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This thesis explores the use of Genetic Algorithms in approaching the Snake-In-The-Box 

problem in dimension 8.  It discusses methods for improving the solutions found by reducing the 

representation space for the problem.  It presents a representation scheme called Frequency-

Based Transition Reassignment (FBTR), which creates a unified interpretation of individuals to 

prune the search space.  FBTR is compared to a standard transition-based representation to 

determine its effectiveness.  It is also compared to a canonical representation that was presented 

by K. J. Kochut in 1996 which is a different technique meant to reduce the search space.  In 

addition, this thesis introduces the concept of a snake blocker and identifies methods for dealing 

with snake blockers.  These methods are evaluated for their impact on the GA as a whole.   

Furthermore, fitness functions are explored in great detail and a variety of components to 

supplement the length of the longest snake in the chromosome, are suggested and evaluated.  

These components include tightness, skin density, selective skin density, and target distribution.   
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CHAPTER 1 

AN INTRODUCTION TO THE SNAKE-IN-THE-BOX PROBLEM 

 

1.1 BACKGROUND 

 The Snake-in-the-Box problem, referred to here as simply the snake problem, was first 

discussed by W. H. Kautz in 1958.  A snake, at its most basic level, is a sequence of integers.  

The snake problem centers on finding the longest possible snakes that can be created from a 

fixed set of integers.  In order for a sequence of integers to qualify as a snake, they must adhere 

to two rules, which will be discussed in detail later.  These two rules that qualify a sequence as a 

snake make finding long snakes a difficult problem.   

As background to the snake problem, it is important to understand how binary numeral 

representation can be used to represent integers.  Binary numeral representation is a base-2 

system that uses only two digits, 0 and 1, to express numerals.  In contrast, numerals in a base-10 

system are expressed using ten digits from 0 to 9.  Places are the ordinal positions which the 

digits occupy in the numeral, and each place has a place value.  Place values provide a 

contextual meaning for the digits in the numeral and increase from right to left.  In a base-10 

system, place values are powers of ten.  For example, the ones place has a place value of 10
0
 and 

the hundreds place has a value of 10
2
.  The total value for a numeral is the sum of the place value 

multiplied by the digit for every position in the numeral.  For base-10, the total value for a set of 

digits is determined using the following function: 



2 

 

digit
place

×

n−1

place = 0

10
place

 

Here, place is the ordinal position in the numeral, from right to left, digit
place

 is the digit 

occupying that position, and n is the number of places in the numeral.  For example, the value of 

the numeral 105 is 5×10
0
+ 0×10

1
+ 1×10

2
=125.  The base-2 system works in the same manner, 

but the place value at each position is a power of two instead of ten.  The function for getting the 

total value from a base-2 numeral is: 

digit
place

×

n−1

place = 0

2
place

 

 Applying this function to the binary numeral 1101 yields 1×2
0
 + 0×2

1
 + 1×2

2
 + 1×2

3
=13. 

 

1.2 THE PROBLEM 

Snakes were originally suggested as a solution to problems in analog-to-digital systems 

[Kautz58].  For their utility in real world applications, snakes are an important area of research 

and have applications in electrical engineering (analog-to-digital conversion), coding theory 

(data integrity checking), combination locking schemes, the simplification of disjunctive normal 

form, and computer network topologies (Kautz networks) [Kautz58, Klee67].   

In digital applications, numbers are represented in binary numeral representation and 

each digit is called a bit.  In analog-to-digital systems, information must be converted from an 

analog state to a digital representation so that it can be utilized.  An example of this type of 

system is a linear encoder, shown in Figure 1.1.  A linear encoder has a sensor that moves along 

a reading surface.  In an optical linear encoder, the reading surface displays a black and white 

pattern.  When a reading is taken by the sensor, the black portions of the pattern are typically 
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converted into 1-bits and the white portions into 0-bits.  The result is a binary numeral that the 

digital application uses as an indicator of position.  As the sensor moves along the reading 

surface, the pattern changes, and so does the binary value.   

 

 

Figure 1.1 – An example of a linear encoder in action.  As the sensor moves vertically, in 

relation to the reading surface, the pattern changes, and so does the resulting binary 

interpretation. 

 

Unfortunately, reading the encoded value is not a perfect process.  If the sensor 

mistakenly interprets a white square as a black square, or vice versa, the resulting digital number 

will be incorrect.  If the first white square in Figure 1.1 were to be mistakenly interpreted as a 

black square instead, the resulting digital representation would be 1101.  Even though this 
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reading only differs from the correct reading of 0101 by a single bit, the application will register 

the position of the reader as being much lower on the reading surface.  Because the application 

has no way to register the error has occurred, it carries on its calculations with the inaccurate 

reading.  To combat this problem, snakes were suggested as a means of detecting this type of 

error and, possibly, correcting it [Kautz58].   

Since read errors of this nature are rare, the goal is to detect an error when only one bit 

has been misread.  The general concept is that read errors should not result in major 

misinterpretations of the sensor’s position.  The only way to ensure that the sensor will not 

accidentally register far from its actual location is to place constraints on the numbers that can be 

used on the reading surface. 

One constraint is that the application should never mistake the sensor’s position by more 

than one encoding location.  Therefore, the numbers that are not next to each other on the 

reading surface must differ by at least two bits.  That way, a one bit error will not cause a 

significant problem.  Another constraint is that numbers that are next to each other on the reading 

surface must only differ by one bit.  This constraint allows the application to determine that a 

read error has occurred.  If the current reading differs from the previous reading by more than 

one bit, then the current reading would be inaccurate.  Furthermore, waiting for the next reading 

may provide enough information to correct the misread value.  Figure 1.2 shows a linear encoder 

where the values used meet these two conditions. Adhering to these constraints makes the linear 

encoder robust to single bit reading errors.  However, the number of values that can be used on 

the reading surface is greatly diminished.   
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Figure 1.2 – A linear encoder where the reading surface uses only numbers that meet the two 

constraints described above. 

 

The two constraints outlined in the previous paragraph also define the rules for 

determining if a sequence of numbers is a snake.  As shown with linear encoders, the constraints 

meant to increase the robustness of an application against incorrect sensor readings also limit 

size of the encoders reading surface.  To keep the reading surface as long as possible, longer 

snakes are needed.  The snake shown above is the longest snake that can be encoded in only four 

bits.  In general, the number of bits used to encode the values can be increased, thereby creating 

a larger set of numbers to pull from.  However, increasing the number of bits also makes finding 

snakes more difficult.  As a result, finding the longest snakes that can be represented in a set 

number of bits is of great interest.   

 

1.3 HYPERCUBES 

 A hypercube is a tool for conceptualizing how all of the numbers that can be expressed 

in a fixed number of bits relate to each other.  The number of bits is called the dimension, and a 
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hypercube for a given dimension, d, is called a d-dimensional hypercube.  A d-dimensional 

hypercube consists of 2
d 

vertices, where each vertex is a numeral composed of binary digits and 

2
d
×

d

2
 edges, where an edge connects each pair of numerals that differ by only one digit.  The 

number of bits that are different between two binary numerals is referred to as their Hamming 

distance.  The vertices of the hypercube that have a Hamming distance of one and, therefore, 

have an edge between them, are called neighbors.  Figure 1.3 shows a 1-dimensional hypercube, 

which has two vertices and one edge.  The edge represents the place with a place value of 2
0
=1.  

When the digit is 0, the total value of the numeral is 0.  When the digit here is 1, the total value 

of the numeral is 1.  This edge can also be referred to as transition 0, because that indicates the 

power to which two is raised at that place.  A transition simply indicates which place changes 

between two vertices.  A transition class is the set of all transitions that have the same place 

value.  There are d transition classes in every d-dimensional hypercube.   

 

 

Figure 1.3 – A 1-dimensional hypercube.  Only two values can be represented using one bit, 0 

and 1.   

 

 A 2-dimensional hypercube has four vertices and four edges, as illustrated in Figure 1.4.  

With each new dimension, the vertices of the hypercube get one new edge and the number of 

vertices in the hypercube doubles.  In addition to transition 0, a 2-dimensional hypercube also 
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has a transition 1 for the edges where the place value is 2
1
.  The 2-dimensional hypercube can be 

thought of as two 1-dimensional hypercubes that are joined together by a new transition.  Figure 

1.5 shows a 3-dimensional hypercube and Figure 1.6 shows a 4-dimensional hypercube.  These 

figures serve as illustrations of how the number of vertices doubles for each added dimension.   

 

 

Figure 1.4 – A 2-dimensional hypercube.  There are four vertices and four edges in a 2-

dimensional hypercube.  The horizontal edges represent the transition class for transition 0 and 

the vertical edges represent the transition class for transition 1. 
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Figure 1.5 – A 3-dimensional hypercube which has eight vertices and twelve edges. 
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Figure 1.6 – A 4-dimensional hypercube, which has sixteen vertices and thirty-two edges. 

 

1.4 THE SNAKE-IN-THE-BOX  

A snake is a sequence of integers.  When mapping these integers to their binary 

representation in a hypercube, a snake becomes a non-cyclical path traversing the edges of the 

hypercube.  Figure 1.7 shows a snake imposed on a 3-dimensional hypercube and illustrates how 

the hypercube acts as the “box” referenced in the snake problem’s name.   
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Figure 1.7 – A snake of length 4 in a 3-dimensional hypercube.   

 

The path of a snake can be discussed either in terms of its vertices or its transitions.  The 

snake in Figure 1.7 is comprised of the sequence of vertices 0, 2, 3, 7, and 5.  The length of the 

snake shown here is 4 because the length is measured in terms of the number of transitions, not 

the number of vertices.  For notational convenience, the sequence may be referred to as (v0, 2, 3, 

7, 5), where the v indicates that the numbers are vertices.  The head of a snake is the vertex at the 

beginning of the sequence, and the tail of the snake is the last vertex of the sequence.  The path 

(v0, 2, 3, 7, 5) assumes that the head of the snake is v0 and that the tail of the snake is v5.  

However, there is no requirement that v0 be the head of the path, and it is perfectly valid to 
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interpret the snake in reverse as (v5, 7, 3, 2, 0).  This also means that (v0, 2, 3, 7, 5) and (v5, 7, 3, 

2, 0) are the same snake. 

When the path is viewed in terms of transitions, the snake traverses transitions 1, 0, 2, 

and then 1 again.  This will be referred to using the notation (t1, 0, 2, 1), where t indicates that 

the numbers are transitions instead of vertices.  Here again v0 has been assumed as the head of 

the snake, but it would also be acceptable to start from the other end as (t1, 2, 0, 1).  It is worth 

noting that the transition-based notation does not reference any specific vertices.  Traversing a 

transition is not a directional process; it goes both ways.  Therefore, the vertex based path (v0, 2, 

3, 7, 5) is merely the result of applying the transition sequence (t1, 0, 2, 1) starting with vertex 

v0.  If a new head is selected, the same transitions can be applied.  The result will be a new 

sequence of vertices, but the transition sequence will remain the same.  Figure 1.8 shows the 

result of applying the same transitions but choosing v6 as the head of the snake, creating the 

vertex sequence (v6, 4, 5, 1, 3).  Therefore, the transition sequence representation is a 

generalized version of all snakes which follow the same sequence of transitions.  Since there are 

2
d
 vertices in a hypercube for dimension d, there can be 2

d
 valid heads for every transition 

sequence, making the transition based representation an expression for many different sequences 

of vertices. 
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Figure 1.8 – A snake of length 4 in a 3-dimensional hypercube using the same transitions as the 

snake in Figure 1.7, but starting at a different vertex. 

 

To formalize the rules discussed previously, a sequence of vertices is a snake if and only 

if, for each vertex vi, HammingDistance(vi, vi−1)=1 and HammingDistance(vi, vi+1)=1, for 

1 < i < m where m is the length of the sequence.  And, for each vertex vi, there does not exist vj 

such that HammingDistance(vi, vj) ≤ 1 for j < i−1 or j > i+1.  Here HammingDistance(vi, vj) 

returns the Hamming distance of the two vertices vi and vj, which is a reflexive operation.  When 

applied to the hypercube, these rules dictate that the path cannot pass though a vertex that 

already neighbors another vertex on the path.  Therefore, in Figure 1.7, when the path extends 

from v0 to v2 to v3, it may not then visit vertex v1 because v1 already neighbors a vertex on the 
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path, v0.  All the vertices of the hypercube that neighbor a vertex on the path, but are not part of 

the path, are referred to as the snake’s skin.  Figure 1.9 shows an example of a snake and its skin 

in a 3 dimensional hypercube.  The rules also exclude the possibility of the path moving from v0 

to v2 and then back to v0 again.   

 

 

Figure 1.9 – A 3-dimensional hypercube with a two vertex snake, (v0, 1). The vertices {v2, v3, 

v4, v5} are shown highlighted here to signify that they are part of the snake’s skin.   
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CHAPTER 2 

GENETIC ALGORITHMS AND THE SNAKE PROBLEM 

 

2.1 BACKGROUND 

The snake problem consists of finding the longest possible snakes in a given dimension, 

and this thesis concentrates on searching in dimension 8.  As illustrated in the context of linear 

encoders, longer snakes are more desirable because there is a strong correlation between a 

snake’s utility and its length [Klee67].  When used in linear encoders, longer paths provide better 

resolution for measurement.  However, the principal can be generalized to include all domains in 

which snakes are useful.  

Searching for long snakes is a non-deterministically polynomial (NP) problem 

[Bitterman04].  The hypercube, which serves as a representation of the available search space, 

doubles in number of vertices for every increment in dimension.  As the size of the search space 

expands, finding long snakes becomes an increasingly difficult problem.  In fact, the search 

space becomes so large that exhaustive search for dimensions higher than 7 is considered 

infeasible with current technology [Kochut96, Casella05].   

 The sizes of the longest snakes in dimensions 1 through 7 have been found using 

exhaustive search and can be found in Table 2.1 and the current records for dimensions 8 and 

higher are listed at http://www.ai.uga.edu/sib/records/index.php.  Unfortunately, there exists no 

mathematical proof to confirm whether or not a snake of a particular length is the longest 

possible snake in a given dimension.  Therefore, the only way to prove that there are no snakes 
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larger than a given example is to do an exhaustive search.  Current technology prohibits such a 

search in dimensions greater than 7, so the longest snake in dimensions 8 and greater will remain 

an open problem until technology is able to perform an exhaustive search on those dimensions or 

theory produces a method of proving that the known examples are the longest snakes possible. 

 

Table 2.1 – All of the known longest snakes for dimensions 1 through 7.  These snakes were 

confirmed to be the longest snakes by iterative search of all possible snakes in each dimension. 

Dimension Longest Snake 

1 1 

2 2 

3 4 

4 7 

5 13 

6 26 

7 50 

 

The process for exhaustively searching dimension 7 for solutions is described in 

[Kochut96].  In its entirety, the experiment took over a month of processing and was carried out 

by five SUN Microsystems SparcCenter 1000’s, each having two processors.   

As iterative search methods fail, acceptance for heuristic-based approaches increases.  In 

particular, evolutionary computation has been applied to the snake problem with significant 

success.  In fact, applications have been developed to search for snakes using Genetic 

Algorithms, Ant Colony Optimization, and Stochastic Hill Climbing [Potter94, Hardas05, 

Casella05]. 

 

2.2 INTRODUCTION TO GENETIC ALGORITHMS 

In the early 1970s, Genetic Algorithms (GAs) were popularized by John Holland for their 

ability to mimic the concepts of Darwinian evolution [Holland75].  GAs have been applied 
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successfully to problems in planning, design, control, classification, function approximation, 

regression, music composition, and data mining [Engelbrecht02].   

Darwinian evolution is a theory that concerns how the environment influences the 

phenotypes of a species.  Phenotypes are observable expressions of genes.  For example, eye 

color is a phenotype that is the result of the expression of some gene.  The chromosome of an 

individual is an organized structure containing many genes.  The individuals of a species each 

have slightly different genes and, therefore, express different phenotypes.  

One of the key components of Darwinian evolution is natural selection.  Natural 

selection postulates that phenotypes which improve an individual’s chance of survival and 

reproduction in an environment are more likely to be passed on to future generations.  

Individuals with phenotypes that are particularly well suited for the environment in which they 

live, are more likely to be successful than those lacking such advantages.  Individuals with 

higher success in an environment are said to have better fitness.  Over the course of several 

generations, the individuals of a species with greater fitness tend to create more offspring than 

those with poorer fitness.  As a whole, the population has more genetic material from individuals 

with favorable phenotypes, leading to an increased percentage of the population expressing those 

phenotypes.  The effect is that populations become better suited for their environments over time. 

GAs use this process as a template to find good solutions to a problem.  In Darwinian 

evolution, a population is composed of many individuals and each individual is more or less fit 

in the environment.  For a GA, the individuals are candidate solutions for the problem.  The 

collection of all possible candidate solutions is called the problem’s search space.  The 

candidate solutions have varying levels of fitness to the problem being solved.  The measurement 

used to map a candidate solution to a fitness value is called a fitness function and is an 
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important component for the success of the GA.  Further, a candidate solution is composed of 

partial solutions, which can be thought of as genes that code for specific phenotypes, and has a 

representation, which is likened to the chromosome in living organisms.   

In order to find a good solution to a problem, a GA mimics the evolutionary process.  To 

begin, the population of the GA is initialized with a group of individuals, referred to as the first 

generation. The individuals of the first generation are paired up and produce offspring to create 

the next generation.  This process then repeats for many generations.  Individuals with better 

fitness values are given preferential treatment when selecting parents to create offspring.  This 

preferential treatment simulates natural selection in biological systems.   

While a GA uses a relatively simple algorithm that operates by creating new generations 

from the current generation, it relies on many disparate elements and mechanisms that work in 

harmony to produce good individuals.  Mapping the problem to the GA metaphor is not always a 

straightforward process, and there are a number of decisions that have to be made.  Each of these 

elements will be discussed in detail in later sections. 

 

2.3 EXPLORING THE SEARCH SPACE 

The search space for a problem can be thought of as a complex landscape of hills and 

valleys.  Here, hills represent areas in which the solutions are good with the peaks of the hills 

being the best solution the hill has to offer.  In contrast, the valleys represent poor solutions to 

the problem with the worst solutions at their lowest points.  In the search space, some hills are 

taller than others.  At the top of the tallest hill is the point in the search space that represents the 

best possible solution.  This solution is referred to as a global maximum.  All of the candidate 
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solutions that reside at the tops of the other hills are referred to as local maxima, because they 

are still the best solutions in their area, but are not the best solution possible.   

The GA begins with a population of individuals.  This initial population is the first 

generation.  Each individual is a candidate solution to the problem with a measurable fitness and, 

collectively, they act as a survey of many different points in the search space.  Some individuals 

will be better than others.  The good individuals can be thought of as standing on one of the hills 

in the solution space, while the individuals with lower fitness values are located in one of the 

valleys.   

The GA creates a new generation from the genetic material of the initial generation using 

operators that are designed to mimic those processes found in biological systems.  The new 

generation will be a different survey of the search space, with the new individuals standing in 

different places.  The goal of the search is to find the global maximum; therefore, the candidate 

solutions with the best fitness values are usually given some preference for being included in the 

creation of the next generation.  The hope is that the individuals that were standing on the hills in 

the previous generation will create some offspring that are also standing on hills and, perhaps, 

are on a higher hill than their parents.  In essence, the hope is that the individual as a whole is 

composed of good partial solutions that can be mixed with good partial solutions of other 

individuals to create better and better candidate solutions.   

If the GA is effective, the individuals will start to concentrate search on one hill that 

seems to be better than the rest.  The genetic material in the population as a whole will tend to 

become less heterogeneous.  When this happens the GA, is said to converge because the search 

goes from being a survey of many different points in the solution space to being concentrated in 

a specific area.  The concentrated search is an effort to find the top of the hill.  Unfortunately, 
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there is no way for the GA to know whether or not it concentrated its search on the right hill.  If 

it did not, then it will likely find a local maximum but, having concentrated on searching the 

wrong area, will miss the global maximum. 

 

2.4 APPLICATION TO SNAKE PROBLEM 

Many different approaches have been used in an attempt to find long snakes.  Theoretical 

approaches have been used as in [Rajan99].  The use of exhaustive search was successful in 

finding all snakes in dimensions less than 8, including the work done in dimension 7 in 

[Kochut96].  A variety of heuristic based approaches have been used including Ant Colony 

Optimization in [Hardas05] and Stochastic Hill Climbing in [Casella05].  GAs have already been 

successfully applied to the snake problem, but what about the snake problem makes GAs a good 

approach for finding long snakes?   

To determine if a GA may be a good candidate for a problem there are several 

characteristics of the problem that need to be considered.  To start with, GAs are a heuristic 

search technique, meaning that they are not guaranteed to find an optimal solution to the 

problem.  If the search space is small enough to be searched iteratively, then an iterative search 

should be used to ensure that an optimal solution is discovered.  Unfortunately, exhaustive search 

is not an option for the snake problem in dimensions higher than 7.   

Additionally, potential solutions for the problem need to be easy to evaluate and grade.  

GAs repeatedly select good answers from a collection of potential solutions and then attempt to 

generate better solutions.  The process is iterative and many potential solutions are analyzed in 

the course of the process.  If checking the solution takes a long time, the GA’s generate-and-

check methodology will take too long to make it effective.  Furthermore, for the solutions to be 
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gradable there need to be solutions that are obviously better than others based on some 

measurement.  If, in the general case, most solutions are not gradable, the GA will be unable to 

converge.  Individuals for the snake problem are both easy to evaluate as solutions and are 

gradable.   

Furthermore, there should be a reasonable expectation that good partial solutions will 

lead to good solution candidates.  For the snake problem, this seems to be a very reasonable 

assumption because any subsection of a snake is also a snake.   

 

2.5 REPRESENTATION 

 The preliminary consideration in GA design is the fact that the individuals require some 

form of chromosomal representation.  The chromosomal representation is a method of 

representing a candidate solution to the problem being solved.  The representation should 

incorporate all information necessary for an optimal solution and should be fitting to the domain.  

However, this does not mean that the representation must be able to express every possible 

solution.  Instead, the representation need only be capable of representing the optimal solution.  

This distinction would typically involve preventing candidate solutions that are invalid because 

they violate some constraint of the problem.  For the snake problem, there are methods of 

constraining the search because redundancy exists.   

The set of all solutions that can be described using a representation, in conjunction with 

any constraints placed on the representation, will be referred to here as the representation 

space.  The representation space is a subset of the entire search space for the problem.  Choosing 

a representation with a representation space that is smaller than the search space is acceptable 

provided the representation is capable of expressing the optimal solution to the problem.  This 
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may be possible if, for example, the solutions in the search space are highly redundant.  In this 

case, a representation may be used which limits or eliminates such redundancy.  The distinction 

between the search space and a representation space is important for reasons that will become 

evident later. 

For the snake problem specifically, representations come in two flavors: vertex-based and 

transition-based.  Vertex-based representations build a chromosome from vertices of the 

hypercube.  Therefore, each candidate solution is a sequence of numerals that correspond to the 

vertices or the hypercube. 

In contrast, transition-based representations build a chromosome from the edges of the 

hypercube.  Transition-based representations are also sequences of numerals, but the numerals 

correspond to the transitions in the hypercube.  In other words, the numbers indicate which bit 

place changes between the previous vertex and the current vertex.  Recall that the head chosen 

for a transition sequence only affects where the sequence begins in the hypercube but does not 

change whether the resulting vertex sequence is a snake or not.  By taking advantage of this 

property of the hypercube, transition-based representations have a much smaller representation 

space than vertex-based representations.  This is because, for each unique candidate solution in a 

transition-based representation, there would exist 2
d
 candidate solutions in a vertex-based 

representation all starting at different vertices, where d is the number of dimensions.  By not 

needing to represent each of these 2
d
 candidate solutions separately, the transition-based 

representation has fewer candidate solutions to consider and, therefore, a smaller representation 

space. 

Furthermore, in a transition-based representation, only valid transitions are being 

searched.  A valid transition is a transition that corresponds to an edge in the hypercube.  An 
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invalid transition occurs whenever two consecutive vertices in a series are not neighbors.  For 

example, v0 and v3 differ have a Hamming distance of 2.  If these two vertices were to appear 

next to each other in a vertex-based representation, there would be an invalid transition between 

them because they do not share an edge in the hypercube.  A sequence of vertices cannot be a 

snake if it contains an invalid transition.  In a vertex-based representation, invalid transitions are 

possible, whereas transition-based representations only use valid transitions.  Removing all 

candidate solutions with invalid transitions further reduces the representation space for a 

transition-based representation versus a vertex-based representation.   

In addition, individuals may either be fixed or variable length.  For the snake problem, 

fixed length individuals are typically used.  Fixed length individuals tend to simplify crossover 

operators and fitness functions, which will be discussed later.  Furthermore, variable length 

individuals can have other drawbacks aside from added complexity.  Without methods to manage 

the length of the individuals, they may tend to grow in size over the course of several generations 

without a corresponding payoff in the lengths of snakes contained in those individuals.   

This thesis focuses on a transition-based representation with a fixed length of 110 

because it has the potential to represent a snake of length 110 should one exist in dimension 8.  

Within the chromosome of an individual, there may exist several snakes of varying length.   

 

2.6 INITIALIZATION 

Once a representation has been established, the first generation of individuals must be 

initialized to provide the chromosomal pool from which subsequent generations will be built.  

One technique used in this thesis will be referred to as Restricted Random Initialization (RRI).  

RRI initializes an individual by the algorithm in Figure 2.1.  RRI’s name signifies that the 
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transition being added at the current position is restricted from being from the same transition 

class used in either of the last two positions.  This restriction avoids creating individuals with 

snake blockers.  Snake blockers are two special transition patterns that serve as barriers to block 

snakes.  There are two types of snake blocker, one is when the same transition appears twice in a 

row and the other is when the same transition occurs twice with only a single different transition 

in between.  The two types of snake blockers will be discussed in full later. 

The second technique is referred to as Restricted Heuristic Initialization (RHI) and is 

outlined in Figure 2.2.  RHI uses a heuristic to guide the addition of transitions to the end of the 

individual.  RHI starts by attempting to build a snake one transition at a time.  As long as there 

are transitions available that will not violate the rules for a snake, it will pick one of those 

transitions.  The probability for selecting a transition is weighted based on a factor called skin 

density, which will be an important concept later.  The use of a weighted probability is a 

heuristic used to create longer starting snakes.  After RHI runs out of available transitions, it 

finishes the individual’s chromosome with the same algorithm that RRI uses. 
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Figure 2.1 – Pseudocode for Restricted Random Initialization. 
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Figure 2.2 – Pseudocode for Restricted Heuristic Initialization. 
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2.7 FITNESS FUNCTIONS 

 Fitness functions are arguably the most important part of a GA [Engelbrecht02].  The 

role of a fitness function is to indicate how good a candidate solution is at solving the problem.  

In order for a fitness function to be appropriate for the problem, it should consistently map better 

solutions to better fitness values.  If the fitness function does not accurately map an individual to 

an appropriate fitness, the GA may fail to converge altogether.  Therefore, careful selection of an 

appropriate fitness function is essential. 

Some projects that focus on GAs as an approach to the snake problem utilize the length 

of the longest snake as the sole element in calculating fitness.  Undoubtedly, the length of the 

longest snake is an important component in that it makes it easy to compare how good the 

candidate solutions are when they contain snakes of different lengths.  Several alternatives have 

been suggested to help distinguish between individuals with snakes of equal length.  One 

alternative is to take other snakes that may be present in the chromosome into account.  This 

approach was used in [Bitterman04].  Another alternative is to quantify the quality of the longest 

snake.  One way to do this is to judge how well the snake utilizes the space it occupies in the 

hypercube.  Whenever a vertex is added to a snake, most of the neighbors of that vertex become 

part of the snake’s skin and, therefore, cannot be used as part of the path later.  One 

measurement, referred to here as tightness, is the number of vertices that are left unoccupied by 

either the snake or the snake’s skin.  This measurement is used in both [Casella05] and 

[Tuohy07].  Another measurement, referred to here as skin density, looks at the vertices that are 

part of the snake’s skin and counts how many of their neighbors are part of the snake.  When a 

skin vertex neighbors more vertices on the path, it is said to be denser.  Skin density is used as a 
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component of work done in [Hardas05].  This thesis experiments with both tightness and skin 

density as components of the fitness function.   

Furthermore, some work has been done using the frequency with which transition classes 

are used in the chromosome.  The basic idea is to test whether the long snakes traverse some 

transition classes more than others.  If long snakes typically use transition classes with roughly 

the same frequencies, then the distribution of those frequencies can be used to select for genetic 

material with the right distribution.  Further discussion on the motivation and application of this 

hypothesis will be provided later. 

 

2.8 SELECTION 

The key mechanism of GAs is the iterative creation of new, and hopefully better, 

generations using the genetic material from the current generation.  Before the next generation 

can be created, parent individuals must be selected from the current population to be used in the 

reproduction process.  Parents are selected two at a time. They are used to create offspring for 

the next generation and then placed back into the population where they are eligible to be 

selected again.  This process repeats until the next generation is full, which is usually when it 

reaches the same size as the current generation.   

Selection operators are methods for determining which individuals from the current 

generation should be paired to produce offspring for the population of the next generation. This 

project compares random, rank-based, roulette wheel, and tournament selection operators.  

 Random selection picks two individuals from the population at random to use as parents 

for the next generation.  Because random selection does not take the fitness of the individuals 
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into account, it is unlikely to be a high achieving selection method.  Regardless, it serves as a 

good baseline from which to judge the performance of the other selection operators. 

In roulette wheel selection, the probability of selection is directly proportional to the 

fitness of an individual in relation to the other individuals in the population.  Once the fitness of 

each individual has been evaluated, the finesses are added together to get a total sum for the 

population. Selecting an individual entails randomly generating a number between 0 and the total 

fitness sum for the population.  The fitness values for each individual are subtracted from the 

randomly generated number until it falls below zero.  The individual that causes the value to fall 

below zero is selected as a parent.  Figure 2.3 shows the probability of being selected for each 

individual in a population of four.  Individual 3 dominates the graph because its fitness value is 

significantly greater than those of the other three. The result is that Individual 3 is much more 

likely to be selected as a parent than the other members of the population. 

 

 

Figure 2.3 – The probability that each of four individuals in a population will be selected to be a 

parent when using roulette wheel selection.  Individual 3 has a much higher probability of being 

selected because its fitness value is significantly greater than the fitness values of the other three 

individuals. 
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Individual 2 -
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2%
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Individual 4 -

Fitness: 22

16%

Probability of Selection - Roulette Wheel
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Rank-based selection assigns a probability of selection for an individual based on its 

ordinal position in the population once sorted according to fitness, where the individual with the 

lowest fitness is assigned a rank value of 1 and the individual with the highest fitness is assigned 

a rank value equal to the population size.  To select an individual, a goal value is generated 

between 0 and the sum of the values assigned to the population.  Next, the rank values of the 

individuals are subtracted from the goal value one at a time.  The individual that causes the goal 

value to fall below zero is selected as a parent.  Figure 2.4 shows the probability of selection for 

a four individual population.  Notice that Individual 3 has a much higher fitness value than the 

other three members of the population.  It is a property of rank based selection that individuals 

with fitness values that are significantly higher than the other members of the population do not 

necessarily dominate the reproduction process.   

 

 

Figure 2.4 – The probability that each of four individuals in a population will be selected as a 

parent when using rank-based selection. 
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In tournament selection, mates are selected based on highest fitness from a group of k 

individuals chosen at random from the population. The probability that any one individual will 

be selected to participate in reproduction is more difficult to calculate with tournament selection, 

but is a function of the population size, the value of k, and the fitness of the individual.   

 

2.9 REPRODUCTION 

Once two parents have been selected from the population, reproduction operators are 

used to produce offspring.  Reproduction operators, also referred to as crossover operators, are 

methods of taking individuals from the current generation, mixing their genetic information, and 

creating new individuals for the next generation.  Techniques for creating offspring using 

reproduction operators vary and some representations work better with certain types of 

reproduction.  This project works with single point, double point, triple point, and uniform 

crossovers.   

In single point crossover, a point is randomly selected between the start and the end of 

the individuals.  For a fixed length representation, only one point needs to be selected.  The 

operation creates two children.  The first child starts with the genetic material from the first 

parent, before the randomly selected point, and ends with the genetic material from the second 

parent, after the selected point.  In the second child, the front portion comes from the second 

parent and then end portion comes from the first parent.  Figure 2.5 shows an example of single 

point crossover.  Double and triple point crossovers operate on the same principle, but select two 

and three points, respectively.  Figure 2.6 and Figure 2.7 show examples of double and triple 

point crossover. 
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In uniform crossover, genetic material is swapped at a collection of points generated at 

random.  To select the points that will be swapped, a mask is created that is the same length as 

the parents.  A mask is an array used to hold the information about which bits will be swapped.  

The mask starts out as an array of zeros.  At each point in the array, the zero may be switched to 

a one based on some probability.  When crossover occurs, the positions in the mask that are 

marked with zeros pass straight through to the children, parent 1 to child 1 and parent 2 to child 

2, while the positions in the mask that are marked with ones are then swapped with the other 

child, parent 1 to child 2 and parent 2 to child 1.  Figure 2.8 shows an example of uniform 

crossover broken into two stages for clarity. 

 

 

Figure 2.5 – An example of single point crossover. 
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Figure 2.6 – An example of double point crossover. 

 

 

Figure 2.7 – An example of triple point crossover. 
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Figure 2.8 – An example of uniform crossover, it is shown here as a two step process. 

 

2.10 MUTATION 

After the children have been produced, they are subject to mutation.  Mutation operators 

work on a single individual and take place after reproduction has occurred.  With a probability 

that has been decided in advance, a mutation operator changes the chromosome of the child.  

These operators are a mechanism for introducing genetic diversity that may not be represented in 

the population.  The changes made to the chromosome may be beneficial or may be harmful to 

the individual’s fitness.  This project uses two different mutation schemes: random mutation and 

a snake specific mutation operator commonly referred to as Xor mutation. 

In random mutation, a gene in the individual is replaced with a different gene.  This is a 

low cost operation and is simple to implement.  In the case of the snake problem and a transition-

based representation, this means replacing one transition with another transition.  Figure 2.9 

shows an example of random mutation. 
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Figure 2.9 – An example of random mutation. 

 

Xor mutation takes advantage of the properties of the hypercube to introduce changes to 

the chromosome.  As the hypercube illustrates, there are two paths of length two between 

vertices of the hypercube with a Hamming distance of two.  Figure 2.10 shows these two paths 

between v0 and v3, one traveling through v1 and one traveling through v2.  Xor mutation 

replaces one of these two transition routes with the other.  The result is that two neighboring 

transitions in the individual have been transposed.  Figure 2.11 shows an example of Xor 

mutation.  Xor mutation gets its name from the fact that using the exclusive or operator (xor) on 

the vertices in one path will result in the replacement vertex for the other.  For example, the first 

path in Figure 2.10 is (v0, 1, 3).  Applying the xor operator, shown here as the symbol , yields  

00  01  11 = 10.  Therefore, the vertex that is needed to replace v1 and yield the alternate route 

is v2. 
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Figure 2.10 – The two potential paths from v0 to v3 of length 2.   

 

 

Figure 2.11 – An example of Xor mutation.  The end effect is that two consecutive transitions are 

transposed in the result. 
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2.11 ELITISM 

Elitism is used to ensure that the best individuals are always present to influence future 

generations.  Elitism is when a group of the best individuals from the current population is 

copied directly into the next generation, bypassing any reproduction or mutation operators.  In 

theory, the best individuals are composed of the best partial solutions.  Therefore, retaining the 

individuals with best fitness is more likely to result in better offspring.  The negative aspect of 

elitism is that it has the potential to drive populations toward local maxima over the course of 

several generations.  All GA experiments run for this thesis used elitism and copied the top ten 

individuals from the current generation to the next.  Since all of the experiments were run with a 

population size of 500 individuals, this translates to 2% of the population. 

 

2.12 CHALLENGES 

 GAs are a good alternative for problems that have search spaces that are too large for 

iterative analysis.  However, excessively large search spaces also hinder GA performance.  In the 

snake problem, one of the most difficult issues is the size of the search space.  

 Although http://www.ai.uga.edu/sib/records/index.php lists the longest known dimension 8 

snake as being 98 transitions long, this snake has not been published as of the writing of this 

thesis.  The longest published snake known in dimension 8 is 97 transitions long.  Mapping the 

transitions to vertices creates a sequence of 98 vertices.  In dimension 8 there are 256 vertices 

total.  Therefore, the number of vertex-based individuals of length 98 that can be expressed using 

256 vertices is: 

256
98

 ≈ 1.01 10
236
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By adding the constraint that each vertex can only be used once the total number of vertex-based 

individuals of length 98 that can be expressed using 256 vertices is: 

P(256,98) = 
256!

(256−98)!

 ≈4.62 10
226

 

For a transition-based representation, the number of length 97 individuals that can be represented 

is: 

8
97

 ≈ 3.97 10
87

 

While the use of a transition-based representation significantly reduces the number of individuals 

that can be represented, there are still an enormous number of candidate solutions in dimension 

8. 

 In addition to the size of the search space, there are many more short snakes than there 

are long snakes.  When using length as a fitness indicator, this poses a problem for the GA 

because it will encounter many different individuals with equal lengths.  If length is used as the 

sole indicator of fitness, these individuals will be indistinguishable.  The result is that all the 

individuals are viewed equally and the search is more random.  In order to provide a more guided 

search, distinctions need to be made between the relative fitness values of individuals of equal 

length. 

 This thesis looks to address both of these challenges.  A variety of techniques are 

explored for reducing the overall representation space for the problem.  Furthermore, fitness 

functions are analyzed in great detail to evaluate which indicators work the best for describing 

the fitness of an individual, and testing methods of supplementing length as the sole indicator.  

  

 

  



38 

 

 

 

CHAPTER 3 

ADDRESSING THE SIZE OF THE SEARCH SPACE 

 

3.1 BACKGROUND 

 The search space for dimension 8 is restrictively large for conventional search 

techniques, but excessively large search spaces also hinder GA performance.  One contributing 

factor to the size of the search space is the fact that each transition sequence is a generalization of 

2
d
 vertex sequences in a d-dimensional hypercube, each having the same sequence of transitions 

but starting at a different vertex.  For this reason and because they only represent valid 

transitions, transition sequence representations have a smaller representation space than vertex-

based representations. 

  Despite these advantages, there is still a great deal of redundancy in a transition-based 

representation.  In order to discuss how these redundancies might be addressed, the concept of 

transition reassignment needs to be introduced.  Transition reassignment is when all of the 

transitions from one transition class are swapped with the transitions of another transition class.  

Figure 3.1 shows an example of transition reassignment.  The figure also shows a transition map 

which indicates which transition classes changed and to what new value. 

 When two individuals can be made to have the same transition sequence by performing 

one or more transition reassignments for the whole chromosome, they are said to be in the same 

equivalence class.  Because the transition reassignments were applied uniformly across the 

individual in Figure 3.1, these are two instances of the same equivalence class.  When two 



39 

 

transition sequences from the same equivalence class are mapped to the hypercube, the vertices 

at any two positions will have the same Hamming distance for the two vertex sequences.  In 

effect, the transitions will have the same shape or a reflection of the same shape.  Figure 3.4 

shows this in context and can be compared to the snakes in Figure 1.7 and Figure 1.8. 

 

 

Figure 3.1 – An example of transition reassignment.  t1 is being reassigned to t4 and vice versa.   

 

Furthermore, when the transitions are introduced for the first time in sequential numeric 

order, from left to right, the individual is said to be canonical.  Figure 3.2 shows a dimension 3 

equivalence class and how each member of the equivalence class maps to its canonical 

equivalent.  Figure 3.3 shows three individuals from different equivalence classes.  Figure 3.4 

shows two snakes from the same equivalence class as represented in the hypercube.   

 Equivalence classes are important because if two individuals are in the same equivalence 

class, they will both have the same number of snakes with the same lengths and in the same 

positions in the chromosome.  In addition, performing transition reassignment on a snake will 

always result in a snake in the same equivalence class, as long as the transition reassignment is 

performed in a uniform manner across the whole snake.  Because snakes in the same equivalence 

class can be generated from one another, there is no need to search for all snakes in the 

equivalence class.  Having one is as good as having all of them.  Therefore, a good approach to 
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dealing with the size of the search space is to limit the representation to only express one snake 

from each equivalence class. 

 

 

Figure 3.2 – An equivalence class with six individuals in dimension 3.  Each of the six 

individuals is shown with the transition mapping necessary for transition reassignment to the 

canonical form in the center. 

 

 

Figure 3.3 – Each of these three individuals is in a different equivalence class.  All are shown in 

canonical form.  In Individual 1, the transition pattern is ABCA, which differs from the patterns 

for Individual 2, ABCB, and Individual 3, ABCC.   
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Figure 3.4 – A comparison of two snakes from the same equivalence class in the hypercube.  

Both snakes start at v0.  The first snake is (t1, 0, 2, 1) and the second is (t0, 1, 2, 0).  
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3.2 CANONICAL REPRESENTATION 

 For each snake using d transition classes, d! snakes exist in the same equivalence class in 

dimension d [Kochut96].  Therefore, even with the utilization of a transition-based 

representation, there exist d! equivalent individuals for each individual being analyzed, making it 

easy to waste time analyzing many equivalent versions of the same individual without making 

definitive progress. 

In [Kochut96], the process of exhaustively searching for dimension 7 is described.  The 

work took over a month and was carried out on five SUN Microsystems SparcCenter 1000’s, 

each having two processors.  Only canonical solutions were considered.  The paper defines a 

canonical solution as starting at the v0 with an initial transition of t0, with each subsequent 

transition class not yet represented in the chromosome being assigned to the next unused 

transition of least significance.  In other words, each solution introduced the transitions in 

consecutive order: t0, t1, t2, t3, t4, t5, and, finally, t6 [Kochut96].   

Searching only canonical solutions allowed the search space to be pruned significantly 

because it provided a meaningful baseline, in which transition classes were interpreted uniformly 

across all individuals.  Therefore, it was only necessary to visit one individual from each 

equivalence class.   

 While this approach was appropriate for an exhaustive search of dimension 7, it is 

unclear whether it will perform as well in a GA.  The individuals are reassigned to their 

canonical equivalent based on the chromosome as a whole, i.e. starting from the first transition in 

the individual.  Therefore, the chromosome is canonical, but if the head of the longest snake is 

not also the first transition in the chromosome, then the snake may not be represented 

canonically. 
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3.3 FREQUENCY-BASED TRANSITION REASSIGNMENT 

 As an alternative to using the canonical representation presented in [Kochut96], this 

thesis offers Frequency-Based Transition Reassignment (FBTR).  As the name implies, FBTR 

performs transition reassignment on individuals based on the frequency with which the transition 

classes appear in the chromosome.  In other words, the most frequently occurring transition class 

is mapped to t0, the second most frequently to t1, and so on until t7 for dimension 8.  When 

conflicts are encountered, they are resolved by assigning the next available transition as the 

replacement for the transition class occurring in the leftmost position on the chromosome. 

 To help understand why this might be a justifiable approach, consider the two individuals 

in Figure 3.5.  When comparing these two individuals, one is faced with the non-trivial question: 

How similar are these individuals?  From the figure it is easy to see that they differ by only a 

single transition.  It is tempting to conclude that they are very similar, but the problem of 

quantifying that similarity is difficult.  If the transitions were to be compared one at a time, the 

two individuals have more transitions in common than not.  But now, consider Figure 3.6 in 

which the two individuals have been reassigned to their canonical representations.  Now, seven 

of the fourteen transitions in the individuals are different.  Are the individuals now more 

different than they were before the transition reassignment? 

 

 

Figure 3.5 – Two 5-dimensional individuals. 
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Figure 3.6 – The two dimension 5 individuals from Figure 3.5 in canonical representation. 

 

 Unfortunately, there are no easy answers to these questions.  However, the questions are 

important to ask because the purpose of using a canonical representation is to reduce the search 

space.  In this particular situation, using canonical representation hinders our ability to notice that 

these individuals are similar.  While the chromosome as a whole is being interpreted in a uniform 

manner, the snakes within the chromosome are not necessarily canonical. 

Figure 3.7 shows the result of applying FBTR to the snakes from Figure 3.5.  While the 

results are an improvement, these examples are not necessarily indicative that FBTR will 

perform better more often than a canonical representation.  The primary mechanism for 

minimizing the effects of equivalence classes that canonical representation utilizes is to 

standardize the interpretation of the transition classes at the beginning of the chromosome.  In 

contrast, FBTR seeks to standardize the interpretations of the most frequently occurring 

transition classes.  So, in the canonical representation, t0 always means the transition found at the 

beginning of the chromosome, and in FBTR, t0 always means the most frequently occurring 

transition class.  By shifting to a standardized interpretation that is not focused on a particular 

position in the chromosome, the interpretation is more meaningful at more positions in general. 

 

 

Figure 3.7 – The two dimension 5 individuals from Figure 3.5 after applying FBTR. 
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3.4 SNAKE BLOCKERS 

 Snake blockers are transition patterns that act as barriers to block snakes.  There are two 

types of snake blocker.  The first is when a transition occurs twice in a row.  The result of 

following the same transition twice is that the path doubles back on itself, which violates the 

rules for a snake.  Figure 3.8 shows how this looks in the hypercube.  The second type of snake 

blocker is when the same transition occurs twice with only a single transition in between.  This 

results in the path visiting a skin vertex, which also violates the rules for a snake.  Figure 3.9 

shows this type of snake blocker in the hypercube.  

 Snake blockers can be introduced through the operators of the GA.  Both reproduction 

operators and mutation operators are capable of producing snake blockers.  Figures 3.10 and 3.11 

show the introduction of snake blockers using single point crossover and uniform crossover, 

respectively.  Figures 3.12 and 3.13 show the introduction of snake blockers using random 

mutation and Xor mutation, respectively.   
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Figure 3.8 – The result of following the same transition twice.  Starting from v0 following t0 

twice results in going back to v0. 

 

 

Figure 3.9 – The result of following the same transition twice with only one intermediate 

transition.  Starting from v0 and following t0 then t1 and then t0 again results in the path 

transitioning to a skin vertex. 
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Figure 3.10 – An example of a snake blocker being introduced by single point crossover. 

 

 

Figure 3.11 – An example of a snake blocker being introduced by uniform crossover. 

 



48 

 

 

Figure 3.12 – An example of a snake blocker being introduced by random mutation. 

 

 

Figure 3.13 – An example of a snake blocker being introduced by Xor mutation. 

 

 There are two primary reasons why snake blockers should be addressed.  The first one is 

that they adversely affect the performance of the GA.  An argument could be made that snake 



49 

 

blockers are simply a byproduct of the mechanisms of the GA and that the mechanisms should 

be left alone to sort the problem out.  The reasoning being that, by allowing the snake blockers to 

remain, the fitness of the individual will suffer and the snake blockers will eventually be 

removed from the gene pool.  Unfortunately, the introduction of snake blockers is likely to be far 

too prevalent.   

To illustrate, given two sequential transitions, ti and ti+1, which are the transitions 

immediately preceding the point of crossover after which two new transitions will be added, ti+2 

and ti+3, the probability that ti+2 or ti+3 will create a snake blocker is 
2d+(d−2)

d
2  for dimension d.  In 

dimension 8, crossover performed at a given point is likely to result in a snake blocker 

2 8 +(8−2)

82 =
22

64
=34.375% of the time.  With snake blockers being introduced over one third of the 

time a crossover operation is performed, it is unlikely that the GA will be able to sufficiently 

filter affected individuals.   

The second reason to remove snake blockers is that it greatly reduces the search space.  

The number of transitions that would not generate a snake blocker at any given point in the path 

past the first two transitions is d−2, where d is the current dimension.  At the first position, t1, 

there are d potentially valid transitions.  At the second position, t2, there are d−1 valid transitions 

left to prevent two identical transitions in succession, t1=t2.  From the third position on, the 

previous two positions, t1 and t2, are occupied by transitions that must be avoided in the current 

position, leaving d−2 options, tk ≠ tk−1 and tk ≠ tk−2.  Allowing snake blockers increases this back 

to d for every position because the preceding two positions are not taken into account, which 

changes the effective search space from d(d−1)(d−2)
(m−2)

 to d
m

, where m is the length of the 

individual.  The effect on the representation space is significant:  

8×7×6
95

 ≈ 4.7×10
75
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Rather than leave the GA to handle the snake blockers, a second option is to replace the 

problematic transition with a valid one.  This could be accomplished by randomly selecting a 

replacement transition and swapping out the transgressor with the replacement.  While this 

would be a relatively quick method of resolving the problem, it has the potential to affect the 

individual’s fitness in a negative way.  When moving across the chromosome from left to right, 

the first transition, ti, where ti=ti−1 or ti=ti−2, has the potential to be the head or the tail of the 

longest snake in the chromosome.  If this is the case, replacing the transition with a different 

transition could result in the reduction of the size of the snake.  The result of this could be 

devastating to the individual’s fitness and prevent it from participating in the creation of the next 

generation.  In effect, this may be no better than leaving the snake blocker where it is. 

 Instead, experiments done for this thesis use a novel algorithm called Snake Blocker 

Removal Algorithm (SBRA).  The SBRA is designed to have no impact on the snakes in the 

chromosome.  SBRA moves across the snake from left to right searching for snake blockers.  

When a snake blocker is located, it performs transition reassignment from the location of the 

snake blocker to the end of the chromosome.  The result is that the portion of the snake before 

the snake blocker remains unchanged while the portion after the snake blocker is replaced with a 

sequence of transitions from the same equivalence class.  The pseudocode for this algorithm is 

shown in Figure 3.14. Note that a snake blocker is more than one transition, but the location of 

the snake blocker is understood to mean the last transition in the snake blocker sequence.  In 

other words, whether the sequence is (… t1, t3, t1 …) or (… t1, t1 …), the second t1 is 

considered to be the location of the snake blocker. 

 In the case of the first type of snake blocker, having the same two transitions twice in a 

row, it is relatively easy to see how this would work because there is no potential for interaction 
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between the transitions to the left of the snake blocker with the transitions to the right of the 

snake blocker.  An example of this type is shown in Figure 3.15.   
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Figure 3.14 – Pseudocode for the Snake Blocker Removal Algorithm. 
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Figure 3.15 – A snake blocker of the first type.  The snake blocker prevents interaction between 

the sequence of transitions to its left with the sequence of transitions to its right. 

 

To remove the snake blocker in Figure 3.15 a replacement transition must be generated.  

The replacement may be any transition but the ones in the two positions before the second t2, t2, 

or the transition immediately following t2.  For this example, t0 and t2 are excluded, leaving t1, 

t3, and t4 as valid selections for a replacement.  To be thorough, Figure 3.16 shows the results of 

picking each of the three valid options.  Because the second half of the individual was replaced 

with a different sequence of transitions from the same equivalence class, the snakes present there 

have not be disturbed.  Figure 3.17 shows that they are all equivalent by mapping each to its 

canonical representation. 

The other case that needs to be handled is a snake blocker of the second type, in which 

there are two transitions from the same transition class separated by only a single other 

transition.  In this case, the transition in the center of the snake blocker is available for use by 

both the transitions before the snake blocker and the transitions after the snake blocker.  In other 

words, they have a single transition that they may share.  Figure 3.18 shows an example of this 

type of snake blocker.   
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Figure 3.16 – All the possible resolution states for removing the snake blocker in Figure 3.15. 
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Figure 3.17 – Each of the sections after the transition blocker are compared to prove that they are 

members of the same equivalence class. 
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Figure 3.18 – An example of a snake blocker of the second type.  The snakes overlap by one 

vertex. 

 

To remove the snake blocker in Figure 3.18 a replacement transition must be generated.  

The replacement may be any transition but the ones in the two positions before the second t0, t0, 

or the transition immediately following t0.  For this example, that excludes t0, t2, and t4, leaving 

t1 and t3 as valid selections for a replacement.  To be thorough, Figure 3.19 shows the results of 

picking each of the two valid options.  Since the transition at the end of the first snake was not 

changed, the snake before the snake blocker has remained intact.  The second snake is also intact 

because it has been replaced by a different transition sequence from the same equivalence class.  

Verifying this by mapping it to its canonical representation is left as an exercise for the reader. 

 This process is applied repeatedly along the length of the chromosome whenever a snake 

blocker is encountered.  As shown, it does not affect existing snakes in the chromosome, but by 

removing the snake blockers, the total representation space is decreased significantly and there is 

a chance that the individual will now contain a snake that is longer than it had originally 

contained. 
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Figure 3.19 – All the possible resolution states for removing the snake blocker in Figure 3.18. 
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CHAPTER 4 

ADDRESSING FITNESS EVALUATION 

 

4.1 COMPACTNESS MEASUREMENTS 

A survey of the relevant literature reveals that fitness functions have little variation in the 

snake problem domain.  Seemingly, the most common fitness function is a mapping from the 

length of the maximum snake present in an individual’s chromosome [Potter94, Bitterman04].  

The initial inclination is to accept this as an acceptable fitness function; after all, the ultimate 

goal is to find the longest snake possible.  Unfortunately, such a coarsely grained fitness function 

does not necessarily lend itself well to the evolutionary process as a whole.  Fitness based solely 

on length assigns equal quality to every individual with the same length, even though the genetic 

material of those individuals may not be equally likely to result in competitive offspring.   

Another alternative is to include the concept of tightness.  Tightness measures how many 

vertices in the hypercube are not on the path or part of the snake’s skin.  If two individuals are of 

equal length yet one leaves more vertices available, then that individual is said to be tighter.  

Fitness functions incorporating tightness have an advantage over those utilizing length alone due 

to an increased level of discrimination of individuals with equal length.  That is not to say that 

fitness functions that use tightness will outperform those using only length, but that adding 

tightness as a supplemental component may help differentiate between snakes of equal length, 

which may lead to better results.  Furthermore, tightness measures an attribute of the individuals 

that seems likely to result in better offspring.  Tighter individuals occupy less of the hypercube, 



59 

 

leaving more vertices which could be occupied after a GA operation.  Unfortunately, tightness is 

also a measurement that decreases as the size of the snake increases.  This property means that 

tightness must be used as a secondary component to length in the fitness function. 

Alternatively, the skin density of the snake could be measured.  Skin density is a tally of 

how many neighbors of the skin vertices are on the path.  For each vertex in the snake’s skin, the 

skin density score gets a point for each neighbor that is on the path.  For example, if a dimension 

3 snake is comprised of two vertices, v0 and v1, as in Figure 1.9, then the snake’s skin would be 

comprised of v2, v3, v4, and v5.  Each of the four skin vertices has a single neighbor on the path.  

Both v2 and v4 neighbor v0, and both v3 and v5 neighbor v1.  Therefore, the skin density for this 

snake would be 4.  Skin density has the property of increasing as the length of the snake 

increases.  Therefore, skin density stands a chance of working as a stand-alone fitness 

measurement. 

Skin density is an attractive measurement to include in a fitness function because it 

provides information about how tightly packed a snake is independent of the snake’s length.  

This is not to say that longer snakes are unlikely to have higher skin density scores, only that 

there is information contained in the density of the skin vertices that might otherwise be omitted 

using length alone or tightness, when the tightness scores of two individuals are identical.   

Unfortunately, skin density scores are not always more discerning than tightness, which 

is why experiments conducted for this thesis also use a measurement called Selective Skin 

Density (SSD) as a supplement to length for evaluation of individual fitness.  Using SSD, only 

skin vertices with more than two neighbors on the path are tallied when calculating the skin 

density.  What makes this measurement more discriminating than the basic skin density 
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calculation, is that it is capable of giving a finer level of differentiation when comparing 

individuals. 

To illustrate the differences between using tightness, skin density, and selective skin 

density, the examples in Figure 4.1 will be considered.  If tightness were used to compare the 

three individuals displayed above, S4
1
 and S4

3
 would get scores of 0 because neither leaves any 

vertices in dimension 4 that are not either on the path or part of the snake’s skin.  S4
2
 would get a 

score of 1 because it leaves one vertex, v13, unoccupied by either the snake or the snake’s skin.   

In contrast, when taking the skin vertices into account as listed in Figure 4.2, skin density 

would score all three individuals equally with scores of 16.  Using SSD, in which only skin 

vertices with at least three neighbors on the path are included, S4
1
 gets a score of 0, S4

2
 gets a score 

of 3, and S4
3
 gets a score of 6.  Interestingly, S4

3
 is the only snake that is not a maximal snake in 

dimension 4, meaning that it is the only snake capable of being extended at one of its ends by 

another vertex.  While this may be coincidental in this example, it serves to illustrate the broader 

concept that each of these measurements is different.  Table 4.1 shows the differences in the 

rankings assigned to the three individuals based on the measurement used. 

 

Individual 1 - S4
1 (v7, 3, 1, 0, 8, 12, 14) (t2, 1, 0, 3, 2, 1)

Individual 2 - S4
2 (v7, 3, 1, 0, 8, 10, 14) (t2, 1, 0, 3, 1, 2)

Individual 3 - S4
3 (v15, 7, 3, 1, 0, 8, 10) (t3, 2, 1, 0, 3, 1)

 

Individual 1 Skin Vertices {v2, 4, 5, 6, 9, 10, 11, 13, 15}

Individual 1 Free Vertices
 

Individual 2 Skin Vertices {v2, 4, 5, 6, 9, 11, 12, 15}

Individual 2 Free Vertices {v13}
 

Individual 3 Skin Vertices {v2, 4, 5, 6, 9, 11, 12, 13, 14}

Individual 3 Free Vertices
 

Figure 4.1 – Three examples of dimension 4 individuals. 
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v2 ↔{v0, 3} v6 ↔{v7, 14} v11 ↔{v3}

v4 ↔{v0, 12} v9 ↔{v1, 8} v13 ↔{v12}

v5 ↔{v1, 7} v10 ↔{v8, 14} v15 ↔{v7, 14}

Individual 1

 

v2 ↔{v0, 3, 10} v6 ↔{v7, 14} v12 ↔{v8, 14}

v4 ↔{v0} v9 ↔{v1, 8} v15 ↔{v7, 14}

v5 ↔{v1, 7} v11 ↔{v3, 10}

Individual 2

 

v2 ↔{v0, 3, 10} v6 ↔{v7} v12 ↔{v8}

v4 ↔{v0} v9 ↔{v1, 8} v13 ↔{v15}

v5 ↔{v1, 7} v11 ↔{v3, 10, 15} v14 ↔{v10, 15}

Individual 3

 

Figure 4.2 – The skin vertices from each of the individuals from Figure 4.1.  The vertices in 

curly braces are the snake vertices that neighbor each skin vertex. 
 

Table 4.1 – The ranking of each individual according to the fitness measurement used. 

Rank Tightness Skin Density SSD 

1 S4
2 S4

1, S4
2, S4

3 S4
3 

2 S4
1, S4

3  S4
2 

3 
  S4

1 

 

4.2 TARGET FREQUENCY DISTRIBUTION 

 One of the components analyzed for performance as a fitness measurement was the 

frequency with which transition classes where present in the chromosome.  The motivation for 

this approach comes from the observation that the best known dimension 8 individual, as shown 

in [Rajan99], that has already been found, contains a length 50 snake from dimension 7 as a 

subsequence.   Because this length 97 snake starts with a dimension 7 snake, the first 50 

transitions do not use transition 7.  In fact, of the 97 transitions, only one is t7.  When the 
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transition classes are broken down by frequency of occurrence, there is a strong preference for 

traversing transition 3.   

 To test if the frequency distribution of an individual is similar to that of the target 

distribution, the individual is converted into its FBTR representation.  This means that the 

frequency with which transition 0 occurs is greater than or equal to that of transition 1 and so on.  

The frequencies are then summed together for each transition class to get a total distribution.  

The distribution for the individual is then scaled and compared to the target distribution.  In the 

example shown in Figure 4.3, the individual has 27 transitions, whereas the target distribution is 

only 13 transitions.  To compare these, the distribution values for the individual are scaled.  To 

get the distribution value for the fitness function, the absolute differences in the transition 

frequencies are summed.  Figure 4.4 shows these calculations. 

 

 

Figure 4.3 – An example of a dimension 5 individual along with its transition frequency 

distribution.  The target distribution for dimension 5 is also shown. 

  

Target Distribution Factor=
7×13

27
−4 +

6×13

27
−3  

+
5×13

27
−3 +

5×13

27
−2 +

4×13

27
−1 ≈ 2.67 

Figure 4.4 – The calculation of the target distribution factor for the individual shown in Figure 

4.3. 
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 The idea for using the frequency distribution as a target of the fitness function is designed 

to test whether the frequency with which transition classes are traversed is an indicator of how 

long the snakes in those individuals may be.  If this does serve as a good indicator in the fitness 

function, then the only remaining obstacle would be determining what distribution to target.   

 For the testing done in this project, the distribution from the length 97 individual listed 

above was used.  However, it cannot be assumed that there will be good individuals to serve as 

examples in the dimension that is being searched.  In those situations, it may be possible to 

extrapolate from lower dimensions.  The results of a comparison between the target distributions 

in dimensions 3 through 8, after being normalized, are shown in Figure 4.5.  The overall trend 

indicates that the best individuals in dimensions 3 through 7, and the best known individual in 

dimension 8, have a tendency to use some transition classes more than others.  Figure 4.6 shows 

only dimensions 5 through 8 to reduce some of the noise present in Figure 4.5 and Figure 4.7 

shows dimensions 7 and 8 for a one-on-one comparison. 

 

 

Figure 4.5 – The target distributions for dimensions 3 through 8. 
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Figure 4.6 – The target distributions for dimensions 5 through 8. 

 

 

Figure 4.7 – The target distributions for dimensions 7 and 8. 

 

 

  

F
re

q
u

en
cy

 o
f 

O
cc

u
rr

en
ce

 

(a
ft

er
 s

ca
li

n
g

)

Transitions (sorted from most used to least used)

Dimension 5

Dimension 6

Dimension 7

Dimension 8

F
re

q
u

en
cy

 o
f 

O
cc

u
rr

e
n

ce
 

(a
ft

er
 s

ca
li

n
g

)

Transitions (sorted from most used to least used)

Dimension 7

Dimension 8



65 

 

 

 

CHAPTER 5 

TESTING AND RESULTS 

 

5.1 SETUP 

To test the relative merits of the different representations and the parameters that were 

being used in the GA, experimentation was performed by running a series of head-to-head 

competitions.  The GA was designed to allow multiple, mutually exclusive populations to exist.  

Each population shared the same crossover, mutation, and selection settings for each run.  The 

GA was set to run until every population stopped making forward progress, measured in terms of 

maximum or average individual fitness, for ten consecutive generations.   

When the GA halted, the results indicated which populations outperformed the others.  

Those individual configurations that consistently outperformed the others were taken to be 

superior.  Additionally, this scheme ensured that each population was run for an equal number of 

generations, for a given set of parameters, thereby preventing bias against any population that 

had a slower convergence rate.  Each population was given an equal chance to discover the 

longest snake for a run.   

All populations were of size 500 and all used elitism, moving the top 10 individuals from 

each generation directly into the next generation.  Table 5.1 shows all the available parameters 

that were tested.  Table 5.2 shows all of the fitness functions that were available for 

experimentation.   
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Table 5.1 – All of the components and parameters that were available for testing in this thesis.  

Component Options 

Representations Transition-based, Canonical, FBTR 

Initialization RRI, RHI 

Snake blockers Allowed, Removed (SBRA) 

Fitness Functions Length, Tightness, Skin Density, SSD, Target Distribution 

Crossover Single Point, Double Point, Triple Point, Uniform (5%, 10%, 30%) 

Mutation Random, Xor 

Mutation Frequency 0.5%, 1%, 5% 

Selection Random, Rank-Based, Roulette Wheel, Tournament 

 

5.2 METRICS  

 Several key indicators were used to compare the results after running competitions.  The 

three that were chosen as primary indicators are average maximum length, average generations 

to converge, and average best individual length increase. Average maximum length is the 

average length of the longest snake found across all runs.  This measurement indicates, on 

average, how long the snakes were that were found with a given technique.  Average 

generations to converge is the average number of generations the population took to reach the 

maximum length snake that was found.  Average best individual length increase is the average 

number of transitions difference there were between the longest snake in the first generation and 

the longest snake in the last generation.   
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Table 5.2 – All of the fitness functions that were used in experimentation.  In general, when two 

components were used, they were given roughly half the total weight of the calculation.  When 

three were used, they were either weighted equally or one of the components was given half the 

total weight.  The fitness codes are designed to indicate which of the three components was 

weighted more than the other two by placing it first. 

Fitness Code Definition 

FL Length Only 

FT Tightness Only 

FSD Skin Density Only 

FSSD Selective Skin Density Only 

FD Target Distribution Only 

FL_D ½ Length, ½ Target Distribution 

FL_SSD_D_Equal ⅓ Length, ⅓ Selective Skin Density, ⅓ Target Distribution 

FL_SSD_D ½ Length, ¼ Selective Skin Density, ¼ Target Distribution 

FSSD_L_D ¼ Length, ½ Selective Skin Density, ¼ Target Distribution 

FD_SSD_L ¼ Length, ¼ Selective Skin Density, ½ Target Distribution 

FL_SSD ½ Length, ½ Selective Skin Density 

FSSD_D ½ Selective Skin Density, ½ Target Distribution 

FL_SD_D_Equal ⅓ Length, ⅓ Skin Density, ⅓ Target Distribution 

FL_SD_D ½ Length, ¼ Skin Density, ¼ Target Distribution 

FSD_L_D ¼ Length, ½ Skin Density, ¼ Target Distribution 

FD_SD_L ¼ Length, ¼ Skin Density, ½ Target Distribution 

FL_SD ½ Length, ½ Skin Density 

FSD_D ½ Skin Density, ½ Target Distribution 

FL_T_D_Equal ⅓ Length, ⅓ Tightness, ⅓ Target Distribution 

FL_T_D ½ Length, ¼ Tightness, ¼ Target Distribution 

FT_L_D ¼ Length, ½ Tightness, ¼ Target Distribution 

FD_T_L ¼ Length, ¼ Tightness, ½ Target Distribution 

FL_T ½ Length, ½ Tightness 

FT_D ½ Tightness, ½ Target Distribution 
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5.3 SNAKE BLOCKERS 

 In order to observe the effects of removing snake blockers, tests were run comparing 

populations in which snake blockers were allowed against populations where snake blockers 

were being removed using SBRA. Twelve populations were used; half allowed snake blockers 

and half removed them.  After 54 competitions, all six of the populations using SBRA occupied 

the top six rankings.  The maximum length snake found during this experiment was 73. 

 

Table 5.3 – The parameters used to test SBRA. 

 

Experiment Parameters 

Component Options 

Representations FBTR 

Initialization RRI 

Snake blockers Allowed, Removed (SBRA) 

Fitness Functions FL_SSD_D_Equal, FL_SSD_D, FL, FL_SSD, FSSD

Crossover Single Point 

Mutation Random, Xor 

Mutation Frequency 0.5%, 1%, 5% 

Selection Tournament 

 

 

Figure 5.1 – The percentage of competitions won by populations using SBRA versus those 

populations allowing snake blockers. 
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Figure 5.2 – The average maximum length snake found in competitions between populations 

using SBRA versus those populations allowing snake blockers. 

 

 

Figure 5.3 – The average generations to converge for populations using SBRA versus those 

populations allowing snake blockers. 
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Figure 5.4 – The average increase of the maximum length snake from the first generation until 

the last in populations using SBRA versus those populations allowing snake blockers. 

 

5.4 REPRESENTATION  

 Initial testing was done to compare FBTR to a standard transition-based representation.  

Ten populations were set up to use a transition-based representation and ten populations were set 

up to use FBTR.  After 600 competitions, FBTR won 61.16% of the encounters.  Furthermore, 

on average, FBTR found significantly longer snakes.  The maximum length snake found by 

FBTR for these runs was 74 and the maximum length snake found by the populations using a 

transition-based representation was 76. 
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Table 5.4 – The parameters used to compare a transition-based representation to FBTR. 

 

Experiment Parameters 

Component Options 

Representations Transition-based, FBTR 

Initialization RRI 

Snake blockers Removed (SBRA) 

Fitness 

Functions 
FL_SSD_D_Equal, FL_SSD_D, FL, FL_SSD, FSSD, FSSD_D, FD_SSD_L, FL_D, 

FSSD_L_D, FD

Crossover Single Point 

Mutation Random, Xor 

Mutation 

Frequency 

0.5%, 1%, 5% 

Selection Tournament 

 

 

Figure 5.5 – The percentage of competitions won by populations using FBTR versus those 

populations using a transition-based representation. 
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Figure 5.6 – The average maximum length snake found in competitions between populations 

using FBTR versus those populations using a transition-based representation. 

 

 

Figure 5.7 – The average generations to converge for populations using FBTR versus those 

populations using a transition-based representation. 
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Figure 5.8 – The average increase of the maximum length snake from the first generation until 

the last in populations using FBTR versus those populations using a transition-based 

representation. 

 

 Subsequently, testing concentrated on comparing FBTR to canonical representation.  Ten 

populations were set up to use a canonical representation and ten populations were set up to use 

FBTR.  After 1800 competitions, FBTR won 890 of the encounters and canonical representation 

won 910.  The average performance of both representations was relatively comparable.  FBTR 

generated slightly longer snakes on average and had a slightly larger total increase in the 

maximum snake length than canonical representation.  The maximum length snake found by 

FBTR for these runs was 78 and the maximum length snake found by the populations using a 

canonical representation was 74. 
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Table 5.5 – The parameters used to compare a canonical representation to FBTR. 

 

Experiment Parameters 

Component Options 

Representations Canonical, FBTR 

Initialization RRI 

Snake blockers Removed (SBRA) 

Fitness 

Functions 
FL_SSD_D_Equal, FL_SSD_D, FL, FL_SSD, FSSD, FSSD_D, FD_SSD_L, FL_D, 

FSSD_L_D, FD

Crossover Single Point 

Mutation Random, Xor 

Mutation 

Frequency 

0.5%, 1%, 5% 

Selection Tournament 

 

 

Figure 5.9 – The percentage of competitions won by populations using FBTR versus those 

populations using a canonical representation. 
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Figure 5.10 – The average maximum length snake found in competitions between populations 

using FBTR versus those populations using a canonical representation. 

 

 

Figure 5.11 – The average generations to converge for populations using FBTR versus those 

populations using a canonical representation. 
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Figure 5.12 – The average increase of the maximum length snake from the first generation until 

the last in populations using FBTR versus those populations using a canonical representation. 
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Table 5.6 – The parameters used to test RHI as an initialization technique. 

 

Experiment Parameters 

Component Options 

Representations FBTR 

Initialization RHI 

Snake blockers Removed (SBRA) 

Fitness Functions FL_SSD_D_Equal, FL_SSD_D, FL, FL_SSD, FSSD, FSSD_D, FD_SSD_L, FL_D, 

FSSD_L_D, FD

Crossover Single Point, Double Point, Triple Point, Uniform 

Mutation Xor 

Mutation 

Frequency 

0.5%, 1%, 5% 

Selection Rank-Based, Roulette Wheel, Tournament 

 

5.6 FITNESS  

Because fitness functions have so much impact on the performance of the GA, particular 

effort was devoted toward exploring fitness functions.  Five components to the fitness function 

were used: the length of the longest snake in an individual, tightness, skin density, selective skin 

density, and how closely the individual matches a target distribution.  In order to get an accurate 

representation of how the selected components of the fitness function impacted the performance 

of the GA as a whole, all of the fitness functions listed in Table 5.2 were used, each placing 

different emphasis on the components.   

To evaluate these fitness functions, each was run head-to-head against the others in 144 

competitions.  The top three were FSSD, FL_SSD_D_Equal, and then FL_T_D.  In general, length and 

selective skin density were the best indicators of individual fitness.  Skin density and tightness 

were not effective as independent measurements.  The maximum length snake found by this 

round of experimentation was 76 and belonged to a population using FSSD_D. 
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Table 5.7 – The parameters used to compare a transition-based representation to FBTR. 

 

Experiment Parameters 

Component Options 

Representations Transition-based, FBTR 

Initialization RRI 

Snake blockers Removed (SBRA) 

Fitness Functions All fitness functions listed in Table 5.2.

Crossover Single Point 

Mutation Random, Xor 

Mutation Frequency 0.5%, 1%, 5% 

Selection Tournament 

 

 

 

Figure 5.13 – The percentage of competitions won by populations using each fitness function 

available. 
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Figure 5.14 – The average maximum length snake found in competitions between populations 

using each fitness function available. 

 

 

Figure 5.15 – The average generations to converge for populations using each fitness function 

available. 
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Figure 5.16 – The average increase of the maximum length snake from the first generation until 

the last in populations using each fitness function available. 

 

5.7 SELECTION OPERATORS   

 Experiments for this thesis used four selection operators:  random selection, rank-based 

selection, roulette wheel selection, and tournament selection.  The performance of the selection 

operators was tested in 540 head-to-head competitions for each operator.  Tournament selection 

had the best performance.  Roulette wheel selection led rank-based selection, but both had 

mediocre performance overall.  Random selection performed rather poorly.  The best snake 

found in this experiment was a length 70 snake, which was found using tournament selection. 
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Table 5.8 – The parameters used to compare the selection operators. 

 

Experiment Parameters 

Component Options 

Representations FBTR 

Initialization RRI 

Snake blockers Removed (SBRA) 

Fitness Functions FL_SSD_D_Equal, FL_SSD_D, FL, FL_SSD, FSSD, FSSD_D, FD_SSD_L, FL_D, 

FSSD_L_D, FD

Crossover Single Point, Double Point, Triple Point 

Mutation Random, Xor 

Mutation 

Frequency 

0.5%, 1%, 5% 

Selection Random, Rank-Based, Roulette Wheel, Tournament 

 

 

Figure 5.17 – The average maximum length snake found in competitions between the four 

selection operators. 
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Figure 5.18 – The average generations to converge for populations using the four selection 

operators. 

 

 

Figure 5.19 – The average increase of the maximum length snake from the first generation until 

the last in populations using the four selection operators. 
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5.8 REPRODUCTION OPERATORS  

Several reproduction operators were tried with varying levels of success.  Uniform 

crossover was not conducive to the nature of the snake problem.  After much experimentation, 

uniform crossover was abandoned because it failed to produce good results.  Despite trying a 

range a crossover probabilities from 5% to 30%, uniform crossover rarely succeeded in creating 

good offspring.  This was an anticipated result because the relationships between the transitions 

play an important part in the strength of the offspring.  Uniform crossover frequently created 

offspring with highly fragmented genetic material from the parents.  Below, some measurements 

from early trials using uniform crossover are shown.  The results are indicative of the overall 

trend of performance for uniform crossover when compared to single or double point crossover. 

 

 

Figure 5.20 – The average maximum length snake found in competitions between populations 

using uniform, double point, and single point crossover. 
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Figure 5.21 – The average generations to converge for populations using uniform, double point, 

and single point crossover. 

 

 

Figure 5.22 – The average increase of the maximum length snake from the first generation until 

the last in populations using uniform, double point, and single point crossover. 
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the leader with an average maximum snake length of 58.68.  Double point crossover was a close 

second with an average maximum snake length of 57.55.  In last place was triple point crossover 

with an average maximum snake length of 55.51.  The longest snake found in these experiments 

was length 70 and was found using single point crossover. 

 

Table 5.9 – The parameters used to compare the selection operators. 

 

Experiment Parameters 

Component Options 

Representations FBTR 

Initialization RRI 

Snake blockers Removed (SBRA) 

Fitness Functions FL_SSD_D_Equal, FL_SSD_D, FL, FL_SSD, FSSD, FSSD_D, FD_SSD_L, FL_D, 

FSSD_L_D, FD

Crossover Single Point, Double Point, Triple Point 

Mutation Random, Xor 

Mutation 

Frequency 

0.5%, 1%, 5% 

Selection Random, Rank-Based, Roulette Wheel, Tournament 

 

 

Figure 5.23 – The average maximum length snake found in competitions between the crossover 

operators. 
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Figure 5.24 – The average generations to converge for populations using the crossover operators. 

 

 

Figure 5.25 – The average increase of the maximum length snake from the first generation until 

the last in populations using the crossover operators. 
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Figure 5.26 – The relative performance of single, double, and triple point crossover on 

individuals by length. While triple point crossover is more effect for shorter snakes, single point 

crossover becomes more effective on longer snakes, giving single point crossover an advantage 

over the course of the GA run. 

 

5.9 MUTATION OPERATORS  
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Table 5.10 – The parameters used to compare the selection operators. 

 

Experiment Parameters 

Component Options 

Representations FBTR 

Initialization RRI 

Snake blockers Removed (SBRA) 

Fitness Functions FL_SSD_D_Equal, FL_SSD_D, FL, FL_SSD, FSSD, FSSD_D, FD_SSD_L, FL_D, 

FSSD_L_D, FD

Crossover Single Point, Double Point, Triple Point 

Mutation Random, Xor 

Mutation 

Frequency 

0.5%, 1%, 5% 

Selection Random, Rank-Based, Roulette Wheel, Tournament 

 

 

Figure 5.27 – The average maximum length snake found in competitions between the mutation 

operators, broken down by frequency and averaged across all frequencies. 
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Figure 5.28 – The average generations to converge for populations using the mutation operators, 

broken down by frequency and averaged across all frequencies. 

 

 

Figure 5.29 – The average increase of the maximum length snake from the first generation until 

the last in populations using the mutation operators, broken down by frequency and averaged 

across all frequencies. 
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Figure 5.30 – Mutation success rate by start length. 

 

 

Figure 5.31 – Mutation success rate by start length, this is the same graph as Figure 5.30, but is 

graphed using log base 10 to better show the differences in longer snakes. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

6.1 CONCLUSIONS 

The removal of snake blockers has been shown to greatly improve the performance of the 

GA.   Leaving snake blockers in place did not prevent convergence but did have negative impact 

on the lengths of the snakes and caused the GA to stop making forward progress sooner.  

Because removing snake blockers has such a positive impact on the GA results, it seems to be a 

good tactic to remove snake blockers and benefit from the reduction is search space. 

In addition, Frequency-Based Transition Reassignment has been proven to be a more 

effective representation than a transition-based representation and appears to be effective at 

reducing the overall representation space associated with the problem.  When compared to a 

transitional representation, Frequency-Based Transition Reassignment populations produced 

longer snakes.  However, comparing Frequency-Based Transition Reassignment to a canonical 

representation is less clear cut.  While using a canonical representation barely outperformed 

Frequency-Based Transition Reassignment, it did not improve the results enough to be truly 

significant.  Given that using Frequency-Based Transition Reassignment seems to be just as 

effective as using a canonical representation, further experimentation is warranted.   

Restricted Random Initialization has been shown to be a more conservative method of 

individual initialization.  Restricted Heuristic Initialization produces snakes that are too long to 

the GA to be constructive.  As a result, it appears that the use of Restricted Heuristic 
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Initialization might be better served as a method for initializing only part of the initial 

population.  It is possible that the long snakes Restricted Heuristic Initialization produces are 

comprised of partial solutions that do not mesh well together, whereas the gradual improvement 

in a GA initialized with Restricted Random Initialization leads to partial solutions that are more 

compatible.    

Furthermore, selective skin density is an effective component for fitness functions and 

has proven itself as both a contributing factor and as a standalone measurement of an 

individual’s fitness.  While target distribution did not prove to be as effective as a standalone 

measurement of individual fitness, it did contribute to the overall effectiveness of the fitness 

function when used in conjunction with length and selective skin density.   

Additionally, the results from the experiments have led to some general conclusions.  

Operators that are more effective on longer snakes are better operators than those that are more 

effective on shorter snakes.  This was illustrated by both the crossover operators and the 

mutation operators.  Despite double and triple point crossover outperforming single point 

crossover on when the average snake size in the population was small, single point crossover was 

more effective on longer snakes.  Likewise, random mutation was more successful when snake 

sizes were low, but Xor was more effective on longer snakes.   

Furthermore, since most of the operators with longer times of convergence resulted in 

better individuals, these operators are preferable to those that converge more rapidly because 

they tend to get stuck in local maxima.  Moreover, quality of the individuals in the initial 

population, as determined by the fitness function, is not always a good indicator of how effective 

the GA will be.   
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6.2 FUTURE DIRECTIONS 

Despite the nearly equal performance of Frequency-Based Transition Reassignment to a 

canonical representation in dimension 8, Frequency-Based Transition Reassignment may have an 

advantage in higher dimensions and when the length of the representation is increase beyond 110 

transitions.  It is possible that Frequency-Based Transition Reassignment would have a higher 

success rate than a canonical representation when the average length of the snake were less than 

half of the length of the representation.  By increasing the length of the representation, there may 

be an opportunity for snakes to develop independently in the front and in the back and then 

merge as the GA converges.  This seems more likely using Frequency-Based Transition 

Reassignment then a canonical representation because the canonical representation should be 

less effective for the second half of the chromosome.  If the representation is only 110 transitions 

and the average length of the snakes exceeds 55, then there will necessarily be interaction 

between the snakes across the chromosome.  In this situation, it is possible that the 

representations are on level ground.  However, further experimentation in higher dimensions and 

with longer representations would be needed to confirm or dismiss this suspicion. 

While the concept of target distribution was not an extremely effective fitness factor, it 

would be interesting to continue experimentation.  One option would be to adapt the target 

distribution based on the contents of the best individuals in the current population.  The target 

distribution could mimic the distribution in the best individuals in an effort to move future 

populations toward those individuals.  Alternatively, the target distribution could become a target 

of another learning mechanism in order to learn optimal distributions.  On the other hand, given 

that GAs have a tendency to diverge too quickly, perhaps the target distribution could be used to 
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explicitly combat the distributions present in the best individuals in order to avoid being stuck in 

a local maxima. 

Additional experimentation with selective skin density would also be warranted.  

Selective skin density still has untapped potential.  The advantage of selective skin density and 

skin density in general, is that, unlike other fitness measurements, skin density says something 

about specific transitions in the individual.  What seems to be missing from the snake problem is 

a set of operators that are still effective when the length of the snake is large.  An operator that 

could perform crossover while preserving the transitions with the highest skin density may have 

an increased likelihood of being effective on longer snakes.  For other types of heuristic search, 

skin density can be treated as a measurement of how constrained a given transition is.   

 Finally, despite the fact that Restricted Heuristic Initialization was largely ineffective in 

the experiments done here because it caused the GA to converge too quickly, it is possible that 

more experimentation would lead to methods of making this an effective initialization method.  

If the reason that the GA fails to make progress is, in fact, related to the fact that the partial 

solutions in the population are incompatible, this could be worked around by creating a method 

of classifying individuals based on compatible genetic material.  If this could be accomplished, it 

could lead to better results and drastically reduce search time. 
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