a “direction” determined by the covariance matrix and

the latest pattern A.

The output chromosome is finalized after all patterns have been presented. The fitness is com-

puted using equation 5.17 and the procedure ends. At this point, the FIS is fully configured.

5.4 Evolutionary Algorithm

The evolutionary algorithm used in FISSION is implemented by the class TrainerEA and utilizes

a hybrid representation scheme. Individuals in the population P are represented by a pair of chro-

mosomes: a string of real parameters for the input membership functions and a binary tree for the

set of rules (as defined in section 5.2). The fitness function is based on the RMS error which results
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when an individual is applied to the training data set. FISSION draws on various genetic operators

developed for both real parameter GAs and genetic programming.

5.4.1 Population and Evaluation

FISSION evolves fuzzy inference systems to fit a training data set T . At all times, FISSION keeps

track of the best individual bT applied to the training set, as well as the corresponding vector Z of

predicted outputs. In supervised training, it is often useful to have a second data set U , referred to as

the testing set, to prevent the training algorithm from over-fitting T . Typically, this is accomplished

by using the testing set to determine when training should be stopped. In FISSION, each time bT is

updated, the new best FIS is applied to the testing set. The best (bU ) of these individuals (applied

to the testing set) is remembered by FISSION as well, along with its vector of predictions. This

way, if bT turns out to over-fit the training set, the user can switch to bU , which may generalize

better (since U was not used in the fitness evaluations). Finally, a third data set V , referred to as

the validation set, is used to validate the model. V is not used at all in the training process, and

should therefore be a good indicator of the model quality. The three data sets (training, testing,

and validation) can be randomly sampled from a larger data set, or supplied as separate files.

A random population of individuals is generated at the start of training. The size p of the

population is controlled by the parameter popSize. Individuals are generated by creating a random

pair of chromosomes, as described in section 5.2. Each individual has its own randomly generated

fuzzy sets and inference rules. Once the population has been filled, each individual is evaluated by

the fitness function (described below). The fitness values are stored in a vector F of length p.

The fitness function fS maps from the space of possible fuzzy inference systems Pi onto [0, 1],

where S is the data set used in the evaluation. It takes into account mean squared error (MSE) on the

training set and an optional parsimony score. In order to compute the former (fe), output functions

must be generated for the FIS being evaluated. This is accomplished as described in section 5.3,

using the training set only. The parsimony score fp is defined as the depth of the rule tree divided

by the maximum overall rule depth (specified by the control parameter maxOverallRuleDepth).

The term fp is weighted by a user-specified parsimonyFactor q, which can be set to zero. The
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overall fitness formula is:

fS(Pi) =
1

1 + fe
(1− qfp) (5.20)

The effect of this formula is to ensure that the fitness value is between 0 and 1, and that the fitness

value of an FIS is penalized in proportion to the depth of its rule tree. As mentioned before, if

fT (Pi) > fT (bT ) then the assignment bT := Pi is made. If fU (bT ) > fU (bU ), then FISSION assigns

bU := bT .

The process of fitness evaluation is expensive in terms of time and memory, especially with a

large data set. In particular, the Kalman procedure for determining output functions is costly in

both resources and speed. Since the fitness function is used so frequently, it is natural to look for

ways to speed it up. One approach is inspired by the fact that, for large data sets, the matrix A is

likely to be over-determined. That is, A (the n× r(m + 1)input matrix to the Kalman procedure)

may well have many more linearly independent rows than it does columns. So, the information

needed to find a good solution x to the equation Ax = B may be contained in a subset AS of the

rows of A.

FISSION takes advantage of this idea by breaking the training set into k random, non-

overlapping pattern subsets before training begins. The user can specify the value of k by means

of the control parameter numSubsets. During fitness evaluation, the Kalman procedure runs on

a n × n
k matrix instead of the whole matrix A. After the output functions have been determined,

the FIS is applied to the entire training set to determine fitness. As Bacardit et al. (2004) points

out, this type of “windowing” scheme has an added advantage in supervised training: high fitness

individuals are likely to generalize well to other data, since they have already been successfully

generalized from a subset of the training set.

5.4.2 EA Control

A basic generational EA proceeds as described in section 3. There is an alternative to this control

scheme, known as the steady state EA. This method does not make sharp distinctions between

generations. Instead, offspring are placed directly into the active population, replacing (possibly

less fit) individuals. The modified procedure for a steady state EA is as follows:
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1. Generate a random initial population of chromosomes.
2. Evaluate the fitness of each individual. If an

individual is better than any previously seen, remember it.
3. Select two parents from the population.
4. Select an individual from the population to die.
5. Breed the two parents and replace the dead individual with

their offspring. With a certain probability, mutate the offspring.
6. If the GA is not finished, got to step 2.
7. Report the best individual seen.
8. End.

A steady state EA typically converges on an optimum faster than the corresponding genera-

tional EA, but risks losing population diversity too quickly. In FISSION, the control parameter

steadyState provides the option of using either a steady state control scheme or a generational

one. If the former is chosen, the EA will run for maxGens*popSize fitness evaluations. In the

generational scheme, the EA completes maxGens generation replacements.

Each iteration of the EA begins with the selection of two parents for mating or survival. The

selection paradigm gives the EA direction and distinguishes it from a purely stochastic search.

Hence, all selection methods are based on fitness. FISSION offers the user a choice between selection

methods via the selType control parameter. Available selection schemes are roulette, tournament,

and rank-based selection.

In roulette wheel selection, individuals are selected with probability directly proportional to

their fitness. In order to facilitate this process, FISSION keeps track of the sum f+ of all fitness

values in the population. If the generational control scheme is being used, f+ is computed each time

a generation is evaluated. On the other hand, if the steady state method is in use, f+ is computed

for the initial population and updated as follows for each replacement of individual i:

f+(new) = f+(old) − f
(old)
i + f

(new)
i (5.21)

Roulette selection proceeds by choosing a uniform random “threshold” value v ∈ [0, f+]. Next, a

series is computed where the ith term is the sum of the fitness values of individuals 0 · · · i:

wi =
i∑

j=0

Fi (5.22)

The selected individual Pi is determined by the first value of i such that wi ≥ v.
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Rank-based selection is similar in concept to the roulette wheel method, except that individuals

are selected with probability proportional to their fitness rank. This scheme has two advantages.

First, if the fitness values happen to be distributed, say, exponentially, rank-based selection will pre-

vent the few individuals with comparatively high fitness from dominating the population. Second,

if the fitness values are very close together (e.g. they are asymptotic), rank-based selection will

help distinguish between them. In this method, it is not necessary to keep track of f+, since it is

analytic:

f+ =
p2 + p

2
(5.23)

However, it is necessary to rank each individual in the population based on fitness. For this pur-

pose, a length p vector FR is defined so that FR
i = rank(Pi). For the initial population and in

the generational control scheme, FR can be determined by a standard sorting procedure. In the

steady state scheme, however, it would be very inefficient to sort the entire population after each

replacement. Instead, it is possible to update the ranks of each individual in the population in a

single pass:

PROCEDURE update_ranks(replaceIndex, replaceNew, replaceOld)
FOR i FROM 0 TO p-1

IF NOT i=replaceIndex THEN
IF F[i] < replaceNew AND F[i] > replaceOld THEN

rank[i] = rank[i] - 1
rank[replaceIndex] = rand[replaceIndex] + 1

ELSE IF F[i] > replaceNew AND F[i] < replaceOld THEN
rank[i] = rank[i] + 1
rank[replaceIndex] = rand[replaceIndex] - 1

END IF
END IF

END FOR
END PROCEDURE

As before, the procedure chooses a uniform random value v ∈ [0, f+] and computes the series wi

given by

wi =
i∑

j=0

FR
i (5.24)

Again, the selected individual Pi will be determined by the first value of i such that wi ≥ v.

Tournament selection is the simplest method as far as implementation is concerned. However,

it requires the external control parameter tourneySize to specify the size v of the tournament
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used. Tournament selection chooses v individuals from the population using a uniform random

distribution with replacement (meaning that an individual can be selected more than once). Of

these v contenders, the individual Pi with the highest fitness is selected.

5.4.3 Genetic Operators

The primary engine of evolution in an EA is the crossover (recombination) operator. Crossover

is typically performed frequently, as determined by the pCross control parameter. If generational

control is used, the selected parents are simply copied into the next generation if crossover does

not occur, simulating survival of the fittest. In the steady state control scheme, crossover is always

performed since survival of the fittest is intrinsic. FISSION implements both real-parameter and

tree crossover, both of which produce two children per mating. During a given mating, crossover

will be performed either on the real parameter chromosome (fuzzy sets) or the tree chromosome

(inference rules), depending on a random variable.

FISSION includes uniform, two-point, arithmetic, and blend (Eshelman et al. 1993) crossovers

for optimizing the real-coded chromosome. The control parameter crossType determines which

type of real parameter crossover is used. Once the parents PA and PB have been selected from the

population, mating between the two is simulated by exchanging or combining some or all of the a

alleles from each parent.

Uniform and two-point crossover are commonly used in binary and discrete representations.

Both begin by making copies CA and CB of PA and PB. In uniform crossover, for each i, 0 ≤ i < a,

CA
i and CB

i are swapped with probability 1
2 . Assuming v is the random variable used, each allele

in CA is determined as follows (CB is defined symmetrically):

CA
i =





PA
i if v < 1

2

PB
i otherwise

(5.25)

CA and CB are then returned as offspring.

On the other hand, two-point crossover generates two uniform random “crossover points” i and

j so that 0 ≤ i < j ≤ a. For each k, i ≤ k < j, CA
k and CB

k are swapped. More precisely,

CA
k =





PB
k if i ≤ k < j

PA
k otherwise

(5.26)
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Again, CA and CB are returned as offspring.

Arithmetic and blend crossovers are designed with real parameter representations in mind. Child

alleles take on values which are functions of the parent alleles. This allows the crossover operator to

explore the greater cardinality of the real numbers. The “standard” versions of arithmetic and blend

crossover combine every allele of PA with its counterpart in PB using a real-valued function, rather

analogous to uniform crossover. FISSION provides the option of only combining alleles from a seg-

ment of the parents, as in two-point crossover. This option is controlled by the realParamUniform

parameter. Arithmetic crossover is deterministic, defined by the following expression:

CA
k =





φPA
k + (1− φ)PB

k if i ≤ k < j OR using uniform

PA
k otherwise

(5.27)

Blend crossover, on the other hand, depends on a uniform random variable vk. Let ak =

min
(
PA

k , PB
k

)
and bk = max

(
PA

k , PB
k

)
. Then ak − φ(bk − ak) ≤ v < bk + φ(bk − ak), and blend

crossover is defined as follows:

CA
k =





v if i ≤ k < j OR using uniform

PA
k otherwise

(5.28)

CB
k is defined symmetrically for both crossover methods. Notice that both formulas involve a

variable φ. In arithmetic crossover, φ controls the bias towards one parent or the other, and in

blend crossover φ determines the size of the interval about the mean from which the new allele can

be chosen. In both cases, 1
2 is a good default choice. The value of φ can be set using the blendParam

control parameter.

The secondary evolutionary mechanism in an EA is the mutation operator, which operates

on a single chromosome P . Typically, mutation occurs infrequently (as controlled by the pMut

parameter). FISSION incorporates two types of real parameter mutation: uniform creep mutation

and Gaussian creep mutation. Both methods pick a single allele Pk to modify, and add to it a

random variable v. The input k which is affected by the allele to be modified is determined as

shown in section 5.2. In the case of uniform mutation, the random variable uniformly selects from

the interval (−max−min
10 , max−min

10 ), where max and min denote the maximum and minimum values

of input k respectively. On the other hand, in the Gaussian approach v is a normally distributed

random variable with a mean of 0 and a standard deviation of max−min
10 .
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Tree crossover, as described by Koza (1992), is analogous to two-point crossover in that both

are based on swapping a single contiguous block of genetic material between parents. The general

idea is to randomly pick a crossover point (node) in each parent tree, and swap the subtrees rooted

at those nodes. Of course, there are technical considerations stemming from the fact that not all

trees constructible in this way are syntactically valid fuzzy rules. In addition, the binary rule tree

is essentially a variable-length chromosome, so issues of size come into play as well.

The first step in performing tree crossover is picking the crossover point. This node is selected

by a uniform random variable v, 0 ≤ v < l, where l is the number of nodes in the tree. The value

of l is given by nodesBelow+1, applied to the root node of the tree. Having chosen a node v, it is

necessary to define what is meant by the vth node in the tree, and to show how to find it. FISSION

defines the vth node in the tree as the vth node encountered in a preorder, left-first traversal of that

tree. Of course, it is not necessary to traverse the entire tree to find the (l − 1)st node; the tree

can be viewed as a BST where an element can be found in (expected) log2 l moves. The following

recursive procedure efficiently locates the ith node in the tree:

PROCEDURE find_node(node, whichNum)
IF whichNum=0 THEN

RETURN node
END IF
IF whichNum <= node->left->nodesBelow+1 THEN

RETURN find_node(node->left, whichNum - 1)
ELSE

RETURN find_node(node->right, whichNum - (node->left->nodesBelow + 2))
END IF

END PROCEDURE

This procedure can be used “as is” to find the crossover point in the first parent PA. However,

performance may be improved if there is a higher probability of selecting internal nodes as the

crossover point. Recall that approximately half the nodes in a binary tree are leaves, so selecting

the point from all nodes in the tree with uniform probability will result in swapping leaves half the

time. Koza (1992) compares leaf exchange to mere point mutation, and selects internal nodes with

probability 9
10 . This option is available in FISSION via the pSelectInternal control parameter.

Once a crossover point has been chosen in the first tree, a compatible node must be chosen in

the second parent PB. In general, compatibility means that the two nodes must have the same
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role, although terminal nodes must match in subRole as well. Since there is no a priori way to

know whether the ith node in PA is compatible with the jth node in PB, FISSION proceeds by

trial and error. If an incompatible node is chosen, the procedure picks another random number and

tries again. Since there are relatively even proportions of each type of node in the tree, it should

not take more than a few tries to find a compatible node. A possible improvement would involve

a “lookup table” of nodes indexed by number in the tree containing the node’s information. Of

course, this addition would introduce technical problems of its own; for instance, the lookup table

would have to change (perhaps even in size) whenever the tree was altered. It is not clear that any

time savings would be gained.

Having chosen crossover points in both trees, it is possible to generate the children. Child CA

receives a copy of the tree from PA, with the subtree below the crossover point replaced with

the subtree from PB. There is one important exception: if pasting the subtree from PB into CA

would result in a rule that exceeds maxOverallRuleDepth, then CA is set as a copy of PA. Child

CB is created symmetrically. The procedure updates the position information (depthBelow and

nodesBelow) in both children.

There is one troubling issue with this method of tree crossover: it can have a disruptive effect by

breaking up rules which work well together. As Carse et al. (1996) point out, this problem is intrinsic

to the training of Pittsburgh style classifier systems using EAs. A solution inspired by (Grefenstette

1987) involves re-ordering the rules within the tree so that highly effective ones are close together.

It is then less likely that crossover will split them up. FISSION implements this knowledge-based

permutation operator by storing the firing strength sum (over all training patterns) of a rule in its

root node. Immediately before crossover, the rules are sorted within the tree according to firing

strength. This feature can be turned on and off by the control parameter reorderTree.

FISSION implements four of the commonly used tree mutation operators suggested by Engel-

brecht (2003), namely function node mutation, terminal node mutation, grow mutation, and trun-

cate mutation. Each of these methods entails picking out a single node from a tree chromosome and

altering it. The find_node procedure defined above proves very useful for this purpose. Function

node mutation merely involves selecting an AND or OR node and switching it to the other type.

Terminal node mutation picks a terminal and assigns it a valid randomly generated value. Grow
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mutation picks a node in the tree and replaces it with a randomly generated compatible subtree

(rather like the crossover operator, but with no second parent to contribute the subtree). Finally,

truncate mutation shortens a subtree rooted at the selected node. If operating on an IF/THEN node,

truncation simply deletes the right subtree (containing other rules). If operating on an antecedent

node, the operation repaces the node with a randomly generated IS subtree (containing two ter-

minals). Truncate mutation does not apply to terminal nodes.

5.4.4 Training Complete

Once the EA run has finished, the fully trained FIS can be retrieved from bT . The probable best

generalized FIS is stored in bU . Either of these can be applied to the validation set (if any) to judge

the model which has been constructed. All that remains is to present an interface which provides

this functionality to the user.

5.5 Graphical User Interface

The graphical user interface is designed to expose all of FISSION’s functionality in a user friendly

manner. It accepts user input and translates them into calls to exported DLL functions. The GUI

also displays feedback from the training process and several other visualizations. The interface

consists of a standard Windows menu bar, a progress bar, and a tabbed environment containing

most of the interface controls.

5.5.1 Menu and Progress Bars

The FISSION menu bar provides drop down menus entitled “File” and “Help.” The File menu

allows the user to save a trained fuzzy inference system to disk, or to load a previously saved FIS.

The “New” option resets all training options to their defaults and removes any trained models

from memory. There is also an option to exit the program. The Help menu has two options: one

to display FISSION documentation, and the other to show copyright information. The progress

bar provides visual feedback as to the status of various processes (most importantly, the training

procedure).
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5.5.2 Data Setup Tab

The first tab (figure 5.1) allows the user to load data sets from “comma separated values” (CSV)

text files. FISSION allows the first row in the CSV file to contain column names, but all other rows

must contain data. Microsoft Excel can export any type of spreadsheet to this format. Once the

training set is loaded, the user can select which columns in the data set are to be used as inputs,

and which one is the output. The column names may then be changed. The data setup tab also

displays useful statistics relating to the distribution of column variables. The entire data set is

shown in a built-in spreadsheet.

The testing and validation sets are optional and can be loaded in two ways. First, they may be

loaded from CSV files like the training set. Alternatively, the user may choose to generate them as

partitions of the training set. A partition can be created either by taking the last n percent of the

training set or choosing n percent randomly (without replacement).

5.5.3 FIS Setup Tab

The FIS setup tab (figure 5.2) is primarily concerned with setting the control parameters relevant

to FIS evaluation. These are prod, probor, wtaver, linearOutput, and mfType. The user can also

enter minimum and maximum values for each input and output. These values are not used in the

the training procedure; they merely specify bounds for the graphs shown in the GUI. They are

set to the observed data minimums and maximums by default. The FIS setup tab also displays a

histogram which shows the distribution of the selected input or output. This feature can be very

useful for detecting outliers and errors in the data. It also shows clusters in the data which may

aid the user in choosing the number of fuzzy sets per input (on the next tab). The histogram can

be saved as a bitmap or copied to the clipboard at the user’s discretion.

5.5.4 Training Setup Tab

This tab (figure 5.3) allows the user to set the remaining control parameters, which deal with the

training process. There are two sections on the training setup tab.

The first section presents training options related to an FIS. These include the discrete parame-

ters maxInputMFs, maxRules, maxInitialRuleDepth, and maxOverallRuleDepth, which are set
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Figure 5.1: FISSION data setup tab.

Figure 5.2: FISSION FIS setup tab.
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Figure 5.3: FISSION training setup tab.

using “numeric up/down” controls to ensure validity. The following parameters are set using

check boxes (boolean controls): rampedInit, numSetOps, pSelectInternal, parsimonyFactor,

globalInputMFs, and reorderRules. Note that while numSetOps, pSelectInternal, and parsimo-

nyFactor are not boolean parameters, the interface assigns numerical values to them based on

whether or not their boxes are checked. For instance, pSelectInternal takes the value 0.9 when

the box is checked, and 0.5 otherwise.

The second section deals with training options specific to the EA. These are popSize,

tourneySize, maxGens, pCross, pMut, steadyState, elitism, crossType, selType, mutType,

numSubsets, blendParam, and realParamUniform. Again, discrete parameters are set with numeric

up/down controls. “Select” parameters like crossType are handled using radio buttons, and real

parameters are set using text boxes with validation.
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Figure 5.4: FISSION training tab.

5.5.5 Train FIS Tab

The user begins the training process (figure 5.4) by clicking on the “Start Training” button. There

is also an “Abort” button, which causes FISSION to consider the training complete, even if the

maximum number of generations has not been reached. During training, the user is provided with

text status information which is updated once per second. This information consists of EA state,

best RMS Error, number of fitness evaluations, and training time. At the user’s request, visu-

alizations of the current best FIS are displayed. There are visualizations for input membership

functions, inference rules, and output data series fitting. Other text information about the FIS is

also displayed. Each of these graphs can be saved as a bitmap or copied to the clipboard by means

of right-click context menus.
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5.5.6 Apply FIS Tab

The apply FIS tab (figure 5.5) allows the user to run a previously trained FIS on a data set. The user

can either select one of the previous loaded (training, testing, or evaluation) sets or load a data set

without outputs and have FISSION make a prediction based on that data set. Note that the data set

loaded must have the same column setup as the training set used to train the model, with one fewer

column. The user can also specify whether to use the best overall FIS or the best generalized (test

set) FIS on the data. When the “Apply FIS” button is clicked, FISSION performs the inference.

If the selected data set contains output values, the interface displays RMS error, MAE, correlation

coefficient (R), and R2 values. A list box shows the output values predicted by the model, which

may be copied to the clipboard. Finally, another visualization graphs the predicted and observed

output values against a selected input. This visualization can be copied to the clipboard or saved

as a bitmap via a right-click context menu.

This tab also contains a section for code generation. When the user clicks “Generate C Code”,

FISSION outputs a C representation of the FIS model, which the user can then save to a file or

copy and paste into his/her own project.
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Figure 5.5: FISSION apply FIS tab.



Chapter 6

Results and Conclusions

6.1 Experimental Results

In order to test FISSION, two computational experiments were performed. The first is an example

run of the program using an actual (observed) data set. The second experiment tests different

control parameter configurations to determine good default values.

6.1.1 An Example Run

The first step in running FISSION is loading the data set to be used for training. In this case,

the data set measures biosolids composting (Liang et al. 2003a,b). In Liang’s experiment, biosolids

were taken from a wastewater treatment plant and subjected to a two factor analysis involving

moisture and temperature. Observations of O2 uptake rate were made by a computer-controlled

respirometer in order to determine microbial activity.

There are three input (predictor) variables in the data set: moisture (% humidity), time (hours),

and temperature (◦C). Although four dependent variables are included, the only one of interest

here is O2 uptake rate, measured in mg g−1 h−1. For a more complete description, see Liang et al.

(2003a), the source of the data set.

Initially, the data consisted of a model development set containing 8,760 patterns, and a model

evaluation set containing 1,460 patterns. These patterns consist of 5 moisture regimes (30%, 40%,

50%, 60%, and 70%), and 7 temperature regimes (22◦, 29◦, 34◦, 36◦, 43◦, 50◦, and 57◦). The 34◦

regime is included only in the evaluation set. Each combination of regimes was tested on 1.67 hour

intervals over a period of 240 hours, resulting in a total of 146 observations per experiment.

The model development set was divided into two replicates, representing two trials in the original

experiment. In the FISSION test, only one of the two replicates was used (to increase training

43
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Table 6.1: Control Parameter Settings
FIS Control Parameters EA Control Parameters

name value name value
globalInputMFs true blendParam 0.5
linearOutput true crossType blend
maxInitialRuleDepth 7 elitism true
maxInputMFs 3 maxGens 30
maxOverallRuleDepth 17 mutType Gaussian
maxRules 15 numSubsets 5
mfType Gaussian pCross 0.9
numInputs 3 pMut 0.01
numOutputs 1 popSize 300
numSetOps 1 realParamUniform true
parsimonyFactor 0 selType roulette
probor true steadyState false
prod true tourneySize 3
pSelectInternal 0.9
rampedInit true
reorderTree true
wtaver true

speed), meaning that 4,380 patterns were available for model development. This reduced set was

split randomly (uniformly) into a training set and a testing set, the former taking 67% (2,935) of

the training patterns and the latter left with 33% (1,445). The evaluation set was left unchanged

(containing both replicates), and each of the three data sets was stored in a separate file.

FISSION was configured as described in section 5.5 with the three data sets and the control

parameter settings listed in table 6.1. After the training finished, the best overall FIS was applied to

the evaluation data set. This particular validation set is an especially good judge of model quality

because it consists of patterns at a temperature value (34◦) not seen in the training data. FISSION

reported the statistics shown in table 6.2.

These values represent an improvement over the author’s best results using ANFIS. In ANFIS,

the best RMS error achieved with 3 membership functions per input was 0.1633, compared to 0.1411

in FISSION. In addition, FISSION used fewer rules: 14 as compared to 27. Liang et al. (2003b) does

not give RMS error values; however it does provide MAE and R2 figures. They achieved a MAE of
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Table 6.2: Experiment results
statistic value
RMS Error 0.1411
MAE 0.1095
R2 0.9028
# Rules 14
Max. Rule Depth 5
Training Time 911s (15:11)

0.11 and and R2 of 0.852 using a two output Ward neural network with 84 hidden nodes, compared

to 0.1095 MAE and 0.9028 R2 for FISSION. While the MAE values are virtually the same (and

the difference may be due to rounding,) FISSION appears to have an advantage in correlation (as

described by R2).

The input membership functions for the best FIS are shown in figure 6.1. Note that the input

spaces for moisture and time have “gaps” in them; i.e, there are points within the input domain

which have low membership in all fuzzy sets. This state of affairs would be a serious problem

for systems such as ANFIS which rely soley on the intersection of fuzzy sets. However, it is not

an issue for FISSION, which incorporates the complement of fuzzy sets as well. If a point has

low membership in every fuzzy set defined for an input, then it has high membership in every

complement.

The inference rules contained in the best FIS after training are represented in Appendix A.

Notice that only 14 rules were generated out of a maximum of 15. FISSION can dynamically alter

the number of rules during training through crossover and mutation. The number of membership

functions can effectively change, in that a function may not be used by any rule. In that case, the

membership functions has become rather like a “vestigial organ”: still present, but not used. In the

top-right corner of figure 6.1, there are two membership functions which are very close in position

and shape. This could be an indication that only two membership functions are really required for

that input (time).

Inspection of rules 13 and 14 show what appears to be a failure to simplify: in 13, it seems

that AND(X X) should be simplified to X, and in 14, NOT(NOT(NOT(NOT(X)))) is clearly the same
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Figure 6.1: Membership functions, clockwise from top left: moisture, time, and temperature.

as X. However, it should be noted that in fuzzy logic, AND(X X) is actually not the same as X if the

product definition of intersection is being used. If X to degree φ, then AND(X X) to degree φ2. It is

for this reason that simplification features have not been included in FISSION.

Figures 6.2 through 6.6 show the trained FIS applied to the five moisture regimes on the

validation data. These visualizations demonstrate how the model predictions fit the observed data,

with O2 rate graphed against time. Each observed value is graphed as the mean of the corresponding

values from the two replicates. Figure 6.7 shows the progression of best population fitness value

and best overall RMS error during training. One might wonder why there are downward spikes

in the fitness graph, even though elitism is being used. They are caused by the rotation of the

training subsets used to calculate the output membership functions. Elitism still preserves the best

individuals from generation to generation, and the best individual is always remembered separate

from the population.
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Figure 6.2: Best FIS applied to validation set, moisture 30%

Figure 6.3: Best FIS applied to validation set, moisture 40%
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Figure 6.4: Best FIS applied to validation set, moisture 50%

Figure 6.5: Best FIS applied to validation set, moisture 60%
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Figure 6.6: Best FIS applied to validation set, moisture 70%

Figure 6.7: Population maximum fitness (left) and overall best RMS error (right).
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6.1.2 An Investigation of Control Parameter Settings

FISSION uses 30 control parameters to determine the operation of its training engine. Reasonable

default values for these parameters have been established during the development process and

based on published literature. However, it is interesting to know which parameters are the most

“mission-critical,” that is, which have the greatest effect on performance.

An exhaustive study of all parameter values and their interactions would be prohibitively time

consuming. In addition, the results of such an experiment might apply only to the particular type of

data set upon which it was performed. Hence, this paper will instead present a series of controlled

experiments on the biocomposting data sets used in the previous section, relating to a select subset

of parameters. In choosing these parameters, those settings which affect the size of the model

were omitted in favor of those which determine how the training proceeds. In general, larger, more

complex models (those involving more rules and membership functions) will have greater fitting

power. Since many tests were to be run in this experiment, size parameters were chosen to limit

the complexity and run-time of the training process. The control for this study consists of the set

of parameters listed in table 6.3. Ten trials were run with the control set.

Each experiment involved changing the value of a single parameter and running ten trials using

the resulting set. The best FIS from each trial was applied to the training set (as described in

section 6.1.1), resulting in error and R2 values. The mean error values from each experiment are

compared to the mean error value of the control using a two tailed t-test to determine whether any

difference is statistically significant. SAS (SAS Institute 2003) was used to perform the tests. The

histogram in figure 6.8 shows the distribution of the error values from all trials. The experiments

and their results are listed in table 6.4.

Nine of the experiments yielded apparently significant (p < 0.05) results. It should be noted

that at least one of the results could have been falsely declared significant with probability up

to 1 − (0.95)9 = 0.37 (in fact, the probability is less, since all 9 values are less than 0.05). For

this reason, the Bonferroni “corrected” values are included in the table as well. The Bonferroni

correction is guaranteed to to make a conservative estimate by multipying the p-value by the

total number of comparisons made (in this case, 22). This guarantee is based on the theorem that

P{a or b or c or ...} ≤ P{a}+P{b}+P{c}+ · · ·, where P denotes probability (SAS Institute 2003).
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Table 6.3: Control Parameter Settings
FIS Control Parameters EA Control Parameters

name value name value
globalInputMFs true blendParam 0.5
linearOutput true crossType blend
maxInitialRuleDepth 7 elitism true
maxInputMFs 3 maxGens 30
maxOverallRuleDepth 17 mutType Gaussian
maxRules 10 numSubsets 5
mfType Gaussian pCross 0.9
numInputs 3 pMut 0.05
numOutputs 1 popSize 100
numSetOps 1 realParamUniform true
parsimonyFactor 0 selType roulette
probor true steadyState false
prod true tourneySize 3
pSelectInternal 0.9
rampedInit true
reorderTree true
wtaver true

Table 6.4: Experimental Results
Experiment Alteration Mean RMSE p-Value Bonferroni
0 Control 0.1449 N/A N/A
1 steadyState=true 0.1496 0.0028 0.0618
2 rampedInit=false 0.1443 0.7083 1
3 reorderTree=false 0.147 0.1794 1
4 prod=probor=false 0.1466 0.2833 1
5 linearOutput=false 0.1847 <.0001 <.0001
6 elitism=false 0.1511 <.0001 0.0018
7 wtaver=false 0.1473 0.1285 1
8 realParamUniform=false 0.1472 0.1386 1
9 selType=tournament 0.1402 0.0026 0.0566
10 selType=rank 0.1405 0.0047 0.1023
11 crossType=two point 0.148 0.0478 1
12 crossType=uniform 0.1472 0.1459 1
13 crossType=arithmetic 0.1476 0.0864 1
14 mutType=uniform 0.1456 0.6602 1
15 parsimonyFactor=0.1 0.146 0.4984 1
16 pSelectInternal=0.5 0.1464 0.3513 1
17 numSetOps=3 0.1478 0.0674 1
18 mfType=gbell 0.1481 0.0395 0.8687
19 mfType=tri 0.1505 0.0004 0.0085
20 mfType=trap 0.1499 0.0014 0.0318
21 pCross=0.6 0.146 0.4832 1
22 pMut=0.15 0.1462 0.4009 1
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Figure 6.8: Histogram of RMS error values from all experiments.

However, this is not a major issue here since the p-values are simply being used to determine which

parameters are most interesting for purposes of discussion.

The first significant result is from experiment 1 (p = 0.0028), involving the steadyState param-

eter. The mean RMSE using steady state was 0.1496 compared with 0.1449 using generational (in

the control). The superior performance of the generational scheme can probably be attributed to its

slower convergence, particularly since the population size is only 100. Steady state tends to focus

on a single area of the search space much more quickly and thus risks converging on a suboptimal

local maximum.

One might complain that the error values are very close together, and hence there is not an

interesting performance difference between steady state and generational approaches. However, the

small gap is most likely due to the Kalman optimization process, which can mask the effect of

the EA. Since there is only 1
5 of a percent chance that the difference between error values is due

to randomness, it can be assumed that the EA is really performing better with the generational
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scheme, despite the small difference in error values. With another data set (or even in a different

experiment with the same set) the discrepancy could well manifest itself to a greater extent.

Experiment 5 (p < 0.0001) clearly indicates that linear output functions perform better than

constant ones, with RMSEs of 0.1449 and 0.1847 respectively. This should come as no surprise,

since the linear method allows the final output of the FIS to be a direct function of the inputs as

well as the rule firing strengths, instead of just the latter. Of course, the Kalman procedure runs

much faster in the constant method, since only one parameter needs to be adjusted for each rule.

The trials using the constant method took, on average, 72 seconds as compared to 175 seconds for

the linear method.

The next significant result is found in experiment 6 (p < 0.0001). Trials using elitism had a

mean RMSE of 0.1449, compared to trials without elitism which averaged 0.1511. Elitism typically

boosts the performance of any EA, but the training subset scheme in FISSION makes this feature

particularly important. It ensures that the individual Q which performed the best in generation i

will survive in generation i + 1, regardless of whether Q performs well under the training subset

used to create the (i + 1)st generation. Hence, one poorly chosen training subset is less likely to

cause the loss of good genetic information.

Experiment 9 (p = 0.0026) shows that tournament selection is superior to roulette selection in

this application. This experiment had an RMSE of 0.1402 as compared to 0.1449 for the control.

Tournament selection (with a reasonably small tourney size) increases the probability that mid-

fitness individuals will be selected, relative to high-fitness individuals. That feature helps to preserve

diversity and prevent premature convergence.

Similarly, rank-based selection appears to work better than roulette selection (Experiment 10,

p = .0047). Trials using rank-based selection averaged 0.1405 in RMSE, as opposed to 0.1449 using

the roulette method. The advantages of rank-based selection are similar to those of tournament

selection, with the caveat that low-fitness individuals are also selected with higher probability

(in tournament selection, the lowest-fitness individual will never be selected, unless it is the only

individual in the tourney).

All three alternate crossover types performed worse than blend crossover on average, with

RMSEs of 0.1480, 0.1472 and 0.1476 for two-point, uniform, and arithmetic crossovers respectively.
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Blend crossover was used in the control, and resulted in an RMSE of 0.1449. Only the two-point

result from experiment 11 (p = 0.0478) is considered significant, although the other two were some-

what close with p-values of 0.0864 and 0.1459. The superiority of blend crossover can be explained

by noting that two-point and uniform crossovers are not designed for real-valued chromosomes, and

arithmetic crossover results in a loss of diversity by favoring the center of the input space over the

periphery.

Finally, experiments 18 (p = 0.0395), 19 (p = 0.0004), and 20 (p = .0014) showed that gen-

eralized bell, triangular, and trapeziodal membership function types are less well suited to the

biocomposting data than the Gaussian type. The generaliazed bell trials had an average RMSE of

0.1481, the triangular trials had 0.1505, and the trapezoidal method resulted in 0.1499. Gaussian

membership functions were used in the control, resulting in an RMSE of 0.1449. These figures agree

with the author’s results using ANFIS, where the gauss membership function type performed the

best.

While not strictly (p < 0.05) significant, the p-values for experiments 3 (p = 0.1794), 7 (p =

0.1285), 8 (p = 0.1386), and 17 (p = 0.0674) are low enough to merit discussion. These experiments

deal with the parameters reorderTree, wtaver, realParamUniform, and numSetOps respectively.

Reordering the rules by firing strength does appear to help, resulting in a mean RMSE of 0.1449

as opposed 0.1470 without reordering. This policy helps prevent the tree crossover operator from

disrupting effective groups of rules.

Weighted average seems to be a better aggregation method than weighted sum, with RMSE

values of 0.1449 and 0.1473. This result agrees with the author’s results using ANFIS, and may be

explained by noting that weighted average can minimize the effect of a single unhelpful rule (since

the effect of each individual rule is minimized by division).

Apparently, the feature of applying real parameter crossovers to only part of a chromosome was

unhelpful. With this feature turned off (realParamUniform true,) the control mean RMSE was

0.1449, compared to 0.1472 with the feature turned on (realParamUniform false).

Including the < and > operators also seemed to worsen performance, resulting in a mean RMSE

of 0.1478 as opposed to 0.1449 for the control. This phenomenon is not easily explained, and merits



55

further research. However, it could be speculated that FISSION overuses these operators, when

they are only really useful at the boundaries of the input domain.

Setting the parsimonyFactor control parameter to 0.1 in experiment 15 led to an increase in

mean RMSE (0.1460 as opposed to 0.1449 in the control). However, the average maximum rule

depth dropped from 7 to 6.4. Setting the parsimony factor to a larger fraction would likely result

in a greater decrease in complexity, albeit at a greater cost in accuracy.

6.2 Future Work

FISSION implements fuzzy inference system calibration using a mixture of evolutionary approaches.

Further, the methods described in this paper have been effectively applied to a real-world data set.

However, this project exposes a number of areas which are ripe for further investigation. Two such

areas are described here.

The particular Pittsburgh style learning algorithm used by FISSION is inherently flawed. Good

performance by an individual requires near-optimal interaction between its membership functions

and rule set. However, since different crossover operators are used for the two chromosomes, the

two evolve separately. Hence, the overall crossover operation is by nature disruptive, since it takes

a chromosome pair that works (well) and changes one of the two, but not the other. An interesting

alternative would be coevoluton. In this scheme, there would be two entirely separate populations,

one consisting of membership functions, and the other of inference rules. Individuals in the two

populations would bear a symbiotic relationship to one another. This approach would mitigate the

disruptive effects currently present in FISSION. However, it would also introduce new challenges,

such as designing a method for pairing membership functions and assigning fitness values across

the two populations.

Recall that one of the goals of FISSION was to produce human-interpretable rule sets. Some

progress has been made in this direction by limiting the number of rules and making them more

descriptive. However, Takagi-Sugeno style fuzzy inference systems naturally suffer in this respect

by eliminating the linguistic output variables and replacing them with mathematical formulas. It

also seems desirable to eliminate the costly and overfitting-prone Kalman estimation procedure for

output functions. The obvious solution would be to switch to a Mamdani style controller. These
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models would be easier to interpret, and could be trained entirely by the EA. Challenges to overcome

would include reduced accuracy and more complex FIS evaluation.
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Appendix A

Example Inference Rules

1. (IF
(Input2 = 1)
Output = 7.337117 + input1 * -0.099313 + input2 * -0.020941

+ input3 * -0.107748
)

2. (IF
(AND

(OR
(Input2 = 3)
(NOT

(OR
(Input2 = 3)
(Input2 = 2)

)
)

)
(NOT

(Input3 = 2)
)

)
Output = 1.135712 + input1 * 0.099991 + input2 * -0.018968

+ input3 * -0.089579
)

3. (IF
(AND

(NOT
(NOT

(AND
(Input2 = 1)
(Input1 = 1)

)
)

)
(NOT

(OR
(AND

(Input2 = 2)
(Input1 = 2)

)
(NOT
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(Input1 = 3)
)

)
)

)
Output = -4.152116 + input1 * -205.785390 + input2 * 29.755553

+ input3 * -33.435188
)

4. (IF
(AND

(AND
(AND

(AND
(Input3 = 2)
(Input1 = 2)

)
(OR

(Input3 = 3)
(Input1 = 1)

)
)
(Input3 = 1)

)
(OR

(Input3 = 1)
(AND

(NOT
(Input1 = 3)

)
(Input1 = 2)

)
)

)
Output = -136.314802 + input1 * 8.642018 + input2 * 0.527937

+ input3 * -7.864042
)

5. (IF
(OR

(AND
(NOT

(Input3 = 1)
)
(OR

(AND
(Input2 = 1)
(Input1 = 3)

)
(NOT

(Input3 = 1)
)

)
)
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(OR
(AND

(NOT
(Input1 = 2)

)
(OR

(Input1 = 2)
(Input2 = 3)

)
)
(Input1 = 3)

)
)
Output = -6.540776 + input1 * 0.057056 + input2 * 0.010408

+ input3 * 0.066610
)

6. (IF
(NOT

(NOT
(AND

(NOT
(Input2 = 1)

)
(OR

(Input1 = 3)
(Input3 = 3)

)
)

)
)

Output = -5.317154 + input1 * 0.100194 + input2 * 0.002217
+ input3 * -0.041050

)

7. (IF
(Input3 = 3)
Output = -15.814353 + input1 * 0.082474 + input2 * -0.012289

+ input3 * 0.298081
)

8. (IF
(OR

(AND
(NOT

(Input1 = 3)
)
(OR

(AND
(Input3 = 2)
(Input2 = 3)

)
(NOT

(Input1 = 2)
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)
)

)
(AND

(Input1 = 3)
(OR

(NOT
(Input3 = 3)

)
(AND

(Input1 = 3)
(Input1 = 1)

)
)

)
)
Output = -11.718658 + input1 * 0.093831 + input2 * -0.006658

+ input3 * 0.187943
)

9. (IF
(OR

(Input3 = 2)
(Input3 = 2)

)
Output = 2.127390 + input1 * 0.073895 + input2 * -0.030709

+ input3 * 0.011463
)

10. (IF
(AND

(NOT
(Input3 = 2)

)
(Input1 = 1)

)
Output = 9.125582 + input1 * -0.059277 + input2 * 0.001141

+ input3 * -0.124425
)

11. (IF
(AND

(AND
(Input2 = 1)
(OR

(NOT
(Input1 = 3)

)
(Input2 = 1)

)
)
(Input1 = 3)

)
Output = -62.000648 + input1 * 0.800438 + input2 * 0.147539
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+ input3 * 0.006198
)

12. (IF
(OR

(NOT
(AND

(OR
(Input2 = 2)
(Input1 = 3)

)
(OR

(Input2 = 1)
(Input1 = 2)

)
)

)
(NOT

(NOT
(NOT

(Input3 = 3)
)

)
)

)
Output = 20.447472 + input1 * -0.239381 + input2 * 0.001690

+ input3 * -0.143466
)

13. (IF
(AND

(Input1 = 2)
(Input1 = 2)

)
Output = 0.640457 + input1 * -0.296678 + input2 * 0.017733

+ input3 * 0.256518
)

14. (IF
(NOT

(NOT
(NOT

(NOT
(Input1 = 1)

)
)

)
)
Output = -22.734805 + input1 * 0.009520 + input2 * 0.147617

+ input3 * 0.335430
)
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Program Listing

/////////////////////////////////////////////////////////////////////////////
// Eric A. Morris
// Univ. of Georgia AI Center
// FISSION Project
//
// FISSION_Structures.h
// Declaration for the FIS/EA configuration structures
// and various constants.

#pragma once
#include <iostream>

#define E 2.71828183
#define PARAM_SIZE 4

using namespace std;
static const int CROSS_2PT = 0;
static const int CROSS_UNIFORM = 1;
static const int CROSS_BLEND = 2;
static const int CROSS_ARITHMETIC = 3;
static const int MUT_GAUSS = 0;
static const int MUT_UNIFORM = 1;
static const int SEL_RANK = 0;
static const int SEL_TOURNAMENT = 1;
static const int SEL_ROULETTE = 2;
static const int SEL_UNIV = 3;
static const int MF_GAUSS = 0;
static const int MF_GBELL = 1;
static const int MF_TRAP = 2;
static const int MF_TRI = 3;
struct FISConfig
{

int numInputs;
int numOutputs;
int maxInputMFs;
int maxRules;
int maxInitialRuleDepth;
int maxOverallRuleDepth;
int mfType;
int numSetOps;
bool probor;
bool prod;
bool wtaver;
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bool linearOutput;
bool rampedInit;
bool globalInputMFs;
bool reorderTree;
double parsimonyFactor;
double pSelectInternal;

};
struct EAConfig
{

int maxGens;
int popSize;
int tourneySize;
int crossType;
int mutType;
int selType;
int numSubsets;
double pCross;
double pMut;
double blendParam;
bool steadyState;
bool elitism;
bool realParamUniform;

};
struct ReportStruct
{

int nEvals;
double MAE;
double MSE;
double fitness;
int stage;

};
inline void
initReportStruct (ReportStruct * rs, int ty, int nev, double ae, double se,

double fit, int st)
{

rs->nEvals = nev;
rs->MAE = ae;
rs->MSE = se;
rs->fitness = fit;
rs->stage = st;

} inline void

initEAConfig (EAConfig * ec)
{

ec->popSize = 100;
ec->maxGens = 30;
ec->tourneySize = 3;
ec->steadyState = false;
ec->crossType = CROSS_BLEND;
ec->selType = SEL_ROULETTE;
ec->mutType = MUT_GAUSS;
ec->pCross = .9;
ec->pMut = .05;
ec->elitism = true;
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ec->numSubsets = 5;
ec->blendParam = 0.5;
ec->realParamUniform = true;

} inline void

printEAConfig (EAConfig * ec, ostream & out)
{

out << "Pop size: " << ec->popSize << endl
<<"Max gens: " << ec->maxGens << endl
<<"Tourney size: " << ec->tourneySize << endl
<<"Steady state: " << ec->steadyState << endl
<<"Crossover type: " << ec->crossType << endl
<<"Mutation type: " << ec->mutType << endl
<<"Selection type: " << ec->selType << endl
<<"pCrossover: " << ec->pCross << endl
<<"pMutation: " << ec->pMut << endl
<<"elitism: " << ec->elitism << endl
<<"# subsets: " << ec->numSubsets << endl
<<"Blend Parameter: " << ec->blendParam << endl
<<"Uniform real parameter crossovers: " << ec->realParamUniform << endl;

} inline void

initFISConfig (FISConfig * fc)
{

fc->numInputs = 3;
fc->numOutputs = 1;
fc->maxInputMFs = 3;
fc->maxRules = 10;
fc->maxInitialRuleDepth = 7;
fc->maxOverallRuleDepth = 17;
fc->probor = true;
fc->prod = true;
fc->wtaver = true;
fc->linearOutput = true;
fc->mfType = MF_GAUSS;
fc->rampedInit = true;
fc->parsimonyFactor = 0;
fc->pSelectInternal = .9;
fc->globalInputMFs = true;
fc->numSetOps = 1;
fc->reorderTree = true;

} inline void

printFISConfig (FISConfig * fc, ostream & out)
{

out << "# Inputs: " << fc->numInputs << endl
<<"# Outputs: " << fc->numOutputs << endl
<<"MFs per Input: " << fc->maxInputMFs << endl
<<"Max # rules: " << fc->maxRules << endl
<<"Max initial rule depth: " << fc->maxInitialRuleDepth << endl
<<"Max final rule depth: " << fc->maxOverallRuleDepth << endl
<<"Use probor: " << fc->probor << endl
<<"Use prod: " << fc->prod << endl
<<"Use wtaver: " << fc->wtaver << endl
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<<"Use linear output: " << fc->linearOutput << endl
<<"Use global input MFs: " << fc->globalInputMFs << endl
<<"# of set operations: " << fc->numSetOps << endl
<<"Reorder tree: " << fc->reorderTree << endl
<<"pSelectInternal: " << fc->pSelectInternal << endl
<<"rampedInit: " << fc->rampedInit << endl
<<"parsimonyFactor: " << fc->parsimonyFactor << endl
<<"mfType: " << fc->mfType << endl;

} struct VarBounds

{
double maximum;
double minimum;

};

/////////////////////////////////////////////////////////////////////////////
// Eric A. Morris
// Univ. of Georgia AI Center
// FISSION Project
//
// FISRule.h
// Declaration for the FISRuleTree class

#pragma once

#include ".\fisrule.h"
#include ".\rulenode.h"
#include ".\fission_structures.h"
#include <iostream>
#include <fstream>
static bool full = false;
static int antSubRoleSet[] =

{ RuleNode::SUBROLE_AND, RuleNode::SUBROLE_OR, RuleNode::SUBROLE_NOT,
RuleNode::SUBROLE_IS };
using namespace std;
class FISRuleTree
{
private:RuleNode * root;

FISConfig * theConfig;
int *antSubRoleSet;
void growTree (RuleNode * root, int rule, int depth, int maxDepth,

bool full);
double firingAux (RuleNode * curNode, double *mfLevels,

bool * inputsLeftOfCenter);
double and (double d1, double d2);
double or (double d1, double d2);
double not (double d1);
void doSpacing (char *str, int len);
void printNode (char *str, RuleNode * cur);
RuleNode * findKthRule (int k);
double applySetOp (int op, bool leftOfCenter, double mfLevel);
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void writeRuleAux (ostream & out, RuleNode * node);
void serializeNode (ostream & out, RuleNode * node);
RuleNode * deSerializeNode (istream & in, bool & p, bool & l, bool & r);
void serializeTreeAux (ostream & out, RuleNode * node);
void deSerializeTreeAux (istream & in, RuleNode * node, bool left);

public:FISRuleTree (FISConfig * conf, double pos);
FISRuleTree (FISRuleTree * rt);
FISRuleTree (FISConfig * conf, istream & in);
~FISRuleTree (void);
void createWholeTree (double pos);
void mutate ();
void crossover (FISRuleTree * mate, FISRuleTree * &child1,

FISRuleTree * &child2);
double getFiringLevel (int rule, double *mfLevels,

bool * inputsLeftOfCenter);
int getNumRules ();
int getDepth ();
int getMaxRuleDepth ();
int getNumNodes ();
bool usedMF (int mf);
bool usedMFAux (int mf, RuleNode * cur);
void printTree (char *str, int rule);
void printTreeAux (char *str, RuleNode * t, int level);
void removeRules (bool * toRemove);
void sortRulesByFiringLevel ();
void writeRule (ostream & out, int rule);
void serializeTree (ostream & out);
void deSerializeTree (istream & in);

};
int chooseRandomSubRole (int num);
RuleNode * getRandomSubTree (RuleNode * root, double pSelectInternal);
RuleNode * getCompatibleSubTree (RuleNode * root, int rle, int sbrle,

double pSelectInternal);
RuleNode * findNode (RuleNode * root, int which, int minDepthBelow);
RuleNode * copyTree (RuleNode * root, RuleNode * parent);
int whichChild (RuleNode * parent, RuleNode * child);
void fixAncestorInfo (RuleNode * child);
int countRulesInTree (RuleNode * rn);

/////////////////////////////////////////////////////////////////////////////
// Eric A. Morris
// Univ. of Georgia AI Center
// FISSION Project
//
// FISSION_Utility.h
// Declaration for the utility functions (random, matrix, etc.)

#pragma once

#include <stdlib.h>
#include <cmath>
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#include ".\FISSION_Structures.h"
const double RANDOM_SCALE = 1 / ((double) (RAND_MAX + 1));
void seedRand ();
void seedRand (long t);
double genRand ();
double genNormRand ();
int genRandInt (int lb, int ub);
double *copyArray (double *src, int n);
void mult_matrix_vector (double **m, double *v, int r, int c, double *out);
void sub_vector_vector (double *v1, double *v2, int n, double *out);
double norm_vector (double *v, int n);
double rSquared (int n, double *x, double *y);
double min3 (double a, double b, double c);
double max3 (double a, double b, double c);

/////////////////////////////////////////////////////////////////////////////
// Eric A. Morris
// Univ. of Georgia AI Center
// FISSION Project
//
// FISSION-DLL.h
// Declaration for the DLL exported functions

#ifdef FISSIONDLL_EXPORTS
#define FISSIONDLL_API __declspec(dllexport)
#else /* */
#define FISSIONDLL_API __declspec(dllimport)
#endif /* */

#include "sugenofis.h"
#include "fisrule.h"
#include "fission_structures.h"
#include "fission_utility.h"
FISSIONDLL_API void abortGA ();
FISSIONDLL_API void applyFIS (SugenoFIS * sf, int n, double *id, double *od,

double &MSE, double &MAE, double &rSq,
double *predVals);

FISSIONDLL_API void applyFISNoOpt (SugenoFIS * sf, int n, double *id,
double *predVals);

FISSIONDLL_API void trainFIS (FISConfig * fc, EAConfig * ec, int n,
double *id, double *od, int m, double *testin,
double *testout);

FISSIONDLL_API bool usedMF (SugenoFIS * sf, int input, int mf);
FISSIONDLL_API SugenoFIS * getBestFIS ();
FISSIONDLL_API SugenoFIS * getGeneralizeFIS ();
FISSIONDLL_API int getInputMFCount (SugenoFIS * sf, int input);
FISSIONDLL_API double getInputMFValue (SugenoFIS * sf, int input, int mf,

double x);
FISSIONDLL_API int getMaxRuleDepth (SugenoFIS * sf);
FISSIONDLL_API int getNumRules (SugenoFIS * sf);
FISSIONDLL_API void getPrediction (double *pred);
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FISSIONDLL_API void getReport (ReportStruct * rs);
FISSIONDLL_API char *getRule (SugenoFIS * sf, int r);
FISSIONDLL_API char *genCode (SugenoFIS * sf, const char *fn);
FISSIONDLL_API void saveFIS (SugenoFIS * sf, const char *fn);
FISSIONDLL_API SugenoFIS * loadFIS (const char *fn);

/////////////////////////////////////////////////////////////////////////////
// Eric A. Morris
// Univ. of Georgia AI Center
// FISSION Project
//
// FISSION-EA.h
// Declaration for the TrainerEA class

#pragma once

#include "sugenofis.h"
#include "fisrule.h"
#include "fission_structures.h"
#include "fission_utility.h"
#include "fission-ea.h"
#include "windows.h"
static const bool GEN_OUTPUT = true;
static const char *EA_OUT_FILE = "ea-report.csv";
class TrainerEA
{
private:static const int nFitnessParams = 1;

FISConfig * theFISConfig;
EAConfig * theEAConfig;
VarBounds * varBounds;
SugenoFIS ** population;
SugenoFIS ** nextGen;
double *fitness;
int *fitnessRank;
double bestFitness;
double bestMAE;
double bestMSE;
double bestGeneralizeFitness;
double bestGeneralizeMAE;
double bestGeneralizeMSE;
double bestGeneralizeR2;
int bestFitnessIndex;
double popMaxFitness;
double popMinFitness;
double fitnessSum;
int numFitEvals;
double **inputData;
double **auxInputData;
double *outputData;
double *auxOutputData;
double *vals;
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double *vals2;
double *bestVals1;
double *bestVals2;
int trainingSetSize;
int auxSetSize;
int inputChrSize;
int outputChrSize;
int crStage;
SugenoFIS * bestFIS1;
SugenoFIS * bestFIS2;
bool abortRun;
int trainingStage;
int curSubset;
int subsetSize;
int **subsets;
int *fullSet;
long startTime;
HANDLE semReportData;
void initPopulation ();
double evaluateFitness (int i);
void copyGens ();
void breed (SugenoFIS * &child1, SugenoFIS * &child2);
int doSelect ();
int rouletteSelect ();
int selectDeath ();
int rankSelect ();
int tournamentSelect ();
void generateSubsets ();
void doCrossover (double *parent1, double *parent2, double *&child1,

double *&child2, int strLen);
void twoPtCrossover (double *parent1, double *parent2, double *&child1,

double *&child2, int strLen);
void uniformCrossover (double *parent1, double *parent2, double *&child1,

double *&child2, int strLen);
void blendCrossover (double *parent1, double *parent2, double *&child1,

double *&child2, int strLen);
void arithmeticCrossover (double *parent1, double *parent2,

double *&child1, double *&child2, int strLen);
double gaussNoise (double x, double y);
double blend (double p1, double p2, double a);
double linCombine (double p1, double p2, double a);
void treeCrossover (FISRuleTree * parent1, FISRuleTree * parent2,

FISRuleTree * &child1, FISRuleTree * &child2);
void doMutate (double *child, int strLen);
void mutateStringGauss (double *child, int strLen);
void mutateStringUniform (double *child, int strLen);
void mutateTree (FISRuleTree * child);
void updateRanks (int childIndex, double child, double oldValue);
void steadyStatePostBreed (SugenoFIS * child);
void generationalPostBreed ();
void runSteadyState ();
void runGenerational ();
void writeStatus ();

public:TrainerEA (FISConfig * fc, EAConfig * ec, VarBounds * vb, int n,
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double **id, double *od, int n1, double **aid,
double *aod);

~TrainerEA ();
void runGA ();
void abort ();
double getBestFitness ();
double getBestMAE ();
double getBestMSE ();
int getNumEvals ();
void getCurrentPrediction (double *pred);
SugenoFIS * getBestFIS ();
int getStage ();
SugenoFIS * getGeneralizeFIS ();
void getGeneralizePrediction (double *pred);
double getBestGeneralizeMAE ();
double getBestGeneralizeMSE ();
double getBestGeneralizeR2 ();
double getBestGeneralizeFitness ();

};

/////////////////////////////////////////////////////////////////////////////
// Eric A. Morris
// Univ. of Georgia AI Center
// FISSION Project
//
// RuleNode.h
// Declaration and implementation for the RuleNode class (inline)

#pragma once
class RuleNode

{
public:int role;

int subRole;
int value;
int operation;
static const int ROLE_IFTHEN = 1;
static const int ROLE_ANT = 2;
static const int ROLE_TERM = 3;
static const int SUBROLE_NOT = 5;
static const int SUBROLE_AND = 6;
static const int SUBROLE_OR = 7;
static const int SUBROLE_IS = 8;
static const int SUBROLE_IN = 9;
static const int SUBROLE_MF = 10;
static const int OP_EQ = 0;
static const int OP_GT = 1;
static const int OP_LT = 2;
static const int OP_GEQ = 3;
static const int OP_LEQ = 4;
static const int OP_NEQ = 5;
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int depthBelow;
int nodesBelow;
double firingLevel;
RuleNode * parent;
RuleNode * left;
RuleNode * right;
RuleNode ()
{

role = ROLE_IFTHEN;
depthBelow = 0;
nodesBelow = 0;
parent = NULL;
left = NULL;
right = NULL;
firingLevel = 0;
operation = OP_EQ;

} RuleNode (RuleNode * prnt, int rl, int sbrl, int vl, int op)
{

left = NULL;
right = NULL;
parent = prnt;
depthBelow = 0;
nodesBelow = 0;
role = rl;
subRole = sbrl;
value = vl;
firingLevel = 0;
operation = op;

} RuleNode (RuleNode * r, RuleNode * newParent)
{

left = NULL;
right = NULL;
parent = newParent;
role = r->role;
subRole = r->subRole;
value = r->value;
depthBelow = r->depthBelow;
nodesBelow = r->nodesBelow;
firingLevel = r->firingLevel;
operation = r->operation;

} ~RuleNode ()
{

if (left)
{

delete left;
left = NULL;
}

if (right)
{

delete right;
right = NULL;
}

}
int getDepth ()
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{
int depth = 0;
RuleNode * cur = this;
while (cur != NULL && cur->role != RuleNode::ROLE_IFTHEN)
{

cur = cur->parent;
depth++;
}

return depth;
}
int getRuleNumber ()
{

RuleNode * cur = this;
int count = 0;
while (cur && cur->role != RuleNode::ROLE_IFTHEN)
{

cur = cur->parent;
}

cur = cur->parent;
while (cur)
{

cur = cur->parent;
count++;
}

return count;
}

};

/////////////////////////////////////////////////////////////////////////////
// Eric A. Morris
// Univ. of Georgia AI Center
// FISSION Project
//
// SugenoFIS.h
// Declaration for the SugenoFIS class

#pragma once

#include ".\fission_structures.h"
#include ".\FISRule.h"

class SugenoFIS
{
private:double *inputMFs;

double *outputMFs;
FISRuleTree * infRules;
FISConfig * theConfig;
VarBounds * varBounds;
int inputChrSize;
int outputChrSize;
void doCommonInit ();
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void generateRandomInputMFs ();
void generateRandomOutputMFs ();
double gaussmf (int mf, double x);
double gbellmf (int mf, double x);
double trimf (int mf, double x);
double trapmf (int mf, double x);
void getFiringLevels (int N, double **x, double **&f);
double applyOutputMF (int which, bool useLinear, double *x);
void removeDependencies (int N, double **x, double **&f);
double getMFCenter (int mf);
void writeInputMFs (ostream & out);
void writeOutputMFs (ostream & out);

public:SugenoFIS (FISConfig * conf, VarBounds * vb, double pos);
SugenoFIS (FISConfig * conf, VarBounds * vb, double *inmf,

FISRuleTree * ft);
SugenoFIS (FISConfig * conf, VarBounds * vb, double *inmf,

FISRuleTree * ft, double *omf);
SugenoFIS (SugenoFIS * sf);
SugenoFIS (const char *fn);
~SugenoFIS (void);
double *copyInputMFs ();
double *copyOutputMFs ();
void apply (int N, double **x, double *y, double *outputValues,

double &MSE, double &MAE, double &rSq);
void applyNoOutputs (int N, double **x, double *outputValues);
double runLinearKalmanFilter (int N, int *set, double **x, double *y);
double runConstantKalmanFilter (int N, int *set, double **x, double *y);
double evaluateEfficiency ();
double *getInputMFs ();
double *getOutputMFs ();
FISRuleTree * getRuleSet ();
FISRuleTree * copyRules ();
FISConfig * getConfig ();
VarBounds * getBounds ();
void getMFsForInput (int input, double *MFs);
void printOutputMF (char *str, int mf);
double getMFValue (int mf, double x);
double getInputMin (int input);
double getInputMax (int input);
char *codeFIS (const char *fn);
void serializeFIS (const char *fn);

};
void findMaxMins (FISConfig * conf, int N, double **inputs, double *outputs,

VarBounds * &bounds);
void scaleInputs (FISConfig * conf, int N, double *maxes, double *mins,

double **inputs, double **&scaledInputs);
bool loadDataFromFile (int N, int M, const char *fn, double **&x,

double *&y);
void allocFISMem (int N, int M, int S, int numInputMFs);
void deallocFISMem (int N, int M, int S);
void serializeConfig (ostream & out, FISConfig * conf);
void serializeBounds (ostream & out, VarBounds * vb);
FISConfig * deSerializeConfig (istream & in);
VarBounds * deSerializeBounds (istream & in);
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/////////////////////////////////////////////////////////////////////////////
// Eric A. Morris
// Univ. of Georgia AI Center
// FISSION Project
//
// FISRule.cpp
// Implmentation for the FISRuleTree class

#include "StdAfx.h"
#include ".\fisrule.h"
#include ".\fission_structures.h"
#include ".\fission_utility.h"
#include <iostream>
#include <fstream>

using namespace std;
FISRuleTree::FISRuleTree (FISRuleTree * rt)
{

theConfig = rt->theConfig;
root = copyTree (rt->root, NULL);

} FISRuleTree::FISRuleTree (FISConfig * conf, double pos)
{

theConfig = conf;
root = NULL;
createWholeTree (pos);

} FISRuleTree::FISRuleTree (FISConfig * conf, istream & in)
{

theConfig = conf;
root = NULL;
deSerializeTree (in);

} FISRuleTree::~FISRuleTree ()
{

delete root;
root = NULL;

} int

FISRuleTree::getNumRules ()
{

int count = 0;
RuleNode * curNode;
if (!root)

return -1;
curNode = root->right;
while (curNode != NULL)

{
count++;
curNode = curNode->right;

}
return count + 1;

}
int
FISRuleTree::getMaxRuleDepth ()
{

int maxDepth = 0;
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RuleNode * curNode = root;
if (!root)

return -1;
while (curNode != NULL)

{
if (curNode->left->depthBelow > maxDepth)

maxDepth = curNode->left->depthBelow;
curNode = curNode->right;

}
return maxDepth + 2;

}
int
FISRuleTree::getDepth ()
{

return root->depthBelow;
}
int
FISRuleTree::getNumNodes ()
{

return root->nodesBelow + 1;
}

bool FISRuleTree::usedMF (int mf)
{

return usedMFAux (mf, root);
}

bool FISRuleTree::usedMFAux (int mf, RuleNode * cur)
{

if (!cur)
return false;

if (cur->role == RuleNode::ROLE_ANT
&& cur->subRole == RuleNode::SUBROLE_IS
&& (cur->left->value * theConfig->maxInputMFs + cur->right->value ==

mf))
return true;

if (usedMFAux (mf, cur->left))
return true;

if (usedMFAux (mf, cur->right))
return true;

return false;
}

RuleNode * FISRuleTree::findKthRule (int k)
{

RuleNode * curNode = root;
int

curIndex = 0;
while (curNode != NULL && curIndex < k)

{
curNode = curNode->right;
curIndex++;

}
return curNode;
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}
double
FISRuleTree::getFiringLevel (int rule, double *mfLevels,

bool * inputsLeftOfCenter)
{

RuleNode * rn = findKthRule (rule);
return firingAux (rn->left, mfLevels, inputsLeftOfCenter);

}
double
FISRuleTree::firingAux (RuleNode * curNode, double *mfLevels,

bool * inputsLeftOfCenter)
{

int whichMF;
if (!curNode)

{
cout << "ERROR IN TREE!" << endl;
return 0;

}
switch (curNode->subRole)

{
case RuleNode::SUBROLE_AND:
return and (firingAux (curNode->left, mfLevels, inputsLeftOfCenter),

firingAux (curNode->right, mfLevels, inputsLeftOfCenter));
case RuleNode::SUBROLE_IS:
whichMF =

curNode->left->value * theConfig->maxInputMFs + curNode->right->value;
return applySetOp (curNode->operation, inputsLeftOfCenter[whichMF],

mfLevels[whichMF]);
case RuleNode::SUBROLE_NOT:
return not (firingAux (curNode->left, mfLevels, inputsLeftOfCenter));

case RuleNode::SUBROLE_OR:
return or (firingAux (curNode->left, mfLevels, inputsLeftOfCenter),

firingAux (curNode->right, mfLevels, inputsLeftOfCenter));
}

return curNode->value;
}
double
FISRuleTree::applySetOp (int op, bool leftOfCenter, double mfLevel)
{

double temp;
switch (op)

{
case RuleNode::OP_EQ:
return mfLevel;

case RuleNode::OP_NEQ:
return 1 - mfLevel;

case RuleNode::OP_LT:
if (leftOfCenter)

return 1 - mfLevel;
return 0;

case RuleNode::OP_GT:
if (!leftOfCenter)

return 1 - mfLevel;
return 0;
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case RuleNode::OP_LEQ:
if (leftOfCenter)

temp = 1 - mfLevel;

else
temp = 0;
return max (mfLevel, temp);

case RuleNode::OP_GEQ:
if (!leftOfCenter)

temp = 1 - mfLevel;

else
temp = 0;
return max (mfLevel, temp);

}
return mfLevel;

}
void
FISRuleTree::createWholeTree (double pos)
{

int depth;
root = new RuleNode (NULL, RuleNode::ROLE_IFTHEN, 999, 999, 999);
if (theConfig->rampedInit)

{
full = !full;
depth = (int) (pos * (theConfig->maxInitialRuleDepth - 2)) + 3;
growTree (root, 1, 1, depth, full);

//cout << pos << " " << depth << " " << full << endl;
//cin.get();
}

else
{
growTree (root, 1, 1, theConfig->maxInitialRuleDepth, false);

}
}
void
FISRuleTree::growTree (RuleNode * curNode, int rule, int depth, int maxDepth,

bool full)
{

int chosenSubRole1;
int chosenSubRole2;
int nIMF = theConfig->maxInputMFs * theConfig->numInputs;
int nOMF = theConfig->maxRules * theConfig->numOutputs;
if ((maxDepth - depth) <= 2)

{
chosenSubRole1 = RuleNode::SUBROLE_IS;
chosenSubRole2 = RuleNode::SUBROLE_IS;

}

else
{
if (full)
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{
chosenSubRole1 = chooseRandomSubRole (3);
chosenSubRole2 = chooseRandomSubRole (3);

}

else
{
chosenSubRole1 = chooseRandomSubRole (4);
chosenSubRole2 = chooseRandomSubRole (4);

}
}

if (curNode->role == RuleNode::ROLE_IFTHEN)
{
if (!curNode->left)

{
curNode->left =

new RuleNode (curNode, RuleNode::ROLE_ANT, chosenSubRole1, 999,
genRandInt (0, theConfig->numSetOps));

growTree (curNode->left, rule, depth + 1, maxDepth, full);
}
if (!curNode->right)

{
if (rule < theConfig->maxRules)

{
curNode->right =

new RuleNode (curNode, RuleNode::ROLE_IFTHEN, 999, 999, 999);
growTree (curNode->right, rule + 1, 1, maxDepth, full);

}

else
{

curNode->right = NULL;
}

}
}

else if (curNode->role == RuleNode::ROLE_ANT)
{
if (curNode->subRole == RuleNode::SUBROLE_IS)

{
curNode->left =

new RuleNode (curNode, RuleNode::ROLE_TERM, RuleNode::SUBROLE_IN,
genRandInt (0, theConfig->numInputs), 999);

curNode->right =
new RuleNode (curNode, RuleNode::ROLE_TERM, RuleNode::SUBROLE_MF,

genRandInt (0, theConfig->maxInputMFs), 999);
}

else if (curNode->subRole == RuleNode::SUBROLE_NOT)
{
if (!curNode->left)

{
curNode->left =

new RuleNode (curNode, RuleNode::ROLE_ANT, chosenSubRole1,
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999, genRandInt (0, theConfig->numSetOps));
growTree (curNode->left, rule, depth + 1, maxDepth, full);

}
curNode->right = NULL;

}

else
{
if (!curNode->left)

{
curNode->left =

new RuleNode (curNode, RuleNode::ROLE_ANT, chosenSubRole1,
999, genRandInt (0, theConfig->numSetOps));

growTree (curNode->left, rule, depth + 1, maxDepth, full);
}

if (!curNode->right)
{

curNode->right =
new RuleNode (curNode, RuleNode::ROLE_ANT, chosenSubRole2,

999, genRandInt (0, theConfig->numSetOps));
growTree (curNode->right, rule, depth + 1, maxDepth, full);

}
}
}

if (!curNode->left && !curNode->right)
{
curNode->nodesBelow = 0;
curNode->depthBelow = 0;

}

else if (!curNode->left)
{
curNode->nodesBelow = 1 + curNode->right->nodesBelow;
curNode->depthBelow = 1 + curNode->right->depthBelow;

}

else if (!curNode->right)
{
curNode->nodesBelow = 1 + curNode->left->nodesBelow;
curNode->depthBelow = 1 + curNode->left->depthBelow;

}

else
{
curNode->nodesBelow =

2 + curNode->left->nodesBelow + curNode->right->nodesBelow;
curNode->depthBelow =

1 + max (curNode->left->depthBelow, curNode->right->depthBelow);
}

}
void
FISRuleTree::mutate ()
{

int wc = 0;
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int whichMutation = genRandInt (0, 4);
int sub;
int val;
RuleNode * mutateNode;
RuleNode * mutateRoot;
RuleNode * mutateParent;
switch (whichMutation)

{
case 0: // terminal mutation
if (genRand () < .5)

{
sub = RuleNode::SUBROLE_IN;
val = genRandInt (0, theConfig->numInputs);

}

else
{
sub = RuleNode::SUBROLE_MF;
val = genRandInt (0, theConfig->maxInputMFs);

}
mutateNode = getCompatibleSubTree (root, RuleNode::ROLE_TERM, sub, .5);
mutateNode->value = val;
break;

case 1: // function mutation
mutateNode = getCompatibleSubTree (root, RuleNode::ROLE_ANT, -1, .5);
if (mutateNode->subRole == RuleNode::SUBROLE_AND)

mutateNode->subRole = RuleNode::SUBROLE_OR;

else if (mutateNode->subRole == RuleNode::SUBROLE_OR)
mutateNode->subRole = RuleNode::SUBROLE_AND;
break;

case 2: // truncate mutation
mutateNode = getRandomSubTree (root, 1);
if (mutateNode->role == RuleNode::ROLE_IFTHEN)

{
if (mutateNode->right)

{
delete mutateNode->right;
mutateNode->right = NULL;

}
fixAncestorInfo (mutateNode->left);

}

else if (mutateNode->role == RuleNode::ROLE_ANT)
{
if (mutateNode->left)

{
delete mutateNode->left;
mutateNode->left = NULL;

}
if (mutateNode->right)

{
delete mutateNode->right;
mutateNode->right = NULL;
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}
mutateNode->subRole = RuleNode::SUBROLE_IS;
mutateNode->operation = genRandInt (0, theConfig->numSetOps);
growTree (mutateNode, mutateNode->getRuleNumber () + 1,

mutateNode->getDepth () + 1,
theConfig->maxInitialRuleDepth, false);

fixAncestorInfo (mutateNode->left);
}
break;

case 3: // grow mutation
mutateRoot = getRandomSubTree (root, theConfig->pSelectInternal);
mutateParent = mutateRoot->parent;
if (mutateParent != NULL)

{
wc = whichChild (mutateParent, mutateRoot);
if (wc == 0)

{
delete mutateParent->left;
mutateParent->left = NULL;

}

else
{

delete mutateParent->right;
mutateParent->right = NULL;

}
growTree (mutateParent, mutateParent->getRuleNumber () + 1,

mutateParent->getDepth () + 1,
theConfig->maxInitialRuleDepth, false);

fixAncestorInfo (mutateParent->left);
}
break;

}
}
void
FISRuleTree::crossover (FISRuleTree * mate, FISRuleTree * &child1,

FISRuleTree * &child2)
{

int d1, d2, wc1, wc2;
RuleNode * subTree1;
RuleNode * subTree1copy;
RuleNode * subTree2;
RuleNode * subTree2copy;
RuleNode * parentNode1;
RuleNode * parentNode2;
int rulesInSubtree1;
int rulesInSubtree2;
child1 = new FISRuleTree (this);
child2 = new FISRuleTree (mate);

// try to prevent breaking up building blocks
// by grouping strong rules together
if (theConfig->reorderTree)
{
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child1->sortRulesByFiringLevel ();
child2->sortRulesByFiringLevel ();

}
subTree1 = getRandomSubTree (child1->root, theConfig->pSelectInternal);
subTree2 =

getCompatibleSubTree (child2->root, subTree1->role, subTree1->subRole,
theConfig->pSelectInternal);

//cout << subTree1->role << " " << subTree2->role << endl;
parentNode1 = subTree1->parent;

parentNode2 = subTree2->parent;
subTree1copy = copyTree (subTree1, NULL);
subTree2copy = copyTree (subTree2, NULL);
rulesInSubtree1 = countRulesInTree (subTree1copy);
rulesInSubtree2 = countRulesInTree (subTree2copy);
if (parentNode1 == NULL && parentNode2 == NULL)

{
return;

}

// paste some of child 2 into child 1
if (parentNode1 == NULL)
{
delete child1->root;
child1->root = NULL;
child1->root = subTree2copy;
subTree2copy->parent = NULL;

}

else
{
wc1 = whichChild (parentNode1, subTree1);
d1 = parentNode1->getDepth ();
if (d1 + subTree2copy->depthBelow <= theConfig->maxOverallRuleDepth

&&(rulesInSubtree2 + parentNode1->getRuleNumber () + 1) <
theConfig->maxRules)

{
if (wc1 == 0)

{
delete parentNode1->left;
parentNode1->left = subTree2copy;
subTree2copy->parent = parentNode1;
fixAncestorInfo (subTree2copy);

}

else
{

delete parentNode1->right;
parentNode1->right = subTree2copy;
subTree2copy->parent = parentNode1;
fixAncestorInfo (subTree2copy);

}
}
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else
{

//cout << "REJ" << endl;
delete subTree2copy;

subTree2copy = NULL;
}
}

// paste some of child1 into child2
if (parentNode2 == NULL)
{
delete child2->root;
child2->root = NULL;
child2->root = subTree1copy;
subTree1copy->parent = NULL;

}

else
{
wc2 = whichChild (parentNode2, subTree2);
d2 = parentNode2->getDepth ();
if (d2 + subTree1->depthBelow <= theConfig->maxOverallRuleDepth

&&(rulesInSubtree1 + parentNode2->getRuleNumber () + 1) <
theConfig->maxRules)

{
if (wc2 == 0)

{
delete parentNode2->left;
parentNode2->left = subTree1copy;
subTree1copy->parent = parentNode2;
fixAncestorInfo (subTree1copy);

}

else
{

delete parentNode2->right;
parentNode2->right = subTree1copy;
subTree1copy->parent = parentNode2;
fixAncestorInfo (subTree1copy);

}
}

else
{

//cout << "REJ" << endl;
delete subTree1copy;

subTree1copy = NULL;
}
}

//cout << "After Crossover: " << child1->getNumRules()
//<< " " << child2->getNumRules() << endl;
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}
double
FISRuleTree::and (double d1, double d2)
{

if (theConfig->prod)
{
return d1 * d2;

}
return min (d1, d2);

}
double
FISRuleTree::or (double d1, double d2)
{

if (theConfig->probor)
{
return d1 + d2 - d1 * d2;

}
return max (d1, d2);

}
double
FISRuleTree::not (double d1)
{

return 1 - d1;
}
int
chooseRandomSubRole (int num)
{

int ret = genRandInt (0, num);
return antSubRoleSet[ret];

}

RuleNode * getRandomSubTree (RuleNode * root, double pSelectInternal)
{

int minDepthBelow = 0;
bool selectInternal = (genRand () < pSelectInternal);
RuleNode * cur;

do
{
int which = genRandInt (0, root->nodesBelow);
cur = findNode (root, which, minDepthBelow);

}
while ((selectInternal && cur->role == RuleNode::ROLE_TERM)

|| (!selectInternal && cur->role != RuleNode::ROLE_TERM));
return cur;

}

RuleNode * getCompatibleSubTree (RuleNode * root, int r, int sbrle,
double pSelectInternal)

{
int which, minDepthBelow = 0;
RuleNode * found;

do
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{
which = genRandInt (0, root->nodesBelow);
found = findNode (root, which, minDepthBelow);

}
while (found->role != r

|| (r == RuleNode::ROLE_TERM && found->subRole != sbrle));
return found;

}

RuleNode * findNode (RuleNode * root, int which, int minDepthBelow)
{

if (which == 0)
return root;

if (root->depthBelow < minDepthBelow)
{
if (root->parent != NULL)

return root->parent;

else
return root;
}

if (!root->left && !root->right)
cout << "This should not happen!!" << endl;

if (which <= (root->left->nodesBelow + 1))
{
return findNode (root->left, which - 1, minDepthBelow);

}
return findNode (root->right, which - (root->left->nodesBelow + 2),

minDepthBelow);
}

RuleNode * copyTree (RuleNode * root, RuleNode * parent)
{

if (!root)
return NULL;

RuleNode * ret = new RuleNode (root, parent);
ret->left = copyTree (root->left, ret);
ret->right = copyTree (root->right, ret);
return ret;

}
int
whichChild (RuleNode * parent, RuleNode * child)
{

if (parent->left == child)
return 0;

if (parent->right == child)
return 1;

return -999;
}
void
fixAncestorInfo (RuleNode * child)
{

RuleNode * par = child->parent;
while (par != NULL)
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{
if (!par->left && !par->right)

{
par->nodesBelow = 0;
par->depthBelow = 0;

}

else if (!par->left)
{
par->nodesBelow = 1 + par->right->nodesBelow;
par->depthBelow = 1 + par->right->depthBelow;

}

else if (!par->right)
{
par->nodesBelow = 1 + par->left->nodesBelow;
par->depthBelow = 1 + par->left->depthBelow;

}

else
{
par->nodesBelow =

2 + par->left->nodesBelow + par->right->nodesBelow;
par->depthBelow =

1 + max (par->left->depthBelow, par->right->depthBelow);
}
par = par->parent;

}
}
void
FISRuleTree::printTree (char *str, int rule)
{

RuleNode * rn = findKthRule (rule);
printTreeAux (str, rn, 0);

} void
FISRuleTree::printTreeAux (char *str, RuleNode * t, int level)
{

if (t == NULL || t->subRole == RuleNode::SUBROLE_IN
|| t->subRole == RuleNode::SUBROLE_MF)

return;
char *temp = new char[50];
doSpacing (str, level);
printNode (str, t);
printTreeAux (str, t->left, level + 1);
if (t->role != RuleNode::ROLE_IFTHEN)

{
printTreeAux (str, t->right, level + 1);

}
if (t->role == RuleNode::ROLE_ANT && t->subRole != RuleNode::SUBROLE_IS)

{
doSpacing (str, level);
strcat (str, ")\r\n");

}
delete[]temp;
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}
void
FISRuleTree::doSpacing (char *str, int len)
{

if (len <= 0)
return;

char *temp = new char[3 * len + 1];
for (int i = 0; i < 3 * len; i++)

temp[i] = ’ ’;
temp[3 * len] = ’\0’;
strcat (str, temp);
delete[]temp;

} void
FISRuleTree::printNode (char *str, RuleNode * cur)
{

char *temp = new char[50];
char *temp2 = new char[5];
temp[0] = ’\0’;
temp2[0] = ’\0’;
if (cur->role == RuleNode::ROLE_IFTHEN)

{
sprintf (temp, "IF");

}

else if (cur->role == RuleNode::ROLE_ANT)
{
if (cur->subRole == RuleNode::SUBROLE_AND)

{
sprintf (temp, "AND");

}

else if (cur->subRole == RuleNode::SUBROLE_OR)
{
sprintf (temp, "OR");

}

else if (cur->subRole == RuleNode::SUBROLE_NOT)
{
sprintf (temp, "NOT");

}

else if (cur->subRole == RuleNode::SUBROLE_IS)
{
switch (cur->operation)

{
case RuleNode::OP_EQ:

sprintf (temp2, "=");
break;

case RuleNode::OP_NEQ:
sprintf (temp2, "!=");
break;

case RuleNode::OP_LEQ:
sprintf (temp2, "<=");
break;
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case RuleNode::OP_GEQ:
sprintf (temp2, ">=");
break;

case RuleNode::OP_LT:
sprintf (temp2, "<");
break;

case RuleNode::OP_GT:
sprintf (temp2, ">");
break;

}
sprintf (temp, "Input%d %s %d)", cur->left->value + 1, temp2,

cur->right->value + 1);
}
}

strcat (str, "(");
strcat (str, temp);
strcat (str, "\r\n");
delete[]temp;
delete[]temp2;

}
void
FISRuleTree::removeRules (bool * toRemove)
{

//cout << "Before: " << root->numChildren << endl;
/*RuleNode* newRoot = new RuleNode(this->root, NULL);

int nCh=0;
for(int i=0; i<this->root->numChildren; i++) {
if(!toRemove[i]) {
newRoot->children[nCh]=root->children[i];
newRoot->children[nCh]->parent=newRoot;
nCh++;
}
else {
delete root->children[i];
}
root->children[i]=NULL;
}
newRoot->numChildren = nCh;
fixAncestorInfo(newRoot->children[0]);

delete root;
root = newRoot;
//cout << "After: " << root->numChildren << endl; */

} int

countRulesInTree (RuleNode * rn)
{

RuleNode * cur = rn;
int count;
if (rn == NULL || rn->role != RuleNode::ROLE_IFTHEN)

{
return 0;

}
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count = 1;
cur = cur->right;
while (cur != NULL)

{
count++;
cur = cur->right;

}
return count;

}
void
FISRuleTree::sortRulesByFiringLevel ()
{

int nRules = getNumRules ();
RuleNode ** ruleArray = new RuleNode *[nRules];
RuleNode * curNode = root;
RuleNode * temp = NULL;
int curIndex = 0;
while (curNode)

{
ruleArray[curIndex] = curNode;
curIndex++;
curNode = curNode->right;

}
for (int i = 0; i < nRules; i++)

{
for (int j = i + 1; j < nRules; j++)

{
if (ruleArray[i]->firingLevel < ruleArray[j]->firingLevel)

{
temp = ruleArray[i];
ruleArray[i] = ruleArray[j];
ruleArray[j] = temp;

}
}
}

root = ruleArray[0];
root->parent = NULL;
curNode = root;
curIndex = 1;
while (curIndex < nRules)

{
curNode->firingLevel = 0;
curNode->right = ruleArray[curIndex];
curNode->right->parent = curNode;
curIndex++;
curNode = curNode->right;

}
ruleArray[nRules - 1]->right = NULL;
fixAncestorInfo (ruleArray[nRules - 1]->left);
delete[]ruleArray;

}
void
FISRuleTree::writeRule (ostream & out, int rule)
{
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RuleNode * rn = findKthRule (rule);
writeRuleAux (out, rn->left);

} void

FISRuleTree::writeRuleAux (ostream & out, RuleNode * node)
{

int whichMF;
switch (node->subRole)

{
case RuleNode::SUBROLE_AND:
out << "and(";
writeRuleAux (out, node->left);
out << ",";
writeRuleAux (out, node->right);
out << ")";
break;

case RuleNode::SUBROLE_IS:
whichMF =

node->left->value * theConfig->maxInputMFs + node->right->value;
out << "setOp(";
out << node->operation;
out << ",loc[";
out << whichMF;
out << "],mf[";
out << whichMF;
out << "])";
break;

case RuleNode::SUBROLE_NOT:
out << "not(";
writeRuleAux (out, node->left);
out << ")";
break;

case RuleNode::SUBROLE_OR:
out << "or(";
writeRuleAux (out, node->left);
out << ",";
writeRuleAux (out, node->right);
out << ")";
break;

}
}
void
FISRuleTree::serializeNode (ostream & out, RuleNode * node)
{

bool p = (node->parent != NULL);
bool l = (node->left != NULL);
bool r = (node->right != NULL);
out.write ((char *) &node->depthBelow, sizeof (int));
out.write ((char *) &node->firingLevel, sizeof (double));
out.write ((char *) &node->nodesBelow, sizeof (int));
out.write ((char *) &node->operation, sizeof (int));
out.write ((char *) &node->role, sizeof (int));
out.write ((char *) &node->subRole, sizeof (int));
out.write ((char *) &node->value, sizeof (int));
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out.write ((char *) &p, sizeof (bool));
out.write ((char *) &l, sizeof (bool));
out.write ((char *) &r, sizeof (bool));

}

RuleNode * FISRuleTree::deSerializeNode (istream & in, bool & p, bool & l,
bool & r)

{
RuleNode * node = new RuleNode ();
in.read ((char *) &node->depthBelow, sizeof (int));
in.read ((char *) &node->firingLevel, sizeof (double));
in.read ((char *) &node->nodesBelow, sizeof (int));
in.read ((char *) &node->operation, sizeof (int));
in.read ((char *) &node->role, sizeof (int));
in.read ((char *) &node->subRole, sizeof (int));
in.read ((char *) &node->value, sizeof (int));
in.read ((char *) &p, sizeof (bool));
in.read ((char *) &l, sizeof (bool));
in.read ((char *) &r, sizeof (bool));
return node;

}
void
FISRuleTree::serializeTree (ostream & out)
{

serializeTreeAux (out, root);
} void

FISRuleTree::deSerializeTree (istream & in)
{

bool p, l, r;
root = deSerializeNode (in, p, l, r);
root->parent = NULL;
if (l)

{
deSerializeTreeAux (in, root, true);

}
if (r)

{
deSerializeTreeAux (in, root, false);

}
}
void
FISRuleTree::serializeTreeAux (ostream & out, RuleNode * node)
{

serializeNode (out, node);
if (node->left)

{
serializeTreeAux (out, node->left);

}
if (node->right)

{
serializeTreeAux (out, node->right);

}
}
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void
FISRuleTree::deSerializeTreeAux (istream & in, RuleNode * node, bool left)
{

bool p, l, r;
RuleNode * child = deSerializeNode (in, p, l, r);
child->parent = node;
if (left)

{
node->left = child;

}

else
{
node->right = child;

}
if (l)

{
deSerializeTreeAux (in, child, true);

}
if (r)

{
deSerializeTreeAux (in, child, false);

}
}

/////////////////////////////////////////////////////////////////////////////
// Eric A. Morris
// Univ. of Georgia AI Center
// FISSION Project
//
// FISSION_Utility.cpp
// Implmentation for utility functions (random, matrix, etc)

#include "StdAfx.h"
#include <cmath>
#include <time.h>
#include <iostream>
#include ".\fission_utility.h"

using namespace std;
double nextNorm = 999;
void
seedRand ()
{

srand ((unsigned) time (NULL));
} void
seedRand (unsigned int t)
{

srand (t);
} double
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genRand ()
{

return rand () * RANDOM_SCALE;
}
int
genRandInt (int lb, int ub)
{

return (int) (lb + genRand () * (ub - lb));
} double

genNormRand ()
{

// uses the polar Box-Muller transform (1958)
if (nextNorm != 999)

{
double temp = nextNorm;
nextNorm = 999;
return temp / 3.0;

}
double x, y, r;

do

{
x = -1 + 2 * genRand ();
y = -1 + 2 * genRand ();
r = x * x + y * y;

}
while (r == 0 || r > 1);
r = sqrt (-2 * log (r) / r);
nextNorm = y * r;
return (x * r) / 3.0;

}
double *
copyArray (double *src, int n)
{

double *ret = new double[n];
for (int i = 0; i < n; i++)

{
ret[i] = src[i];

} return ret;
}
double
rSquared (int n, double *x, double *y)
{

double xbar = 0;
double ybar = 0;
double ssxx = 0;
double ssyy = 0;
double ssxy = 0;
for (int i = 0; i < n; i++)

{
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xbar += x[i];
ybar += y[i];
ssxx += x[i] * x[i];
ssyy += y[i] * y[i];
ssxy += x[i] * y[i];

} xbar /= n;
ybar /= n;
ssxx -= n * xbar * xbar;
ssyy -= n * ybar * ybar;
ssxy -= n * xbar * ybar;
return (ssxy * ssxy) / (ssxx * ssyy);

}
void
mult_matrix_vector (double **m, double *v, int r, int c, double *out)
{

double sum;
for (int i = 0; i < r; i++)

{
sum = 0;
for (int j = 0; j < c; j++)

{
sum += m[i][j] * v[j];

} out[i] = sum;
} } void
sub_vector_vector (double *v1, double *v2, int n, double *out)
{

for (int i = 0; i < n; i++)
{
out[i] = v1[i] - v2[i];

} } double
norm_vector (double *v, int n)
{

double sum = 0;
for (int i = 0; i < n; i++)

{
sum += v[i] * v[i];

} return sqrt (sum);
}
double
min3 (double a, double b, double c)
{

return min (min (a, b), c);
}
double
max3 (double a, double b, double c)
{

return max (max (a, b), c);
}

/////////////////////////////////////////////////////////////////////////////
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// Eric A. Morris
// Univ. of Georgia AI Center
// FISSION Project
//
// FISSION-DLL.cpp
// Implmentation of the DLL exported functions

#include "stdafx.h"
#include "FISSION-DLL.h"
#include "sugenofis.h"
#include "fisrule.h"
#include "fission_structures.h"
#include "fission_utility.h"
#include "fission-ea.h"
#include "string.h"
#include <iostream>
#include <fstream>

using namespace std;
TrainerEA * runningEA = NULL;
FISConfig * theFISConfig = NULL;
EAConfig * theEAConfig = NULL;
VarBounds * varBounds = NULL;
BOOL APIENTRY DllMain (HANDLE hModule, DWORD ul_reason_for_call,

LPVOID lpReserved )
{

switch (ul_reason_for_call)

{
case DLL_PROCESS_ATTACH:

//runningEA=NULL;
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
case DLL_PROCESS_DETACH:

/*if(runningEA!=NULL) {
delete [] runningEA;
runningEA=NULL;
} */

break;
}

return TRUE;
}
FISSIONDLL_API void
trainFIS (FISConfig * fc, EAConfig * ec, int n, double *input_marsh,

double *output_data, int m, double *test_input_marsh,
double *test_output_data)

{
seedRand ();
double **input_data = new double *[n];
double **test_input_data = new double *[m];
if (varBounds != NULL)

delete[]varBounds;
if (runningEA != NULL)
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delete runningEA;
if (theFISConfig != NULL)

delete theFISConfig;
if (theEAConfig != NULL)

delete theEAConfig;
theFISConfig = new FISConfig (*fc);
theEAConfig = new EAConfig (*ec);

// de-marshall the 2d arrays
for (int i = 0; i < n; i++)
{
input_data[i] = new double[theFISConfig->numInputs];
for (int j = 0; j < theFISConfig->numInputs; j++)

{
input_data[i][j] = input_marsh[i * theFISConfig->numInputs + j];

} } for (int i = 0; i < m; i++)
{
test_input_data[i] = new double[theFISConfig->numInputs];
for (int j = 0; j < theFISConfig->numInputs; j++)

{
test_input_data[i][j] =

test_input_marsh[i * theFISConfig->numInputs + j];
} }
// run the GA
findMaxMins (theFISConfig, n, input_data, output_data, varBounds);

allocFISMem (n, theFISConfig->numInputs, theFISConfig->maxRules,
theFISConfig->numInputs * theFISConfig->maxInputMFs);

runningEA =
new TrainerEA (theFISConfig, theEAConfig, varBounds, n, input_data,

output_data, m, test_input_data, test_output_data);
runningEA->runGA ();
deallocFISMem (n, theFISConfig->numInputs, theFISConfig->maxRules);

// clean up
for (int i = 0; i < n; i++)
{
delete[]input_data[i];

} for (int i = 0; i < m; i++)
{
delete[]test_input_data[i];

} delete[]test_input_data;
delete[]input_data;

} FISSIONDLL_API void

abortGA ()
{

runningEA->abort ();
} FISSIONDLL_API int
getInputMFCount (SugenoFIS * sf, int input)
{

if (sf == NULL)
return 0;

return sf->getConfig ()->maxInputMFs;
}
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FISSIONDLL_API double
getInputMFValue (SugenoFIS * sf, int input, int mf, double x)
{

if (sf == NULL)
return 0;

return sf->getMFValue (input * sf->getConfig ()->maxInputMFs + mf, x);
}

FISSIONDLL_API bool usedMF (SugenoFIS * sf, int input, int mf)
{

if (!sf)
return false;

if (sf->getConfig ()->globalInputMFs)
return sf->getRuleSet ()->usedMF (input * sf->getConfig ()->maxInputMFs +

mf);
return true;

}

FISSIONDLL_API SugenoFIS * getBestFIS ()
{

if (runningEA)
return runningEA->getBestFIS ();

else
return NULL;

}

FISSIONDLL_API SugenoFIS * getGeneralizeFIS ()
{

if (runningEA)
return runningEA->getGeneralizeFIS ();

else
return NULL;

}
FISSIONDLL_API int
getNumRules (SugenoFIS * sf)
{

if (sf == NULL)
return 0;

return sf->getRuleSet ()->getNumRules ();
}
FISSIONDLL_API int
getMaxRuleDepth (SugenoFIS * sf)
{

if (sf == NULL)
return 0;

return sf->getRuleSet ()->getMaxRuleDepth ();
}
FISSIONDLL_API char *
getRule (SugenoFIS * sf, int r)
{

if (sf == NULL)
return NULL;
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char *ret = new char[1000];
ret[0] = ’\0’;
sf->getRuleSet ()->printTree (ret, r);
sf->printOutputMF (ret, r);
return ret;

}
FISSIONDLL_API void
getReport (ReportStruct * rs)
{

if (runningEA != NULL)
{
rs->fitness = runningEA->getBestFitness ();
rs->MAE = runningEA->getBestMAE ();
rs->MSE = runningEA->getBestMSE ();
rs->nEvals = runningEA->getNumEvals ();
rs->stage = runningEA->getStage ();

}

else
{
rs->fitness = rs->MAE = rs->MSE = rs->nEvals = rs->stage = 0;

}
}
FISSIONDLL_API void
getPrediction (double *pred)
{

if (runningEA)
runningEA->getCurrentPrediction (pred);

}
FISSIONDLL_API void
applyFIS (SugenoFIS * sf, int n, double *input_marsh, double *output_data,

double &MSE, double &MAE, double &rSq, double *predVals)
{

double **input_data = new double *[n];
if (sf == NULL)

{
return;

}

// de-marshall the 2d array
for (int i = 0; i < n; i++)
{
input_data[i] = new double[sf->getConfig ()->numInputs];
for (int j = 0; j < sf->getConfig ()->numInputs; j++)

{
input_data[i][j] =

input_marsh[i * sf->getConfig ()->numInputs + j];
} } sf->apply (n, input_data, output_data, predVals, MSE, MAE, rSq);

for (int i = 0; i < n; i++)
{
delete[]input_data[i];

} delete[]input_data;
} FISSIONDLL_API void
applyFISNoOpt (SugenoFIS * sf, int n, double *input_marsh, double *predVals)
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{
double **input_data = new double *[n];
if (sf == NULL)

{
return;

}

// de-marshall the 2d array
for (int i = 0; i < n; i++)
{
input_data[i] = new double[sf->getConfig ()->numInputs];
for (int j = 0; j < sf->getConfig ()->numInputs; j++)

{
input_data[i][j] =

input_marsh[i * sf->getConfig ()->numInputs + j];
} } sf->applyNoOutputs (n, input_data, predVals);

for (int i = 0; i < n; i++)
{
delete[]input_data[i];

} delete[]input_data;
} FISSIONDLL_API char *
genCode (SugenoFIS * sf, const char *fn)
{

if (sf == NULL)
return NULL;

return sf->codeFIS (fn);
}
FISSIONDLL_API void
saveFIS (SugenoFIS * sf, const char *fn)
{

if (sf == NULL)
return;

sf->serializeFIS (fn);
}

FISSIONDLL_API SugenoFIS * loadFIS (const char *fn)
{

SugenoFIS * sf = new SugenoFIS (fn);
if (!sf->getRuleSet ())

return NULL;
return sf;

}

/////////////////////////////////////////////////////////////////////////////
// Eric A. Morris
// Univ. of Georgia AI Center
// FISSION Project
//
// FISSION-EA.cpp
// Implmentation for the TrainerEA class
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#include "StdAfx.h"
#include ".\sugenofis.h"
#include ".\fisrule.h"
#include ".\fission_structures.h"
#include ".\fission_utility.h"
#include ".\fission-ea.h"
#include <windows.h>
#include <iostream>
#include <iomanip>
#include <fstream>

using namespace std;
void
TrainerEA::initPopulation ()
{

char *str = new char[1000];
for (int i = 0; i < theEAConfig->popSize; i++)

{
if (abortRun)

return;
population[i] =

new SugenoFIS (theFISConfig, varBounds,
i / ((double) (theEAConfig->popSize)));

/*int z = population[i]->getRuleSet()->getNumRules();
for(int k=0; k<z; k++) {
str[0]=’\0’;
population[i]->getRuleSet()->printTree(str, k);
cout << str << endl << endl;
cin.get();
} */

} } double
TrainerEA::evaluateFitness (int i)
{

double MAE = 0, MSE = 0, R2, MAE2 = 0, MSE2 = 0;
double fit, efi = 1, var = 0, fit2;
curSubset = genRandInt (0, theEAConfig->numSubsets);
if (theFISConfig->linearOutput)

{
MSE =

population[i]->runLinearKalmanFilter (subsetSize, subsets[curSubset],
inputData, outputData);

}

else
{
MSE =

population[i]->runConstantKalmanFilter (subsetSize,
subsets[curSubset], inputData,
outputData);

}
population[i]->apply (trainingSetSize, inputData, outputData, vals, MSE,

MAE, R2);
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efi = population[i]->evaluateEfficiency ();

//cout << MSE << endl;
fit = (1.0 / (1.0 + MSE));

fit -= (theFISConfig->parsimonyFactor * efi * fit);
if (fit > bestFitness)

{

// update the best guy and related info
WaitForSingleObject (semReportData, INFINITE);
bestMAE = MAE;
bestMSE = MSE;
bestFitness = fit;
if (bestFIS1 != NULL)

{
delete bestFIS1;
bestFIS1 = NULL;

}
bestFIS1 = new SugenoFIS (population[i]);
for (int q = 0; q < trainingSetSize; q++)

{
bestVals1[q] = vals[q];

} cout << MSE << " " << numFitEvals << " " << population[i]->
getRuleSet ()->getNumRules () << "/" << population[i]->getRuleSet ()->
getMaxRuleDepth () << endl;
if (auxSetSize > 0)

{

// run it on the test set
bestFIS1->apply (auxSetSize, auxInputData, auxOutputData, vals2,

MSE, MAE, R2);
fit2 = (1.0 / (1.0 + MSE));
fit2 -= fit * theFISConfig->parsimonyFactor * efi;
if (fit2 > bestGeneralizeFitness)

{
bestGeneralizeFitness = fit2;
bestGeneralizeMAE = MAE;
bestGeneralizeMSE = MSE;
bestGeneralizeR2 = R2;
if (bestFIS2 != NULL)

{
delete bestFIS2;
bestFIS2 = NULL;

}
bestFIS2 = new SugenoFIS (bestFIS1);
for (int q = 0; q < auxSetSize; q++)

{
bestVals2[q] = vals2[q];

} cout << " * ";
}

cout << MSE << endl;
}
ReleaseMutex (semReportData);

}



106

numFitEvals++;
return fit;

}
void
TrainerEA::copyGens ()
{

for (int i = 0; i < theEAConfig->popSize; i++)

{
delete population[i];
population[i] = NULL;
population[i] = nextGen[i];
nextGen[i] = NULL;

} } void

TrainerEA::breed (SugenoFIS * &child1, SugenoFIS * &child2)
{

int p1 = doSelect ();
int p2 = doSelect ();
child1 = NULL;
child2 = NULL;
if (theEAConfig->steadyState || genRand () < theEAConfig->pCross)

{
double *c1input = NULL;
FISRuleTree * c1rules = NULL;
double *c1output = NULL;
double *c2input = NULL;
FISRuleTree * c2rules = NULL;
double *c2output = NULL;
if (theFISConfig->globalInputMFs)

crStage = genRandInt (0, 2);

else
crStage = 1;
if (crStage == 0)

{
doCrossover (population[p1]->getInputMFs (),

population[p2]->getInputMFs (), c1input, c2input,
inputChrSize);

c1rules = population[p1]->copyRules ();
c2rules = population[p2]->copyRules ();
c1output = population[p1]->copyOutputMFs ();
c2output = population[p2]->copyOutputMFs ();
if (genRand () < theEAConfig->pMut)

doMutate (c1input, inputChrSize);
if (genRand () < theEAConfig->pMut)

doMutate (c2input, inputChrSize);
}

else if (crStage == 1)

{
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treeCrossover (population[p1]->getRuleSet (),
population[p2]->getRuleSet (), c1rules, c2rules);

c1input = population[p1]->copyInputMFs ();
c2input = population[p2]->copyInputMFs ();
c1output = population[p1]->copyOutputMFs ();
c2output = population[p2]->copyOutputMFs ();
if (genRand () < theEAConfig->pMut)

mutateTree (c1rules);
if (genRand () < theEAConfig->pMut)

mutateTree (c2rules);
}

else
{
doCrossover (population[p1]->getOutputMFs (),

population[p2]->getOutputMFs (), c1output, c2output,
outputChrSize);

c1input = population[p1]->copyInputMFs ();
c2input = population[p2]->copyInputMFs ();
c1rules = population[p1]->copyRules ();
c2rules = population[p2]->copyRules ();
if (genRand () < theEAConfig->pMut)

doMutate (c1output, outputChrSize);
if (genRand () < theEAConfig->pMut)

doMutate (c2output, outputChrSize);
}
child1 =

new SugenoFIS (theFISConfig, varBounds, c1input, c1rules, c1output);
child2 =

new SugenoFIS (theFISConfig, varBounds, c2input, c2rules, c2output);

//cout << population[p1]->getRuleSet()->getDepth() << " "
//<< population[p2]->getRuleSet()->getDepth() << endl;

//cout << child1->getRuleSet()->getDepth() << " "
//<< child2->getRuleSet()->getDepth() << endl;

}

else

{
child1 = new SugenoFIS (population[p1]);
child2 = new SugenoFIS (population[p2]);

}
}
int
TrainerEA::doSelect ()
{

switch (theEAConfig->selType)

{
default:
case SEL_TOURNAMENT:
return tournamentSelect ();

case SEL_ROULETTE:
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return rouletteSelect ();
case SEL_RANK:
return rankSelect ();

}
}
int
TrainerEA::rouletteSelect ()
{

double thresh =
genRand () * (fitnessSum - theEAConfig->popSize * popMinFitness);

double sum = 0;
for (int i = 0; i < theEAConfig->popSize; i++)

{
sum += (fitness[i] - popMinFitness);
if (sum >= thresh)

return i;
}

cout << "bad thresh" << endl;
return theEAConfig->popSize - 1;

}
int
TrainerEA::selectDeath ()
{

int ret = 999999;
if (theEAConfig->elitism)

{

do

{
ret = genRandInt (0, theEAConfig->popSize);

}
while (ret == bestFitnessIndex);

}

else
{
ret = genRandInt (0, theEAConfig->popSize);

}
return ret;

}
int
TrainerEA::rankSelect ()
{

int ps = theEAConfig->popSize - 1;
int total = (ps * (ps + 1)) / 2;
int thresh = genRandInt (0, total);
int sum = 0;
for (int i = 0; i < theEAConfig->popSize; i++)

{
sum += fitnessRank[i];
if (sum >= thresh)
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return i;
}

return 999999;
}
int
TrainerEA::tournamentSelect ()
{

double bf = 0;
int bfi = -1;
for (int i = 0; i < theEAConfig->tourneySize; i++)

{
int cur = (int) (genRand () * theEAConfig->popSize);
if (bfi < 0 || fitness[cur] > bf)

{
bfi = cur;
bf = fitness[cur];

}
}

return bfi;
}
void
TrainerEA::doCrossover (double *parent1, double *parent2, double *&child1,

double *&child2, int strLen)
{

child1 = NULL;
child2 = NULL;
switch (theEAConfig->crossType)

{
case CROSS_2PT:
twoPtCrossover (parent1, parent2, child1, child2, strLen);
break;

default:
case CROSS_BLEND:
blendCrossover (parent1, parent2, child1, child2, strLen);
break;

case CROSS_UNIFORM:
uniformCrossover (parent1, parent2, child1, child2, strLen);
break;

case CROSS_ARITHMETIC:
arithmeticCrossover (parent1, parent2, child1, child2, strLen);
break;

}
}
void
TrainerEA::twoPtCrossover (double *parent1, double *parent2, double *&child1,

double *&child2, int strLen)
{

child1 = new double[strLen];
child2 = new double[strLen];
int point1 = 0, point2 = 0;
while (point1 == point2)
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{
point1 = (int) (genRand () * strLen);
point2 = (int) (genRand () * strLen);

} if (point1 > point2)

{
int temp = point1;
point1 = point2;
point2 = temp;

}
for (int i = 0; i < strLen; i++)

{
if (i < point1 || i >= point2)

{
child1[i] = parent1[i];
child2[i] = parent2[i];

}

else

{
child1[i] = parent2[i];
child2[i] = parent1[i];

}
}

}
void
TrainerEA::uniformCrossover (double *parent1, double *parent2,

double *&child1, double *&child2, int strLen)
{

child1 = new double[strLen];
child2 = new double[strLen];
for (int i = 0; i < strLen; i++)

{
if (genRand () < .5)

{
child1[i] = parent1[i];
child2[i] = parent2[i];

}

else

{
child1[i] = parent2[i];
child2[i] = parent1[i];

}
}

}
void
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TrainerEA::blendCrossover (double *parent1, double *parent2, double *&child1,
double *&child2, int strLen)

{
int start = 0, finish = strLen, temp;
if (theEAConfig->realParamUniform)

{
child1 = new double[strLen];
child2 = new double[strLen];
start = 0;
finish = strLen;

}

else
{
child1 = copyArray (parent1, strLen);
child2 = copyArray (parent2, strLen);
start = genRandInt (0, strLen);
finish = genRandInt (0, strLen);
if (start > finish)

{
temp = start;
start = finish;
finish = temp;

}
}

for (int i = start; i < finish; i++)

{
child1[i] = blend (parent1[i], parent2[i], theEAConfig->blendParam);
child2[i] = blend (parent1[i], parent2[i], theEAConfig->blendParam);

} } void
TrainerEA::arithmeticCrossover (double *parent1, double *parent2,

double *&child1, double *&child2, int strLen)
{

int start = 0, finish = strLen, temp;
if (theEAConfig->realParamUniform)

{
child1 = new double[strLen];
child2 = new double[strLen];
start = 0;
finish = strLen;

}

else
{
child1 = copyArray (parent1, strLen);
child2 = copyArray (parent2, strLen);
start = genRandInt (0, strLen);
finish = genRandInt (0, strLen);
if (start > finish)

{
temp = start;
start = finish;
finish = temp;
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}
}

for (int i = start; i < finish; i++)

{
child1[i] =

linCombine (parent1[i], parent2[i], theEAConfig->blendParam);
child2[i] =

linCombine (parent2[i], parent1[i], theEAConfig->blendParam);
} } double
TrainerEA::gaussNoise (double x, double y)
{

return x + genNormRand () * abs (y);
}
double
TrainerEA::linCombine (double p1, double p2, double a)
{

return a * p1 + (1 - a) * p2;
}
double
TrainerEA::blend (double p1, double p2, double a)
{

if (p1 == p2)

{
return p1;

}
if (p2 < p1)

{
double temp = p1;
p1 = p2;
p2 = temp;

}
double minimum = p1 - a * (p2 - p1);
double maximum = p2 + a * (p2 - p1);
return minimum + genRand () * (maximum - minimum);

}
void
TrainerEA::treeCrossover (FISRuleTree * parent1, FISRuleTree * parent2,

FISRuleTree * &child1, FISRuleTree * &child2)
{

parent1->crossover (parent2, child1, child2);
} void
TrainerEA::doMutate (double *child, int strLen)
{

switch (theEAConfig->mutType)

{
default:
case MUT_GAUSS:
mutateStringGauss (child, strLen);
break;

case MUT_UNIFORM:
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mutateStringUniform (child, strLen);
break;

}
}
void
TrainerEA::mutateStringGauss (double *child, int strLen)
{

int which = (int) (genRand () * strLen);
int whichInput = which / (PARAM_SIZE * theFISConfig->maxInputMFs);
double inf = population[0]->getInputMin (whichInput);
double sup = population[0]->getInputMax (whichInput);
double range = sup - inf;
child[which] += genNormRand () * 0.1 * range;

} void
TrainerEA::mutateStringUniform (double *child, int strLen)
{

int which = (int) (genRand () * strLen);
int whichInput = which / (PARAM_SIZE * theFISConfig->maxInputMFs);
double inf = population[0]->getInputMin (whichInput);
double sup = population[0]->getInputMax (whichInput);
double range = sup - inf;
child[which] = -0.1 * range + genRand () * 0.2 * range;

} void

TrainerEA::mutateTree (FISRuleTree * child)
{

child->mutate ();
} void
TrainerEA::updateRanks (int childIndex, double child, double oldValue)
{

for (int i = 0; i < theEAConfig->popSize; i++)

{
if (i != childIndex)

{
if (fitness[i] < child && fitness[i] > oldValue)

{

//moving down
fitnessRank[i]--;

fitnessRank[childIndex]++;
}

else if (fitness[i] > child && fitness[i] < oldValue)

{

//moving up
fitnessRank[i]++;

fitnessRank[childIndex]--;
}

}
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}
}
void
TrainerEA::steadyStatePostBreed (SugenoFIS * child)
{

int ind = selectDeath ();
double old = fitness[ind];
delete population[ind];
population[ind] = NULL;
population[ind] = child;
double fit = evaluateFitness (ind);
fitness[ind] = fit;
fitnessSum -= old;
fitnessSum += fit;
if (fit > popMaxFitness)

{
popMaxFitness = fit;
bestFitnessIndex = ind;

}
if (fit < popMinFitness)

popMinFitness = fit;
if (GEN_OUTPUT && (numFitEvals % theEAConfig->popSize == 0))

{
this->writeStatus ();

}
if (theEAConfig->selType == SEL_RANK)

updateRanks (ind, fit, old);
}
void
TrainerEA::generationalPostBreed ()
{

fitnessSum = 0;
popMaxFitness = -999999;
popMinFitness = 999999;
bestFitnessIndex = -1;
double fit;
for (int i = 0; i < theEAConfig->popSize; i++)

{
if (abortRun)

return;
fit = evaluateFitness (i);
fitness[i] = fit;
fitnessSum += fit;
if (fit > popMaxFitness)

{
popMaxFitness = fit;
bestFitnessIndex = i;

}
if (fit < popMinFitness)

popMinFitness = fit;
}

if (GEN_OUTPUT)
{
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this->writeStatus ();
}

if (theEAConfig->selType == SEL_RANK)

{
int *temp = new int[theEAConfig->popSize];
for (int i = 0; i < theEAConfig->popSize; i++)

{
if (abortRun)

return;
fitnessRank[i] = i;
temp[i] = i;

}
for (int i = 0; i < theEAConfig->popSize; i++)

{
for (int j = i + 1; j < theEAConfig->popSize; j++)

{
if (fitness[temp[i]] > fitness[temp[j]])

{
if (abortRun)

return;
int t = temp[i];
temp[i] = temp[j];
fitnessRank[temp[j]] = i;
temp[j] = t;
fitnessRank[t] = j;

}
} } delete[]temp;
temp = NULL;

}
} void

TrainerEA::runSteadyState ()
{

SugenoFIS * child1;
SugenoFIS * child2;
crStage = 0;
int nBreed = theEAConfig->popSize * theEAConfig->maxGens;
int nBreedOver2 = nBreed / 2;
for (int i = 0; i < nBreedOver2; i++)

{
if (abortRun)

return;
breed (child1, child2);
steadyStatePostBreed (child1);
steadyStatePostBreed (child2);

}
}



116

void
TrainerEA::runGenerational ()
{

int genStart = 0;
int nBreed = theEAConfig->popSize * theEAConfig->maxGens;
for (int k = 0; k < theEAConfig->maxGens; k++)

{
cout << "Average Fitness: " << fitnessSum /

theEAConfig->popSize << endl;
cout << "Starting Generation" << endl;
if (theEAConfig->elitism)

{
nextGen[0] = new SugenoFIS (population[bestFitnessIndex]);
nextGen[1] = new SugenoFIS (population[bestFitnessIndex]);
genStart = 2;

}

else
{
genStart = 0;

}
for (int i = genStart; i < theEAConfig->popSize; i += 2)

{
if (abortRun)

return;
breed (nextGen[i], nextGen[i + 1]);

}
copyGens ();
cout << "Evaluating generation..." << endl;
generationalPostBreed ();

}
}

TrainerEA::TrainerEA (FISConfig * fc, EAConfig * ec, VarBounds * vb, int n,
double **id, double *od, int n1, double **aid,
double *aod)

{

// set the config structs
theFISConfig = fc;

theEAConfig = ec;
varBounds = vb;

// set the training data
trainingSetSize = n;

inputData = id;
outputData = od;

// set the aux data
auxSetSize = n1;

auxInputData = aid;
auxOutputData = aod;
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// set the best-FIS cache
bestFIS1 = NULL;

bestFIS2 = NULL;
trainingStage = 0;
semReportData = CreateMutex (NULL, FALSE, NULL);
inputChrSize =

theFISConfig->numInputs * theFISConfig->maxInputMFs * PARAM_SIZE;
outputChrSize =

theFISConfig->numOutputs * theFISConfig->maxRules *
(theFISConfig->numInputs + 1);

population = new SugenoFIS *[theEAConfig->popSize];
nextGen = new SugenoFIS *[theEAConfig->popSize];
fitness = new double[theEAConfig->popSize];
fitnessRank = new int[theEAConfig->popSize];
bestFitnessIndex = -1;
bestFitness = -999999;
bestGeneralizeFitness = -9999999;
bestMAE = 9999999;
bestMSE = 9999999;
bestGeneralizeMAE = 9999999;
bestGeneralizeMSE = 9999999;
bestGeneralizeR2 = 0;
numFitEvals = 0;
abortRun = false;
vals = new double[trainingSetSize];
vals2 = new double[auxSetSize];
bestVals1 = new double[trainingSetSize];
bestVals2 = new double[auxSetSize];
subsetSize = trainingSetSize / theEAConfig->numSubsets;
subsets = new int *[theEAConfig->numSubsets];
fullSet = new int[trainingSetSize];
for (int i = 0; i < theEAConfig->numSubsets; i++)

{
subsets[i] = new int[subsetSize];

} generateSubsets ();
} void

TrainerEA::generateSubsets ()
{

bool * used = new bool[trainingSetSize];
int rndInd;
for (int i = 0; i < trainingSetSize; i++)

{
used[i] = false;
fullSet[i] = i;

} for (int i = 0; i < theEAConfig->numSubsets; i++)
{
for (int j = 0; j < subsetSize; j++)

{
rndInd = genRandInt (0, trainingSetSize);
while (used[rndInd])

{
rndInd++;
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if (rndInd >= trainingSetSize)
rndInd = 0;
}

subsets[i][j] = rndInd;
used[rndInd] = true;

}
}

delete[]used;
}

TrainerEA::~TrainerEA ()
{

delete[]population;
population = NULL;
delete[]nextGen;
nextGen = NULL;
delete[]fitness;
fitness = NULL;
delete[]fitnessRank;
fitnessRank = NULL;
delete[]vals;
delete[]vals2;
vals = NULL;
vals2 = NULL;
delete[]bestVals1;
bestVals1 = NULL;
delete[]bestVals2;
bestVals2 = NULL;
if (bestFIS1 != NULL)

{
delete bestFIS1;
bestFIS1 = NULL;

}
if (bestFIS2 != NULL)

{
delete bestFIS2;
bestFIS2 = NULL;

}
for (int i = 0; i < theEAConfig->numSubsets; i++)

{
delete[]subsets[i];

} delete[]subsets;
delete[]fullSet;

} void

TrainerEA::runGA ()
{

trainingStage = 0;
startTime = GetTickCount ();
bestFIS1 = NULL;
bestFIS2 = NULL;
printFISConfig (theFISConfig, cout);
printEAConfig (theEAConfig, cout);
abortRun = false;
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initPopulation ();
generationalPostBreed ();
if (abortRun)

{
trainingStage = 3;
return;

}
cout << "Init Complete" << endl;
trainingStage = 1;
if (theEAConfig->steadyState)

{
runSteadyState ();

}

else

{
runGenerational ();

}
trainingStage = 3;

}
void
TrainerEA::abort ()
{

abortRun = true;
} int

TrainerEA::getNumEvals ()
{

//WaitForSingleObject(semReportData,INFINITE);
int d = numFitEvals;

//ReleaseMutex(semReportData);
return d;

}
double
TrainerEA::getBestMSE ()
{

return bestMSE;
}
double
TrainerEA::getBestMAE ()
{

return bestMAE;
}
double
TrainerEA::getBestGeneralizeMAE ()
{

return bestGeneralizeMAE;
}
double
TrainerEA::getBestGeneralizeMSE ()
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{
return bestGeneralizeMSE;

}
double
TrainerEA::getBestGeneralizeR2 ()
{

return bestGeneralizeR2;
}
double
TrainerEA::getBestFitness ()
{

return bestFitness;
}
double
TrainerEA::getBestGeneralizeFitness ()
{

return bestGeneralizeFitness;
}
void
TrainerEA::getCurrentPrediction (double *pred)
{

WaitForSingleObject (semReportData, INFINITE);
for (int i = 0; i < trainingSetSize; i++)

{
pred[i] = bestVals1[i];

} ReleaseMutex (semReportData);
} void
TrainerEA::getGeneralizePrediction (double *pred)
{

WaitForSingleObject (semReportData, INFINITE);
for (int i = 0; i < auxSetSize; i++)

{
pred[i] = bestVals2[i];

} ReleaseMutex (semReportData);
} SugenoFIS * TrainerEA::getBestFIS ()
{

if (bestFIS1 == NULL)
return NULL;

SugenoFIS * ret = NULL;
WaitForSingleObject (semReportData, INFINITE);
ret = new SugenoFIS (bestFIS1);
ReleaseMutex (semReportData);
return ret;

}

SugenoFIS * TrainerEA::getGeneralizeFIS ()
{

if (bestFIS2 == NULL)
return NULL;

SugenoFIS * ret = NULL;
WaitForSingleObject (semReportData, INFINITE);
ret = new SugenoFIS (bestFIS2);
ReleaseMutex (semReportData);
return ret;
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}
int
TrainerEA::getStage ()
{

return trainingStage;
}
void
TrainerEA::writeStatus ()
{

ofstream out (EA_OUT_FILE, ios_base::app | ios_base::ate);
out << this->numFitEvals << ", " << (GetTickCount () -

this->startTime) << ", " << this->
popMaxFitness << ", " << (this->fitnessSum /

theEAConfig->popSize) << ", " << this->
popMinFitness << ", " << this->bestMAE << ", " << sqrt (this->

bestMSE) << ", "
<< this->bestFIS1->getRuleSet ()->getMaxRuleDepth () << ", " << this->
bestFIS1->getRuleSet ()->getNumRules () << endl;

out.close ();
}

/////////////////////////////////////////////////////////////////////////////
// Eric A. Morris
// Univ. of Georgia AI Center
// FISSION Project
//
// SugenoFIS.cpp
// Implmentation for the SugenoFIS class

#include "StdAfx.h"
#include ".\sugenofis.h"
#include ".\fisrule.h"
#include ".\fission_structures.h"
#include ".\fission_utility.h"
#include <windows.h>
#include <fstream>
#include <sstream>
extern "C"
{

#include "standard.h"
}
#define LAMBDA 1
#define TOLERANCE .00001
using namespace std;

double *kdp;
double **firingLevels;
double **matrix;
double **derivMatrix;
double *derivVector;
double *mfVals;
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bool * leftOfCenter;
double *vector;
double *temp1;
double *temp2;
int *indexList;
double *scaleList;
void
allocFISMem (int N, int M, int S, int numInputMFs)
{

int SM = S * (M + 1);
kdp = new double[SM + 1];
firingLevels = new double *[N];
matrix = new double *[N];
for (int i = 0; i < N; i++)

{
firingLevels[i] = new double[S];
matrix[i] = new double[SM];

} derivMatrix = new double *[SM];
for (int i = 0; i < SM; i++)

{
derivMatrix[i] = new double[SM];

} derivVector = new double[SM];
mfVals = new double[numInputMFs];
leftOfCenter = new bool[numInputMFs];
vector = new double[N];
temp1 = new double[N];
temp2 = new double[N];
indexList = new int[SM];
scaleList = new double[SM];
initialize_kalman (SM, 1);

} void
deallocFISMem (int N, int M, int S)
{

int SM = S * (M + 1);
for (int i = 0; i < N; i++)

{
delete[]firingLevels[i];
delete[]matrix[i];

} for (int i = 0; i < SM; i++)
{
delete[]derivMatrix[i];

} delete[]mfVals;
delete[]leftOfCenter;
delete[]firingLevels;
delete[]vector;
delete[]matrix;
delete[]derivMatrix;
delete[]temp1;
delete[]temp2;
delete[]derivVector;
delete[]indexList;
delete[]kdp;
delete[]scaleList;

} SugenoFIS::SugenoFIS (FISConfig * conf, VarBounds * vb, double pos)
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{
theConfig = conf;
varBounds = vb;
doCommonInit ();
inputMFs = new double[inputChrSize];
outputMFs = new double[outputChrSize];
infRules = new FISRuleTree (theConfig, pos);
if (theConfig->globalInputMFs)

{
generateRandomInputMFs ();

}
}
SugenoFIS::SugenoFIS (FISConfig * conf, VarBounds * vb, double *inmf,

FISRuleTree * ft)
{

theConfig = conf;
varBounds = vb;
doCommonInit ();
infRules = ft;
inputMFs = inmf;
outputMFs = new double[outputChrSize];

} SugenoFIS::SugenoFIS (FISConfig * conf, VarBounds * vb, double *inmf,
FISRuleTree * ft, double *omf)

{
theConfig = conf;
varBounds = vb;
doCommonInit ();
infRules = ft;
inputMFs = inmf;
outputMFs = omf;

} SugenoFIS::SugenoFIS (const char *fn)
{

ifstream in (fn, ios::binary | ios::in);
infRules = NULL;
if (in.good ())

{
theConfig = new FISConfig;
in.read ((char *) theConfig, sizeof (FISConfig));
in.read ((char *) &inputChrSize, sizeof (int));
in.read ((char *) &outputChrSize, sizeof (int));
varBounds = new VarBounds[theConfig->numInputs + 1];
inputMFs = new double[inputChrSize];
outputMFs = new double[outputChrSize];
for (int i = 0; i < (theConfig->numInputs + 1); i++)

{
in.read ((char *) &varBounds[i], sizeof (VarBounds));

}
for (int i = 0; i < inputChrSize; i++)

{
in.read ((char *) &inputMFs[i], sizeof (double));
} for (int i = 0; i < outputChrSize; i++)

{
in.read ((char *) &outputMFs[i], sizeof (double));

} infRules = new FISRuleTree (theConfig, in);
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in.close ();
}

else
{
cout << "Error: could not open file." << endl;

}
}

SugenoFIS::SugenoFIS (SugenoFIS * sf)
{

theConfig = sf->theConfig;
varBounds = sf->varBounds;
doCommonInit ();
inputMFs = sf->copyInputMFs ();
outputMFs = sf->copyOutputMFs ();
infRules = new FISRuleTree (sf->infRules);

}
void
SugenoFIS::doCommonInit ()
{

int numInputMFs = theConfig->numInputs * theConfig->maxInputMFs;
int numOutputMFs = theConfig->numOutputs * theConfig->maxRules;
inputChrSize = numInputMFs * PARAM_SIZE;
outputChrSize = numOutputMFs * (theConfig->numInputs + 1);

} SugenoFIS::~SugenoFIS (void)
{

delete infRules;
infRules = NULL;
delete[]outputMFs;
outputMFs = NULL;
delete[]inputMFs;
inputMFs = NULL;

} double *

SugenoFIS::getOutputMFs ()
{

return outputMFs;
}
double *
SugenoFIS::copyInputMFs ()
{

double *ret = new double[inputChrSize];
for (int i = 0; i < inputChrSize; i++)

ret[i] = inputMFs[i];
return ret;

}
double *
SugenoFIS::copyOutputMFs ()
{

double *ret = new double[outputChrSize];
for (int i = 0; i < outputChrSize; i++)

ret[i] = outputMFs[i];
return ret;
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}
void
SugenoFIS::generateRandomInputMFs ()
{

//double maximum, minimum;
int iptNum;
double range;
double spacing;
double width;
int mfNum;
for (int i = 0; i < (theConfig->numInputs * theConfig->maxInputMFs); i++)

{
iptNum = i / theConfig->maxInputMFs;
mfNum = i % theConfig->maxInputMFs;
range = varBounds[iptNum].maximum - varBounds[iptNum].minimum;
spacing = range / (theConfig->maxInputMFs - 1);
width = range / (theConfig->maxInputMFs);
for (int j = 0; j < PARAM_SIZE; j++)

{
if (j == 0)

{
inputMFs[i * PARAM_SIZE + j] =

varBounds[iptNum].minimum + mfNum * spacing;
inputMFs[i * PARAM_SIZE + j] +=

-0.1 * range + genRand () * 0.2 * range;
}

else
{

inputMFs[i * PARAM_SIZE + j] = width;
inputMFs[i * PARAM_SIZE + j] +=

-0.1 * range + genRand () * 0.2 * range;
}

}
}

}
void
SugenoFIS::generateRandomOutputMFs ()
{

//double maximum, minimum;
for (int i = 0; i < outputChrSize; i++)
{
outputMFs[i] = -1000 + genRand () * 2000;

} } double
SugenoFIS::getMFValue (int mf, double x)
{

switch (theConfig->mfType)

{
default:
case MF_GAUSS:
return gaussmf (mf, x);
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case MF_GBELL:
return gbellmf (mf, x);

case MF_TRI:
return trimf (mf, x);

case MF_TRAP:
return trapmf (mf, x);

}
}
double
SugenoFIS::gaussmf (int mf, double x)
{

int si = PARAM_SIZE * mf;
double mean = inputMFs[si];
double stdev = inputMFs[si + 1] / 2;
double exp = x - mean;
exp *= (exp * -1);
exp /= (2 * stdev * stdev);
return pow (E, exp);

}
double
SugenoFIS::gbellmf (int mf, double x)
{

int si = PARAM_SIZE * mf;
double mean1 = inputMFs[si];
double mean2 = mean1 + inputMFs[si + 1] / 2;
double stdev1 = inputMFs[si + 2] / 2;
double stdev2 = inputMFs[si + 3] / 2;
double exp;
if (x >= mean1 && x <= mean2)

{
return 1;

}

else if (x < mean1)
{
exp = x - mean1;
exp *= (exp * -1);
exp /= (2 * stdev1 * stdev1);
return pow (E, exp);

}

else
{
exp = x - mean2;
exp *= (exp * -1);
exp /= (2 * stdev2 * stdev2);
return pow (E, exp);

}
}
double
SugenoFIS::trimf (int mf, double x)
{

int si = PARAM_SIZE * mf;
double center = inputMFs[si];
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double left = center - inputMFs[si + 1];
double right = center + inputMFs[si + 2];
return

max (min ((x - left) / (center - left), (right - x) / (right - center)),
0);

}
double
SugenoFIS::trapmf (int mf, double x)
{

int si = PARAM_SIZE * mf;
double center1 = inputMFs[si];
double center2 = center1 + inputMFs[si + 1];
double left = center1 - inputMFs[si + 2];
double right = center2 + inputMFs[si + 3];
return

max (min3
((x - left) / (center1 - left), 1, (right - x) / (right - center2)),
0);

}
void
SugenoFIS::getFiringLevels (int N, double **x, double **&f)
{

int M = theConfig->numInputs;
int S;
int ind;
int nIMF = theConfig->numInputs * theConfig->maxInputMFs;
double fSum;
double *mfv = new double[nIMF];
bool * loc = new bool[nIMF];

//compute the firing levels
S = infRules->getNumRules ();

f = new double *[N];
for (int i = 0; i < N; i++)

{

//build MF table for this input
if (theConfig->globalInputMFs)
{
for (int v = 0; v < theConfig->numInputs; v++)

{
for (int w = 0; w < theConfig->maxInputMFs; w++)

{
ind = v * theConfig->maxInputMFs + w;
mfv[ind] = getMFValue (ind, x[i][v]);
loc[ind] = (x[i][v] < getMFCenter (ind));

} } }

// find the firing values for this input
f[i] = new double[S];
fSum = 0;
for (int r = 0; r < S; r++)

{
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f[i][r] = infRules->getFiringLevel (r, mfv, loc);
fSum += f[i][r];

} }
//cout << fSum << endl;
delete[]mfv;

delete[]loc;
} void
SugenoFIS::removeDependencies (int N, double **x, double **&f)
{

double S = infRules->getNumRules ();
bool dep, anyDependence;
double factor;
int rndPick;
bool * toRemove = new bool[theConfig->maxRules];

//check for linear dependence...
anyDependence = false;

for (int h = 0; h < S; h++)
{
toRemove[h] = false;

} for (int r1 = 0; r1 < S; r1++)
{
for (int r2 = r1 + 1; r2 < S; r2++)

{
dep = true;
if (f[0][r2] == 0)

factor = 0;

else
factor = f[0][r1] / f[0][r2];

for (int i = 0; (i < 20 && dep); i++)
{

rndPick = genRandInt (0, N);
if (abs (f[rndPick][r1] - f[rndPick][r2] * factor) > TOLERANCE)

dep = false;
}

if (dep)
{

//cout << "Dep Found: " << r2 << endl;
toRemove[r2] = true;

anyDependence = true;
}

}
}

if (anyDependence)
{

// delete the computed firing levels;
// they will be replaced
for (int i = 0; i < N; i++)
{
delete[]f[i];
f[i] = NULL;
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} delete[]f;
f = NULL;

/*cout << "---------------" << endl;
for(int q=0; q<S; q++) {
cout << toRemove[q] << endl;
} */

// delete redundant rules
infRules->removeRules (toRemove);

// replace the firing levels
getFiringLevels (N, x, f);
}

delete[]toRemove;
} void
SugenoFIS::apply (int N, double **x, double *y, double *outputVals,

double &MSE, double &MAE, double &rSq)
{

double **firL;
double firingSum, productSum, sqErrorSum, abErrorSum, zval, error;
int S = infRules->getNumRules ();
getFiringLevels (N, x, firL);
sqErrorSum = 0;
abErrorSum = 0;
for (int i = 0; i < N; i++)

{
firingSum = 0;
productSum = 0;
for (int r = 0; r < S; r++)

{
zval = applyOutputMF (r, theConfig->linearOutput, x[i]);
firingSum += firL[i][r];
productSum += firL[i][r] * zval;
} if (theConfig->wtaver)

{
if (firingSum == 0)

outputVals[i] = 0;

else
outputVals[i] = productSum / firingSum;

}

else
{
outputVals[i] = productSum;

}
error = outputVals[i] - y[i];
sqErrorSum += error * error;
abErrorSum += abs (error);

}
MSE = sqErrorSum / N;
MAE = abErrorSum / N;
rSq = rSquared (N, outputVals, y);
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/*for(int i=0; i<this->outputChrSize; i++) {
cout << outputMFs[i] << endl;
}
cin.get(); */

for (int i = 0; i < N; i++)
{
delete[]firL[i];
firL[i] = NULL;

} delete[]firL;
firL = NULL;

} void
SugenoFIS::applyNoOutputs (int N, double **x, double *outputVals)
{

double **firL;
double firingSum, productSum, zval;
int S = infRules->getNumRules ();
getFiringLevels (N, x, firL);
for (int i = 0; i < N; i++)

{
firingSum = 0;
productSum = 0;
for (int r = 0; r < S; r++)

{
zval = applyOutputMF (r, theConfig->linearOutput, x[i]);
firingSum += firL[i][r];
productSum += firL[i][r] * zval;
} if (theConfig->wtaver)

{
if (firingSum == 0)

outputVals[i] = 0;

else
outputVals[i] = productSum / firingSum;

}

else
{
outputVals[i] = productSum;

}
}

for (int i = 0; i < N; i++)
{
delete[]firL[i];
firL[i] = NULL;

} delete[]firL;
firL = NULL;

} double

SugenoFIS::evaluateEfficiency ()
{

int depth = infRules->getMaxRuleDepth ();
return depth / theConfig->maxOverallRuleDepth;

}
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double
SugenoFIS::applyOutputMF (int which, bool useLinear, double *x)
{

int st;
double sum;
if (useLinear)

{
st = which * (theConfig->numInputs + 1);
sum = outputMFs[st];
for (int i = 0; i < theConfig->numInputs; i++)

{
sum += x[i] * outputMFs[st + i + 1];

} return sum;
}

else
{
return outputMFs[which];

}
}

bool loadDataFromFile (int N, int M, const char *fn, double **&x,
double *&y)

{
y = new double[N];
x = new double *[N];
char trash;
ifstream in;
in.open (fn);
if (!in)

{
return false;

}
for (int i = 0; i < N; i++)

{
x[i] = new double[M];
for (int j = 0; j < M; j++)

{
in >> x[i][j];
in >> trash;

} in >> y[i];
} in.close ();

return true;
}
void
findMaxMins (FISConfig * conf, int N, double **inputs, double *outputs,

VarBounds * &bounds)
{

bounds = new VarBounds[conf->numInputs + 1];

//cout << "here" << endl;
//determine maxes and mins
for (int j = 0; j < conf->numInputs; j++)
{
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bounds[j].minimum = inputs[0][j];
bounds[j].maximum = inputs[0][j];
for (int i = 0; i < N; i++)

{
if (inputs[i][j] > bounds[j].maximum)

{
bounds[j].maximum = inputs[i][j];

}
if (inputs[i][j] < bounds[j].minimum)

{
bounds[j].minimum = inputs[i][j];

}
}
}

bounds[conf->numInputs].minimum = outputs[0];
bounds[conf->numInputs].maximum = outputs[0];
for (int i = 0; i < N; i++)

{
if (outputs[i] > bounds[conf->numInputs].maximum)

{
bounds[conf->numInputs].maximum = outputs[i];

}
if (outputs[i] < bounds[conf->numInputs].minimum)

{
bounds[conf->numInputs].minimum = outputs[i];

}
}

}
void
scaleInputs (FISConfig * conf, int N, double *maxes, double *mins,

double **inputs, double **&scaledInputs)
{

double minimum, maximum;
scaledInputs = new double *[N];

//scale the inputs
for (int i = 0; i < N; i++)
{
scaledInputs[i] = new double[conf->numInputs];
for (int j = 0; j < conf->numInputs; j++)

{
minimum = mins[j];
maximum = maxes[j];
if (maximum - minimum == 0)

scaledInputs[i][j] = .5;

else
scaledInputs[i][j] =

(inputs[i][j] - minimum) / (maximum - minimum);
}
}

}
double *
SugenoFIS::getInputMFs ()
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{
return inputMFs;

}

FISRuleTree * SugenoFIS::getRuleSet ()
{

return infRules;
}

FISRuleTree * SugenoFIS::copyRules ()
{

FISRuleTree * ret = new FISRuleTree (infRules);
return ret;

}
void
SugenoFIS::printOutputMF (char *str, int mf)
{

char *temp = new char[100];
if (theConfig->linearOutput)

{
int st = mf * (theConfig->numInputs + 1);
sprintf (temp, " Output = %f", outputMFs[st]);
strcat (str, temp);
for (int i = 1; i < theConfig->numInputs + 1; i++)

{
sprintf (temp, " + input%d * %f", i, outputMFs[st + i]);
strcat (str, temp);

} }

else
{
sprintf (temp, " Output = %f", outputMFs[mf]);
strcat (str, temp);

}
strcat (str, "\r\n )\r\n)");
delete[]temp;

}
double
SugenoFIS::runLinearKalmanFilter (int N, int *set, double **x, double *y)
{

int M = theConfig->numInputs;
int S = infRules->getNumRules ();;
int ind;
int SM = S * (M + 1);
int baseInd;
double fSum;
double error;
reset_kalman (SM, 1);
for (int i = 0; i < N; i++)

{
fSum = 0;

//build MF table for this input
if (theConfig->globalInputMFs)
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{
for (int v = 0; v < theConfig->numInputs; v++)

{
for (int w = 0; w < theConfig->maxInputMFs; w++)

{
ind = v * theConfig->maxInputMFs + w;
mfVals[ind] = getMFValue (ind, x[set[i]][v]);
leftOfCenter[ind] = (x[set[i]][v] < getMFCenter (ind));

} } }

// find the firing values for this input
for (int r = 0; r < S; r++)
{
firingLevels[i][r] =

infRules->getFiringLevel (r, mfVals, leftOfCenter);
fSum += firingLevels[i][r];

}
// build the input matrix for regression or kalman
for (int r = 0; r < S; r++)
{
baseInd = r * (M + 1);
if (theConfig->wtaver && fSum != 0)

firingLevels[i][r] /= fSum;
kdp[baseInd] = firingLevels[i][r];
matrix[i][baseInd] = kdp[baseInd];
for (int j = 1; j < M + 1; j++)

{
kdp[baseInd + j] = firingLevels[i][r] * x[set[i]][j - 1];
matrix[i][baseInd + j] = kdp[baseInd + j];

} } kdp[SM] = y[set[i]];
vector[i] = y[set[i]];
new_kalman (SM, 1, kdp, outputMFs, LAMBDA);

}
//cout << fSum << endl;
/*for(int i=0; i<SM; i++) {

cout << outputMFs[i] << endl;
} */

//cin.get();
mult_matrix_vector (matrix, outputMFs, N, SM, temp1);

sub_vector_vector (temp1, vector, N, temp2);
error = norm_vector (temp2, N);
return error / sqrt ((double) N);

} double
SugenoFIS::runConstantKalmanFilter (int N, int *set, double **x, double *y)
{

int S = infRules->getNumRules ();;
int ind;
double fSum;
double error;
reset_kalman (S, 1);
for (int i = 0; i < N; i++)

{
fSum = 0;
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//build MF table for this input
if (theConfig->globalInputMFs)
{
for (int v = 0; v < theConfig->numInputs; v++)

{
for (int w = 0; w < theConfig->maxInputMFs; w++)

{
ind = v * theConfig->maxInputMFs + w;
mfVals[ind] = getMFValue (ind, x[set[i]][v]);
leftOfCenter[ind] = (x[set[i]][v] < getMFCenter (ind));

} } }

// find the firing values for this input
for (int r = 0; r < S; r++)
{
firingLevels[i][r] =

infRules->getFiringLevel (r, mfVals, leftOfCenter);
fSum += firingLevels[i][r];

}
// build the input matrix for regression or kalman
for (int r = 0; r < S; r++)
{
if (theConfig->wtaver && fSum != 0)

firingLevels[i][r] /= fSum;
kdp[r] = firingLevels[i][r];
matrix[i][r] = kdp[r];

}
kdp[S] = y[set[i]];
vector[i] = y[set[i]];
new_kalman (S, 1, kdp, outputMFs, LAMBDA);

}

//cout << fSum << endl;
/*for(int i=0; i<SM; i++) {

cout << outputMFs[i] << endl;
} */

//cin.get();
mult_matrix_vector (matrix, outputMFs, N, S, temp1);

sub_vector_vector (temp1, vector, N, temp2);
error = norm_vector (temp2, N);
return error / sqrt ((double) N);

} FISConfig * SugenoFIS::getConfig ()
{

return theConfig;
}
void
SugenoFIS::getMFsForInput (int input, double *MFs)
{

int start = theConfig->maxInputMFs * PARAM_SIZE * input;
int end = theConfig->maxInitialRuleDepth * PARAM_SIZE * (input + 1);
for (int i = start; i < end; i++)

{
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MFs[i - start] = inputMFs[i];
} } double
SugenoFIS::getInputMin (int input)
{

return varBounds[input].minimum;
}
double
SugenoFIS::getInputMax (int input)
{

return varBounds[input].maximum;
}
double
SugenoFIS::getMFCenter (int mf)
{

return inputMFs[mf * PARAM_SIZE];
}
void
SugenoFIS::writeInputMFs (ostream & out)
{

out << "{";
for (int i = 0; i < inputChrSize; i++)

{
if (i > 0)

out << ",";
out << inputMFs[i];

}
out << "}";

}
void
SugenoFIS::writeOutputMFs (ostream & out)
{

out << "{";
for (int i = 0; i < outputChrSize; i++)

{
if (i > 0)

out << ",";
out << outputMFs[i];

}
out << "}";

}
char *
SugenoFIS::codeFIS (const char *fn)
{

char *ret = new char[10000];
char macro[20];
char ch;
int count;
int nr = infRules->getNumRules ();
ret[0] = ’\0’;
cout << fn << endl;
ostringstream oss (ostringstream::out);
ifstream in (fn);
if (!in.good ())

cout << "error in file." << endl;
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while (in.good ())
{
in.get (ch);
if (ch == ’$’)

{
count = 0;
ch = ’\0’;
while (in.good () && ch != ’$’)

{
in.get (ch);
if (ch != ’$’)

{
macro[count] = ch;
count++;

}
}

macro[count] = ’\0’;

//cout << macro << endl;
if (!strcmp (macro, "N_INPUTS"))
{

oss << theConfig->numInputs;
}

else if (!strcmp (macro, "WTAVER"))
{

oss << theConfig->wtaver;
}

else if (!strcmp (macro, "PROD"))
{

oss << theConfig->prod;
}

else if (!strcmp (macro, "PROBOR"))
{

oss << theConfig->probor;
}

else if (!strcmp (macro, "LINEAR"))
{

oss << theConfig->linearOutput;
}

else if (!strcmp (macro, "N_RULES"))
{

oss << nr;
}

else if (!strcmp (macro, "N_MFPI"))
{

oss << theConfig->maxInputMFs;
}
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else if (!strcmp (macro, "MF_TYPE"))
{

oss << theConfig->mfType;
}

else if (!strcmp (macro, "INPUT_MFS"))
{

writeInputMFs (oss);
}

else if (!strcmp (macro, "OUTPUT_MFS"))
{

writeOutputMFs (oss);
}

else if (!strcmp (macro, "THE_RULES"))
{

oss << "switch(rule) {\r\n";
for (int i = 0; i < nr; i++)

{
oss << "\t\tcase " << i << ":\r\n\t\t\treturn ";
infRules->writeRule (oss, i);
oss << ";\r\n";

} oss << "\t}";
}

else
{

cout << "ERROR : Unrecognized tag." << endl;
}

}

else if (ch == ’\n’)
{
oss << "\r\n";

}

else
{
oss << ch;

}
}

in.close ();
strcpy (ret, oss.str ().c_str ());
return ret;

}
void
SugenoFIS::serializeFIS (const char *fn)
{

ofstream out (fn, ios::out | ios::trunc | ios::binary);
if (out.good ())

{
out.write ((char *) theConfig, sizeof (FISConfig));
out.write ((char *) &inputChrSize, sizeof (int));
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out.write ((char *) &outputChrSize, sizeof (int));
for (int i = 0; i < (theConfig->numInputs + 1); i++)

{
out.write ((char *) &varBounds[i], sizeof (VarBounds));

}
for (int i = 0; i < inputChrSize; i++)

{
out.write ((char *) &inputMFs[i], sizeof (double));
} for (int i = 0; i < outputChrSize; i++)

{
out.write ((char *) &outputMFs[i], sizeof (double));

} infRules->serializeTree (out);
out.close ();

}

else
{
cout << "Error: could not write output file." << endl;

}
}

VarBounds * SugenoFIS::getBounds ()
{

return varBounds;
}


