
Diffusion Augmented Flows:

Combining Normalizing Flows and Diffusion Models for Accurate Latent

Space Mapping

by

Soham Sajekar

(Under the direction of Jaewoo Lee)

Abstract

In this study, we propose a novel generative model that combines the strengths of two well-

known generative models: normalizing flows and diffusion models. Normalizing flows lack

the ability to fully map to Gaussian space, resulting in limited expressiveness. To overcome

this, our model utilizes normalizing flows to map the complex data distribution to a latent

distribution and then employs a diffusion model to make the latent distribution achieve

equivalence to a Gaussian distribution. Additionally, we introduce a new training procedure

that combines maximum likelihood estimation from normalizing flows and variational lower

bound from diffusion models, resulting in a unified end-to-end architecture. We evaluate our

model using the Fréchet Inception Distance and Negative Log-likelihood scores and show that

our model outperforms Neural Spline Flows [7] and gives comparable results to traditional

diffusion models [13]. Our work presents a promising direction in the field of generative

modeling, specifically in image synthesis.

Index words: Generative models, Normalizing flows, Diffusion models, Fréchet
Inception Distance, Negative Log-likelihood
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Chapter 1

Introduction

Generative models are a type of machine learning algorithm that creates new samples by

learning the probability distribution of examples in a given dataset. Its ability to generate

new realistic samples using various data types like images[32, 17], texts [38, 1], audio [19, 41],

has increased their popularity in recent times. The main objective of generative models is to

learn the underlying data distribution, and the ability to sample from the learned distribution

is an added advantage of the generative models. These models have applications in numerous

�elds like robotics [35, 9], computer vision [40, 3], natural language processing [25], etc.

Apart from direct applications in the real world, these models can also be used to further

improve the existing machine learning models by providing fresh data which can be utilized

for robust training and testing of models [2, 39]. This allows to produce more generalized

models without losing accuracy. One very important application can be in the healthcare

industry [37, 26, 28], where the data is very limited for the existing models.

In this thesis, our focus lies on an alternative category of generative models called nor-

malizing ows [5, 6, 20, 12, 10] and di�usion models [13, 36]. These models represent a recent

and actively evolving area of research.

Normalizing ows, also known as ow-based generative models, constitute a speci�c type
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of generative model that uses invertible transformations. Their objective is to acquire infor-

mation about a data distribution from a series of transformations that are both invertible and

bijective. The primary aim is to establish a mapping between the original data distribution,

which can be intricate and unknown, and a well-understood and simple distribution, such as

the Gaussian distribution. By systematically applying a sequence of invertible transforma-

tions, normalizing ows empower us to explicitly model the data distribution. The central

concept underlying normalizing ows involves initiating the process with a base distribution,

typically a known distribution like the Gaussian distribution. Then, through the applica-

tion of a sequence of learned transformations, the data is e�ectively mapped to the desired

distribution. Importantly, each transformation is meticulously designed to be invertible,

meaning that it possesses a well-de�ned inverse transformation. This property allows us to

reliably map samples from the target distribution back to the base distribution or vice versa.

These transformations are typically parametrized by neural networks, allowing for exibil-

ity and expressiveness. By stacking multiple transformations together, a complex mapping

can be learned, enabling the model to capture intricate structures and dependencies in the

data. One of the notable advantages of normalizing ows is their ability to perform exact

log-likelihood estimation. This means that they can provide an accurate measure of how

likely a given sample is under the learned distribution. This property is valuable for tasks

such as density estimation, where knowing the likelihood of a sample is essential. However,

normalizing ows also has its limitations. One challenge is mapping complex data distribu-

tions to a pure Gaussian distribution. While normalizing ows aim to transform the data

distribution into a known distribution, in practice, it is often observed that the assumption

of the transformed data points following the base distribution is violated. This can lead to

approximations and discrepancies when sampling from the inverse transformations.

Di�usion models approach the problem of learning the data distribution in a di�erent

manner. Instead of applying a series of transformations, di�usion models iteratively di�use
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noise over the actual data samples. The model then performs a series of steps, known as

denoising steps, where it gradually transforms the noise sample to resemble a valid sample

from the true data distribution. The number of timesteps used to di�use noise determines

the complexity of the modeling process. Di�usion models have the advantage of being able

to generate highly realistic images. However, a downside is that di�usion models take a long

time to train and sample as they require a larger number of timesteps. The larger number

of timesteps ensures that the resulting noisy latent sample after adding noise to the actual

sample is a valid sample from the base distribution.

To summarize, we have two distinct types of generative models known as normalizing

ow models and di�usion models. These models are speci�cally designed to tackle the

challenge of comprehending intricate data distributions. Normalizing ows accomplish this

by employing a series of invertible transformations that e�ectively map the data distribution

to a familiar and well-understood distribution. On the other hand, di�usion models adopt

an iterative process where noise is gradually introduced into the data and subsequently

learned to be removed or reduced. It is important to recognize that each approach possesses

its own unique strengths and limitations, rendering them suitable for various scenarios and

applications within the realm of generative modeling.

1.1 Approach

This paper addresses the limitations inherent in normalizing ows and di�usion models by

introducing a novel generative model that leverages the strengths of both approaches. Our

primary objective is to combine these two architectures to create a uni�ed framework that

overcomes the speci�c drawbacks associated with each model, ultimately achieving superior

performance in generating high-quality samples.

The key motivation behind our work is to address the challenge faced by normalizing
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ows in fully mapping complex data distributions to complete Gaussian distributions [31]

[16]. To address this, our model applies a sequence of invertible transformations. These

transformations aim to convert the original complex data distribution into a Gaussian distri-

bution. However, it is important to note that even after these transformations, the resulting

distribution may not perfectly adhere to a Gaussian distribution. To achieve a complete

transformation to pure Gaussian distribution, we incorporate di�usion models into our ar-

chitecture. The di�usion models play a vital role in further enhancing the intermediate

distribution, ensuring a comprehensive transformation that captures the desirable charac-

teristics of a Gaussian distribution. This integration allows us to harness the best of both

worlds, mitigating the limitations of each model and achieving superior generative perfor-

mance. For the sampling process, Gaussian noise is �rst passed through a denoising network

which ensures the generation of latent samples following the di�usion model framework. Fur-

ther, we pass these latent samples through a normalizing ow model, which uses its inverse

transformations and knowledge of learned probability distribution to generate �nal samples

from the latent samples. Through the sequential application of these two steps, we are able

to generate high-quality images that accurately reect the underlying data distribution.

To validate the e�cacy of our proposed architecture, we conduct evaluations on three

widely used datasets: MNIST [23], CIFAR-10 [22], and CELEB-A [24]. We employ two

evaluation metrics such as Fr�echet Inception Distance (FID) [11] [34] and Negative Log-

likelihood. These metrics provide comprehensive insights into the performance of our model,

allowing us to quantitatively demonstrate its superiority over existing approaches. We con-

ducted experiments to compare our model with other models like Denoising Di�usion Prob-

abilistic Models (DDPM) [13] and Neural Spline Flows (NSF) [7]. The experimental results

demonstrate that our proposed method yields results comparable to those of DDPM while

surpassing the performance of the NSF model. This indicates that our method holds the

potential to signi�cantly enhance existing normalizing ow models. Moreover, our model
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exhibits lower negative log-likelihood values and FID scores compared to the NSF model,

suggesting that our methodology achieves a superior quality of generated samples when com-

pared to traditional normalizing ow models. On all three datasets, our model achieves FID

scores comparable to those of DDPM, implying that the quality of the generated samples is

on par with that of conventional di�usion models. Additionally, our model also has faster

sampling times in comparison to di�usion models. By reiterating these �ndings, we un-

derscore the ability of our proposed method to rival established approaches while o�ering

improved accuracy and faster sampling times. This highlights the potential of our method-

ology to advance the �eld of generative modeling by combining the strengths of traditional

di�usion models and normalizing ow models.
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Chapter 2

Related Work

In recent years, normalizing ows and di�usion models have been widely studied in the

generative modeling �eld of machine learning. This extensive research has led to many papers

that propose various approaches to improve the performance of these models. Some of the

important and interesting �ndings have been mentioned below, starting with comparatively

basic types of generative models like Generative Adversarial Networks (GANs), Variational

Auto-encoders (VAEs), and Autoregressive models:

GANs [8] are a type of generative model that have two parts, a generator network, and a

discriminator network. The generator generates new fake samples by using the latent space

mapping of the given distribution, and the discriminator tries to distinguish between these

new fake samples with the original samples. The main objective of GANs is to minimize the

discriminator loss while maximizing the generator loss. VAEs [21], on the other hand, encode

the sample from the given distribution into a low dimensional latent space and then decode it

back, reconstructing the new sample. The loss of VAEs consists of the reconstruction loss and

KL divergence. Autoregressive models involve computing the joint probability of a sequence

of attributes by calculating the conditional probabilities of each attribute in relation to its

earlier attributes. These models provide an excellent way for estimating the original density
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of the data distribution but lack in expressiveness; that is, the newly generated samples are

not distinct enough from the actual ones.

Dinh et al. [6] proposed a generative model architecture (RealNVP) based on a series

of a�ne transformations and non-linear coupling functions. The RealNVP model starts

by splitting the input data sample into two counterparts and applies a series of invertible

transformations only on one part, keeping the other part unchanged. This process is iter-

atively done along with adding perturbations in-between layers. This paper laid the main

foundation for normalizing ows and other ow-based generative architectures.

Kingma et al. [20] introduced the use of invertible 1x1 convolutions in the ow-based

generative models, enabling them to learn feature map transformations in a much more

e�cient manner. The key contribution of Glow lies in its use of invertible 1Ö1 convolutions,

which are computationally e�cient and allow for exible modeling of dependencies between

the input and output variables. These convolutions ensure that the transformation process

is reversible, meaning that the original data can be accurately recovered from the generated

samples. It leverages the concept of squeezing, which reduces the spatial dimensions of the

data, making it easier to model. Additionally, the authors introduce a concept called multi-

scale architecture, which enables the model to capture both global and local dependencies

within the data. The basic idea behind the multi-scale architecture is to process the data

at di�erent scales. It involves dividing the input image into multiple levels, where each

level represents a di�erent scale of the image. At each level, the model learns to capture

the dependencies speci�c to that scale while also considering the contextual information

from other scales. In the Glow model, the multi-scale architecture is implemented using

a sequence of levels. Each level consists of a squeeze transformation and act-norm layer

along with two main operations: an invertible 1Ö1 convolution layer and a coupling layer.

The coupling layer is responsible for splitting the input data into two parts and applying an

element-wise a�ne transformation to one of the parts. This transformation allows the model
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to capture local variations in the data. The other part remains unchanged and serves as a

conditioning variable for the transformation. By applying this transformation, the model can

model dependencies within the data at that scale. The invertible 1Ö1 convolution layer acts

as a mixing operation that allows information to ow between di�erent scales. It reshapes

and reorganizes the data in a way that captures global dependencies. Importantly, this

convolution is invertible, meaning that the original data can be accurately recovered from

the transformed data. By stacking multiple levels, each with its coupling and convolution

layers, the multi-scale architecture captures dependencies at di�erent scales. The lower levels

capture �ne-grained details and local structures, while the higher levels capture more global

patterns and larger-scale dependencies.

Grathwohl et al. [10] introduced a new type of ow-based generative model called Free-

form Continuous Dynamics (FFJORD), which uses continuous-time di�erential equations

to model the transformation of original data to a known distribution. Unlike other ow-

based generative models, this model requires fewer parameters and computations to generate

comparable results since they don't need to explicitly specify the number of transformations

to map original data to a known distribution.

Durkan et al. [7] utilized a di�erent type of transformation called piece-wise rational-

quadratic spline transformation, as compared to the a�ne transformations in other baseline

ow-based models. This enabled for modeling of high dimensional, complex, and multi-

modal distribution, giving state-of-the-art results in the ow-based generative models. For

our proposed architecture, we build upon the neural spline architecture combining it with

the denoising di�usion probabilistic models (DDPM) proposed by Ho et al. [13], which is the

main architecture that di�usion models are built. The di�usion process is where we make the

model learn to denoise a pure noisy image which represents the Gaussian distribution. The

DDPM architecture also involved the use of an attention mechanism and the incorporation

of additional prior knowledge by conditionally training the model. Apart from generative
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modeling, these models are also extensively used for other tasks such as image in-painting,

text-to-image generation, etc.

Di�usionCNF [18] utilizes a conditional normalizing ow to model the di�usion process

in di�usion models. Di�usionCNF aims to reduce the sampling time of the di�usion models

by using conditional normalizing ow instead of the U-Net architecture that DDPM uses.

DDPM uses a Gaussian assumption to denoise a sample in the reverse process. Di�usionCNF

gets rid of this assumption by utilizing a normalizing ow conditioned on noisy samples, as

normalizing ows have the ability to map complex data distributions to simple ones. While

our approach aims to solve the drawbacks of normalizing ows, Di�ussionCNF aims to solve

the drawbacks of di�usion models.

Postels et al. [31] address the limitations of normalizing ows on real-world data. Real-

world data usually exists on a lower-dimensional manifold within a higher-dimension space.

Normalizing ows are good at learning the underlying data distribution, but they often seem

to have problems when the data is in a lower dimensional surface called a manifold within

a higher dimensional space. The paper mentions that �nding the probability of a speci�c

point on the manifold within a higher dimensional space becomes 0 for all points outside

the manifold. Calculating the logarithm of the determinant of the Jacobian also becomes

in�nitely large. These issues cause an optimization problem to arise, leading to an ill-posed

optimization problem. A lot of existing works solve this problem by adding noise to the

manifold space [20, 15, 16]. The authors of [31] solve this problem by sampling directly from

the original data distribution by using the knowledge of the noise model and the perturbed

data distribution. They establish that normalizing ow models that are trained on the

perturbed data implicitly capture the underlying manifold in regions where the data is most

likely to be found. Using that information, they propose an optimization objective that �nds

the point in the higher dimensional space that is most likely closer to the point in manifold

space. Horvat et al. [15] also aim to solve the same problem described by [31] by adding
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noise to the manifold space. They proposed a methodology called Denoising Normalizing

Flow (DNF) which follows a three-step process: Ination, Learning, and Denoising. In

the ination phase, DNF adds noise to the manifold space in order to inate it to higher

dimensional data. This makes it easier to use normalizing ows to learn the distribution of

data. Finally, DNF learns a denoising mapping similar to a denoising autoencoder. The loss

function used in DNF calculates the error between the original data and denoised data.

Zhang et al. [42] have recently made e�orts in the �eld of combining normalizing ows

with di�usion models, proposing a novel architecture called "Di�usion Normalizing Flows."

Their focus primarily revolves around the employment of the di�usion process, where nor-

malizing ows are utilized to progressively transform noise-corrupted images. Their proposed

solution e�ectively combines the strengths of normalizing ows and di�usion models, sharing

similarities with our own proposed architecture. Nevertheless, it is crucial to acknowledge

that there exist some distinctions between the two methodologies. In the case of "Di�usion

Normalizing Flows," the overall process largely mirrors that of the di�usion process. Much

like di�usion models, Di�usion Normalizing Flows encompass a forward process and a back-

ward process. The forward process takes an input and subjects it to a function, incorporating

some noise in the process. Conversely, the backward process entails a distinct transformation

that encompasses both a drift term and an additional term. Notably, in Di�usion Normaliz-

ing Flows, the drift term within the backward process is amenable to learning, a�ording the

model the capacity to adapt and enhance its performance over time. Essentially, Di�usion

Normalizing Flows utilize these two processes to facilitate bidirectional data transformation,

capitalizing on the ability to learn from and re�ne the transformation based on the unique

characteristics of the data. In contrast, our architecture incorporates both normalizing ows

and di�usion models within the learning process. This involves training and optimizing both

the networks, that is, the CNN (Convolutional Neural Network) based ow network from

normalizing ows models as well as U-Net from di�usion models.
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Chapter 3

Preliminaries

This preliminaries section introduces some basic concepts and notations that are used through-

out the paper. We start by de�ning distributions, invertible transformations, and the Ja-

cobian as normalizing ows are inherently dependent on these concepts. Normalizing ow

models are a class of generative models that learn to transform a simple, easy-to-sample

distribution into a more complex distribution of interest. Di�usion models are a class of

generative models that learn to generate data by gradually adding noise to a latent repre-

sentation. Both these models will be explained in detail. Further, the mathematical concepts

behind these models, the loss functions used to train these models, and the advantages and

disadvantages of each of these will be discussed.

3.1 Notations

3.1.1 Distributions

A distribution can be thought of as a probability measure that assigns a probability to each

possible outcome of a random experiment. The probability density function (pdf) associated

with a distribution serves as a function that quanti�es the likelihood of the random variable
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assuming a speci�c value. To illustrate, the pdf of the standard normal distribution can be

represented using the subsequent formula:

f (x) =
1

p
2�

exp
�

�
x2

2

�
(3.1)

3.1.2 Invertible Transformations

An invertible transformation can be simply put as a mathematical function that can be re-

versed to get the original variable back from the transformed variable. In other words, iff (x)

is an invertible transformation, then there exists a functionf � 1(y) such that f (f � 1(y)) = y

for all y. For example, the functionf (x) = log( x) is an invertible transformation, because

its inverse isf � 1(y) = exp( y).

3.1.3 Jacobian

The Jacobian of a transformationf (x) is a matrix that contains the partial derivatives of

f (x) with respect to x. The Jacobian can be used to compute the change of variables formula,

which is a formula that relates the pdf of a transformed distribution to the pdf of the original

distribution. The change of variables formula is given by the following equation:

p(x) = p(f (x))

�
�
�
�
@f(x)

@x

�
�
�
� (3.2)

where p(x) is the pdf of the original distribution, p(f (x)) is the pdf of the transformed

distribution, and jJ (f (x)) j is the absolute value of the determinant of the Jacobian matrix

of f (x).
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3.1.4 Log-likelihood

The log-likelihood of a data pointx can be expressed as the logarithm of the probability

that x was generated from a distributionp(x). This measure is commonly employed as a

loss function in generative modeling. The log-likelihood ofx is determined by the following

equation:

logp(x) = log
� Z

p(xjy)p(y)dy
�

(3.3)

Here,p(xjy) denotes the likelihood ofx giveny, and p(y) represents the prior distribution

of y.

Throughout this document, we will utilize these symbols to explain normalizing ow mod-

els and di�usion models. As required, we will furnish supplementary clari�cations regarding

these symbols.

3.2 Normalizing Flows

Normalizing ows are generative models that map samples from a simple distribution to a

target distribution of interest via a series of invertible transformations. Letz be a sample

from a simple distribution, such as a standard Gaussian, andx be a sample from the target

distribution pX . The goal is to learn a bijective mappingf : z ! x, where f can be

represented as a composition ofK invertible transformations f K �� � �� f 1, with f k : RD ! RD .

Further, the probability density function (pdf) of x can be produced by modifying the

pdf of z, according to the change of variables formula, givenx = f (z):

pX (x) = pZ (z)

�
�
�
�det

@f(z)
@z

�
�
�
�

� 1

(3.4)

It is possible to build a ow f that can accurately approximate the desired distribution
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pX by selecting the right transformations. A popular choice is the A�ne transformation

which is represented as follows:

f k(z) = uk � z + bk (3.5)

whereuk and bk are learnable parameters, and� represents the element-wise multipli-

cation. The determinant of thef k Jacobian matrix is calculated as follows:

det
@fk(z)

@z
=

DY

i =1

uk;i (3.6)

whereuk;i is the i -th element ofuk .

The parameters of the transformations are learned by maximizing the log-likelihood of

the data during training:

logp� (x) = log pZ (z) �
KX

k=1

log

�
�
�
�det

@fk
@zk� 1

�
�
�
� (3.7)

where � denotes the parameters of the generative distributionp� (xjz). The �rst term

on the right-hand side can be easily computed if the simple distributionpZ is known. The

second term, which is the log-determinant of the Jacobian, can be e�ciently computed using

the LU decomposition.

3.2.1 Types of ows

Within the domain of normalizing ow models, the transformations applied to the data

are referred to as ows. Two commonly utilized ow architectures are coupling ows and

autoregressive ows, both of which o�er expressive transformations for modeling intricate

distributions. In the following section, we will delve into these ow types and provide speci�c

examples.
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3.2.1.a Coupling ows

Coupling ows are a form of transformation employed in numerous ow-based models to con-

struct complex distributions. They operate by dividing the data into two segments and ap-

plying the transformation function solely to one segment while leaving the other untouched.

Reversing the process allows us to convert the transformed data back into its original form.

Models such as [6] and [5] use the coupling ows.

3.2.1.b Autoregressive ows

Autoregressive ows constitute another type of transformation that relies on autoregressive

models. In such models, each data element is transformed based on preceding data elements.

Consequently, the output at any given step is contingent upon the input at that step as well

as all previous inputs. This transformation utilizes a set of functions that map the previous

inputs to the parameters for each step. [29] is a popular work using autoregressive ows.

3.2.2 Coupling Functions

Coupling functions, mathematical functions employed within various ows, play a crucial

role in coupling ows and autoregressive ows for data transformation. Coupling functions

enable the introduction of intricate transformations to the data, allowing the capture of

complex patterns. They can range from simple operations such as addition or multiplication

by a constant to sophisticated approaches like neural networks. In the subsequent section,

we will explore a�ne and spline coupling functions as they will be utilized in the proposed

method.
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3.2.2.a A�ne coupling

A�ne coupling is a type of coupling function commonly used in coupling ows. It provides

a simple and e�cient way to transform the data by adding or scaling the input with a

set of parameters. Mathematically, the a�ne coupling can be de�ned as follows, withx i :j

representing a subvector or subset of elements from a vectorx. Speci�cally, it refers to the

elements ofx starting from index i up to (and including) index j :

y1:d = x1:d (3.8)

The �rst d elements ofy are the same as the �rstd elements ofx.

y(d+1): D = s(x1:d; � ) � x(d+1): D + t(x1:d; � ) (3.9)

The remaining (D � d) elements ofy are computed using the scaling factors() and translation

factor t().

In the above equations,d represents the number of dimensions in the inputx, D represents

the total number of dimensions, and� denotes element-wise multiplication. The scaling

factor s(x1:d; � ) and translation factor t(x1:d; � ) are functions that depend on the �rst d

dimensions ofx and the parameters� . These functions can be implemented using neural

networks or other mathematical functions to capture complex transformations.

A�ne coupling is attractive because it allows for simple computation of the Jacobian

determinant, which is essential for the ow's invertibility. Additionally, the coupling of

variables ensures that each variable is inuenced by the other variables in the ow.
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3.2.2.b Spline coupling

Spline coupling functions utilize splines, which are piecewise-polynomial or piecewise-rational

functions, as coupling functions. Splines o�er exibility in capturing complex transforma-

tions while ensuring invertibility. There are di�erent types of spline coupling functions, and

we'll focus on rational quadratic splines.

Rational Quadratic Splines: Rational quadratic splines are another form of spline

coupling function. They are de�ned by specifying knots and derivatives at the inner points.

These splines provide a exible way to model the transformation [7].

Mathematically, a rational quadratic spline coupling function can be de�ned as follows,

with x i :j representing a subvector or subset of elements from a vectorx. Speci�cally, it refers

to the elements ofx starting from index i up to (and including) index j :

y1:d = x1:d (3.10)

The �rst d elements ofy are the same as the �rstd elements ofx.

y(d+1): D = r (x1:d; � ) � x(d+1): D + s(x1:d; � ) (3.11)

The remaining (D � d) elements ofy are computed using the rational functionr () and scaling

factor s().

In this equation, r (x1:d; � ) and s(x1:d; � ) are functions that depend on the �rst d dimen-

sions ofx and the parameters� .

Overall, the coupling functions provide a way to achieve more exible transformations

in normalizing ows while maintaining invertibility. The choice of coupling function type

depends on the speci�c requirements and characteristics of the data being transformed. For

our proposed implementation, we utilized the rational quadratic spline coupling function as
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it showed better performance.

3.3 Di�usion Models

Di�usion models are a dynamic type of generative model that has attracted a lot of attention

lately and was inspired by non-equilibrium thermodynamics, providing a powerful framework

for modeling complex probability distributions. The basic idea behind di�usion models is

to start with a simple distribution, such as a uniform distribution, and then gradually add

noise to the distribution over time. The fundamental idea is to replicate the process of

noise addition that gradually changes a target distribution into a simple distribution using

a Markov chain. The �nal di�usion sampling can be viewed as a continuous time-dependent

transformation that converts the initial noise distribution into the desired distribution.

3.3.1 Forward process

The forward process in di�usion models involves iteratively adding noise to a given sample

to generate a sequence of correlated samples. This is achieved using a Markov chain, where

each step in the chain corresponds to a timestep. The timesteps in di�usion models represent

discrete intervals or steps at which noise is added to the samples. These timesteps are

prede�ned and determine the granularity of the di�usion process. The number of timesteps,

denoted asT, is a hyperparameter set by the user. A higher number of timesteps allows

for more precise modeling of the data distribution but increases computational complexity.

At each timestep, noise is added to the current sample, leading to a new sample in the

sequence. This process continues until the desired number of timesteps is reached. By

iteratively applying this process, the initial samplex0 is transformed into a sequence of

correlated samplesx1, x2, ..., xT , whereT is the total number of timesteps.

A Markov chain is de�ned as a sequence of random variables (or states) denoted as
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x1; x2; :::; xT , where T represents the number of steps or time points in the chain. Each

variable or state x t depends only on the previous statex t � 1 and is independent of all

other states in the chain. In other words, the future states in the Markov chain depend

solely on the current state and not on the past history of the chain. This property is known

as the Markov property. Mathematically, the Markov chain is de�ned by the conditional

probability distribution of each state given the previous state, denoted asP(x t jx t � 1). Let's

denote the initial sample asx0 and the variance of noise added at each timestep as� t . The

forward process can be expressed as [13]:

q(x1:T jx0) :=
TY

t=1

q(x t jx t � 1); q(x t jx t � 1) := N
�

x t ;
p

1 � � tx t � 1; � t I
�

(3.12)

wherex t represents the sample at timestept and � t controls the magnitude of the noise

added. This sequence captures the evolution of the data distribution from the data distri-

bution to the target distribution.

3.3.2 Reverse process

The reverse process in di�usion models plays a crucial role in reconstructing the original

sample from the sequence of correlated samples obtained through the forward process. By

iteratively removing the added noise in reverse order, the di�usion model aims to recover

the initial sample x0.

Mathematically, the reverse process is de�ned as follows [13]:

p� (x0:T ) := p(xT )
TY

t=1

p� (x t � 1 j x t ); p� (x t � 1 j x t ) := N (x t � 1; � � (x t ; t); � � (x t ; t)) (3.13)

In this equation, x t � 1 represents the sample at timestept � 1, which is obtained by

subtracting the noise from the current samplex t .
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By applying this reverse process sequentially, starting from the �nal samplexT and

moving backward to the initial samplex0, the di�usion model attempts to recover the original

data sample. This reverse process e�ectively denoises the samples and can also �ll in missing

parts or in-paint the data.

3.3.3 Neural network architecture

To facilitate the learning of di�usion models, a neural network architecture is commonly em-

ployed. One popular choice is the U-Net architecture [33], which is well-suited for capturing

the complex relationships within the data. The U-Net architecture consists of an encoder

path and a decoder path.

In the context of di�usion models, the neural network architecture is designed to be

conditioned on the timesteps. This means that the network takes the current timestep as an

additional input and generates the corresponding transformation at each step of the di�usion

process.

In addition to the architectural choice of the U-Net, there are speci�c considerations

for predicting the noise in di�usion models. Instead of directly predicting the true data

sample, the network is trained to predict the mean of the added noise. This approach aligns

with [27] and its reparametrization technique. The reparametrization technique involves

learning the distribution of the added noise and sampling from it to generate the noise

values. By predicting the mean of the noise distribution instead of the true sample, the

network e�ectively models the noise properties, which are essential for the reverse process

and the denoising capabilities of the di�usion model.
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3.3.4 Log-likelihood estimation

To train di�usion models and compute the training objective, we optimize the variational

bound on the negative log-likelihood. This objective aims to maximize the negative log-

likelihood of the data under the model while incorporating a divergence term to regularize

the learning process. However, directly optimizing this objective can be challenging due to

the intractability of the likelihood.

Let's denote the true data distribution asp(x0). The variational lower bound can be

written as [13]:

E [logp(x0)] = Eq

"

logp(xT ) �
T � 1X

t=1

logp(x t � 1jx t )q(x t jx t � 1)

#

=: L (3.14)

However, optimizing this objective directly can be computationally expensive. Therefore,

di�usion models leverage parametrization and Bayesian statistics and assume a speci�c form

for the di�usion process to simplify the training objective.

Using these simpli�cations, the likelihood estimation problem can be reformulated as a

mean squared error (MSE) problem. The preliminary training objective can be calculated

as the MSE between the true data and the denoised data:

Ex0 ;�

h�
�� � � �

� p
�� tx0 +

p
1 � �� t �; t

� �
�2

i
(3.15)
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Chapter 4

Methodology

This chapter delves into the comprehensive methodology to seamlessly integrate normaliz-

ing ows and di�usion model architectures for our proposed generative model. This section

starts by explaining the limitations of current techniques. It moves on to present a thorough

exploration of the implementation approach and algorithmic intricacies of the uni�ed archi-

tecture, highlighting the intricacies of the forward process, backward process, and training

procedure. Furthermore, it provides insights into speci�c implementation details, including

the selection and utilization of distinct ow-based and di�usion models.

4.1 Limitations of current techniques

In normalizing ows, one of the challenges is to map complex data distributions to a complete

normal distribution. This process involves transforming the input data through a series of

invertible bijective transformations. The drawbacks of these bijective functions are that

they struggle to e�ciently compute the logarithm of their Jacobian determinant, making

optimization challenging, and thus facing di�culties when dealing with random variables

that exist on manifolds, leading to ill-posed optimization problems and loss of information
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about the original distribution [31]. As a result, when sampling from the learned distribution

using the inverse transformations, certain approximations are introduced.

To elaborate on this, let's consider a normalizing ow with a series of invertible transfor-

mations parametrized by� , denoted asf � . The goal is to learn a mapping from a complex

data distribution pdata to a simple base distribution, typically a multivariate normal distri-

bution pz.

During the forward pass of the normalizing ow, the input datax is transformed through

a sequence of functionsf � : z = f � (x). Each transformation f � introduces a change of

variables, which requires computing the determinant of the Jacobian matrix. The Jacobian

determinant captures the e�ect of the transformation on the probability density function

(PDF) of the data. The inverse pass of the normalizing ow involves sampling from the

learned distribution by applying the inverse transformations. Given a samplez from the

base distribution, the inverse transformationsg� attempt to map it back to the original data

space:x = g� (z)

However, due to the complexity of the data distribution, the learned normalizing ow

may not perfectly approximate the true data distribution. This discrepancy between the true

data distribution pdata and the approximated distribution p� introduces certain deviations

during the inverse transformation process. The sampling process assumesz, the output

of forward transformation, follows Gaussian distribution, but in practice, it often largely

deviates from the Gaussian distribution, which in turn causesg� (z) to deviate from the data

distribution. This can result in sample data points that do not perfectly align with the true

data distribution and may exhibit certain deviations or imperfections.

Overall, while normalizing ows o�er a powerful framework for learning complex data

distributions, the approximations involved in mapping to a complete normal distribution can

introduce certain imperfections when sampling using inverse transformations. To solve this

problem of the normalizing ow, we add a di�usion model at the end of the normalizing ow
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to ensure that the latent representation reaches pure Gaussian distribution. The output of

the normalizing ow is passed as an input of the di�usion model. The forward process of

the di�usion model takes the output of the normalizing ow as the input and progressively

adds noise to transform it into a complete Gaussian.

4.2 Algorithm

Algorithm 1: Training
repeat

x 2 D;
t  Uniform(f 1; 2; :::; Tg);
� � N (0; I );
z0  f � (x), where
f � = f 1 � : : : � f N � 1 � f N ;

zT =
p

�� tz0 +
p

1 � �� t �;
Take the gradient descent
step on:

Ldif f = Lsimple + � � L vlb
L = Ldif f + log

�
�
�det @f� (x)

@xT

�
�
� ;

until converged;

Algorithm 2: Sampling
zT � N (0; I );
for t = T to 1 do

n � N (0; I ), if t > 1, else
n = 0;

zt � 1 =
1p
� t

�
zt � 1� � tp

1� �� t
� � (zt ; t)

�
+

� tn;

x = f � 1
� (z0), where

f � 1
� = f � 1

N � f � 1
N � 1 � : : : � f � 1

1 ;
Output: x

Figure 4.1: Training and Sampling Algorithms

The forward process within our proposed architecture starts with an original data sample

denoted byx, wherex 2 D. This sample is then subjected to a series of transformation layers

within the normalizing ow section, resulting in the generation of a transformed variable,

z0. The series of transformation layers can be mathematically viewed as a composition of

various bijective functions given by:

f � = f 1 � : : : � f N 1 � f N (4.1)
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The transformed variablez0 is generated by passingx through the composition of bijective

functions f � and is given by:

z0 = f � (x) (4.2)

Signi�cantly, this transformed variable represents a sample extracted from an intermedi-

ate simple latent distribution. Subsequently, the transformed variablez0 is provided as an

input to the di�usion part of the model, where an additional noise component is incorpo-

rated. This noise injection process facilitates the production of a pure noise variable, denoted

as zT , which is assumed to follow a Gaussian.zT is obtained using the closed-form solution

of the di�usion model.

zT =
p

� tz0 +
p

1 � � t �; (4.3)

where� t = 1 � � t and � t = 1
t

P t
s=1 � s. � is the variance schedule that is used to add noise to

the data set, z0 is the transformed variable generated by a set of bijective transformations,

and � is noise. The integration of the di�usion model after the normalizing ow brings

notable advantages, primarily addressing the limitation of the normalizing ow's inability to

fully map to a Gaussian distribution. By leveraging the closed-form solution o�ered by the

di�usion model in the forward process, a complete mapping to Gaussian noise is achieved.

On the other hand, the backward process commences with the sampling of a random

noise vector,z0, drawn from a Gaussian distribution. This noise vector is then subjected

to the sampling process of the di�usion model, resulting in the generation of a transformed

variable, z. This transformed variable serves as an intermediate sample originating from

the simple latent distribution. Finally, the transformed variable z undergoes a series of

inverted normalizing ow layers, ultimately yielding the �nal output, x, which represents

the generated samples.

The incorporation of the di�usion model after the normalizing ow yields distinct advan-
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tages. By �rst denoising a complete Gaussian noisezT to an intermediate noisy samplez0

using fewer di�usion steps, the di�usion model ensures that the subsequent passage of this

noisy sample through the normalizing ow model facilitates the generation of high-quality

�nal samples x.

The training procedure for our proposed architecture entails the optimization of both the

normalizing ow layers and the di�usion models. The normalizing ow layers are trained us-

ing maximum likelihood estimation, wherein the loss function incorporates the log-likelihood

of the transformed variable and the determinant of the Jacobian matrix. Concurrently, the

di�usion model undergoes training utilizing a hybrid approach that combines the variational

lower bound and mean squared error (MSE) loss function, as proposed in [27]. The pri-

mary objective of the training procedure is to minimize the combined loss function, which

consolidates the loss contributions from both models.

In the combined architecture, the log-likelihood loss of the normalizing ows is replaced

by the di�usion loss, facilitating the uni�cation of the loss from both models. Consequently,

the combined loss function is de�ned as the sum of the di�usion loss and the normalizing

ow. This formulation ensures a comprehensive optimization process that harnesses the

strengths of both normalizing ows and di�usion models.

We use maximum likelihood estimation to train the normalizing ow layers in the com-

bined architecture:

L nf = log( pZ (f � (x))) + log

�
�
�
�det

@f� (x)
@xT

�
�
�
� (4.4)

And the hybrid of the variational lower bound and MSE loss function to train the di�usion

model part of the combined architecture:

L dif f = j� � � � ( �� t ; f � (x) + (1 � �� t )� ; t)j22 (4.5)
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For a uni�ed architecture, we combine the loss of both models by replacing the log(pZ (f (x)))

from the log-likelihood loss of normalizing ows with the di�usion loss. Then, the combined

loss function is de�ned as:

L = Ldif f + log

�
�
�
�det

@f� (x)
@xT

�
�
�
�

L = j� � � � ( �� t ; f � (x) + (1 � �� t )� ; t)j22 + log

�
�
�
�det

@f� (x)
@xT

�
�
�
�

(4.6)

By meticulously integrating the forward process, backward process, and training pro-

cedure, our proposed architecture harnesses the power of normalizing ows and di�usion

models, leading to the generation of high-quality samples that capture the underlying data

distribution. The utilization of this methodology sets the stage for subsequent chapters,

allowing for detailed experimentation, analysis, and conclusive �ndings.

4.3 Implementation Details

In terms of implementation, we �rst start with the implementation of the normalizing ow

part of the architecture. We implement a popular normalizing ow architecture such as

Spline Flows [14] [7], which uses the Glow [20] as the �rst part of our architecture. Next,

we implement the di�usion model part of our architecture. We use Denoising Di�usion

Probabilistic Models (DDPM) [13] for the di�usion process. We also use a suitable optimizer,

such as Adam, to minimize the loss function for training the normalizing ow model and the

di�usion model. Finally, we combine the normalizing ow and di�usion model into a uni�ed

end-to-end architecture using our proposed training procedure.

Figure 4.2 shows the overall forward process of mapping the original data to Gaussian

distribution. We can see that the Normalizing Flows on its own cannot completely transform

the original data to pure Gaussian noise.

Overall, our implementation involves carefully selecting hyperparameters such as learning
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rate, batch size, and number of layers for both the normalizing ow and di�usion model

parts of the architecture. We will also use techniques such as early stopping and learning

rate annealing to prevent over�tting and ensure the stability of the training process.

Figure 4.2: Forward process of the proposed architecture. Part 1: Using normalizing ows
to map original data to a simpler latent distribution. Part 2: Further, using di�usion models
to completely transform the intermediate samples to pure Gaussian noise
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Chapter 5

Experiments

The experiments conducted in this thesis aim to evaluate the performance of our proposed

model and compare it with existing models in the �eld, such as Denoising Di�usion Prob-

abilistic Models (DDPM) [13] and Neural Spline Flows (NSF) [7]. To achieve this, we

have selected well-established datasets such as MNIST[23], CIFAR10[22], and CELEBA[24].

These datasets have been widely used in the academic setting, providing a standardized

benchmark for evaluating the capabilities of various models. In this chapter, we will de-

scribe the experimental setup, including the environmental setup, evaluation metrics, and

training con�gurations, and present the obtained results. By conducting these experiments,

we seek to gain insights into the e�ectiveness and potential of our model, contributing to

the advancements in the �eld of generative models.

5.1 Environmental Setup

For running experiments on our model, the systems employed for conducting the research

played a crucial role. The primary computing resource utilized were various computers avail-

able in the Arti�cial Intelligence lab of the University of Georgia, which featured a powerful
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and dedicated NVIDIA's RTX A5000 Graphics Processing Unit (GPU). The system boasted

notable speci�cations, including a substantial amount of Random Access Memory (RAM) of

256 Gigabytes (GB), ensuring e�cient handling of large-scale computational tasks. The ex-

periments were conducted using the PyTorch framework [30], which is widely recognized for

its extensive capabilities in deep learning research. Speci�cally, version 1.13.1 was employed

to facilitate the implementation of various neural network models and algorithms. Fur-

thermore, the experiments relied on using Compute Uni�ed Device Architecture (CUDA)

[4] with version V11.6.124 for accelerated GPU computing, enhancing the performance and

speed of the computations. CUDA is a parallel computing platform developed by NVIDIA

for utilizing the power of NVIDIA GPUs for general-purpose computing. The Python pro-

gramming language, in its Python 3.8.16 iteration, served as the primary coding language,

providing a versatile and user-friendly environment for developing and executing the experi-

mental procedures. Collectively, these meticulously chosen system speci�cations, along with

the PyTorch framework and speci�c versions of CUDA and Python, formed the foundation

for conducting the experiments in a robust and e�cient manner.

5.2 Evaluation Metrics

In the evaluation metrics section, we utilize two crucial metrics to evaluate the performance

of generative models: Negative Log-Likelihood (Nll) and Fr�echet Inception Distance (FID).

The negative log-likelihood metric measures the generative model's ability to accurately

represent the underlying distribution of the training data. A lower value for negative log-

likelihood indicates superior model performance. Conversely, FID is a widely acknowledged

metric that assesses the similarity between the distributions of generated and real images.

Together, these two metrics provide a comprehensive evaluation of generative models, o�ering

valuable insights into their capabilities.
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5.2.1 Fr�echet Inception Distance (FID)

The Fr�echet Inception Distance (FID) [11] [34] has gained widespread recognition as an es-

sential evaluation metric utilized in the assessment of generated images within the domain

of generative models. This metric o�ers a robust measure of similarity between the distribu-

tion of generated images and that of real images. By comparing the features extracted from

the generated and reference images using a pre-trained Inception network, FID quanti�es

the distance between the two distributions. Lower FID scores correspond to higher quality

and increased diversity among the generated images, indicating a closer resemblance to the

distribution of real images [11]. FID scores are dependent on the dimension of the feature

vectors chosen. For the purpose of experimentation, we chose the feature vector dimension

to be 192 because this selection ensured a separation between scores which led to e�cient

comparison. This is an important point to consider before comparing our model with scores

in other papers.

For the purpose of evaluating the MNIST dataset, a custom-trained MNIST classi�er

was utilized in place of the inception network typically employed in FID calculations. This

modi�cation proved advantageous as it facilitated the e�cient conversion of MNIST samples

into feature vectors, which were subsequently utilized for FID evaluation. This approach

ensured seamless integration of the FID evaluation process with the unique characteristics of

the MNIST dataset, allowing for comprehensive analysis and assessment of the quality and

diversity of generated MNIST images.

5.3 Training Con�gurations

The training con�guration for the thesis experiments involves several parameters that have

a signi�cant impact on the performance of the model. In this section, we will discuss these

parameters and their e�ects on the MNIST, CIFAR10, and CELEBA datasets. The training
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con�gurations are summarized in Table 5.1.

Parameters MNIST CIFAR10 CELEBA
Epochs 300 500 100
Batch Size 128 156 68
Image Size (1, 32, 32) (3, 32, 32) (3, 64, 64)
Levels 3 4 4
Steps per levels 8 15 10
Hidden Channels 64 128 128
Resnet blocks 2(now); 2(dpm) 3(now); 2(dpm) 3(now); 2(dpm)
Timesteps 500 500 500

Table 5.1: Training Con�gurations

Let's begin by discussing the parameters related to the normalizing ow part of the pro-

posed model, which employs the Glow architecture from [20], speci�cally the levels and steps

per level parameters. The levels parameter represents the number of iterations in the multi-

scale architecture of the Glow framework. For the MNIST dataset, 3 levels are utilized,

while CIFAR10 and CELEBA employ 4 levels. At each level, the input data undergoes a

squeeze transformation which reduces the dimensionality of the data allowing the network to

learn from multiple latent dimensions. Increasing the number of levels allows the model to

capture complex patterns at di�erent scales. Each level consists of a squeeze transformation,

an act-norm layer, and an invertible 1x1 convolution layer followed by steps per level. The

steps per level parameter signi�es the number of coupling transformations applied at each

level. In the experiments, the MNIST dataset employs 8 steps per level, CIFAR10 uses 15

steps per level, and CELEBA utilizes 10 steps per level. Increasing the number of steps per

level allows the model to better approximate complex data distributions into base distribu-

tions like Gaussian. This also makes the model more expressive, and it is able to generate

high-quality samples. The combination of levels and steps per level parameter determines

the total number of transformations or ows used in the normalizing ow part of the pro-

posed model. Thus for MNIST, CIFAR10, and CELEBA, we used a total of 24, 60, and 40
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transformations, respectively. Overall we used less number of levels and steps per level for

the MNIST dataset as compared to the other datasets since the dataset has a single channel

and consists of simple handwritten digits.

Other parameters include hidden channels and resnet blocks which respectively determine

the number of channels or dimensions used in the hidden layers and the number of residual

blocks used in both the ow network from the normalizing ow part and U-Net from the

di�usion part of the model. The residual blocks used in the ow network are denoted by

"now," and that used in the U-Net are denoted by "dpm". The MNIST dataset employs 64

hidden channels with 2 resnet blocks for both the networks, now and dpm, while CIFAR10

and CELEBA use 128 hidden channels with 3 resnet blocks in the now network and 2 resnet

blocks in the dpm network. Increasing the number of hidden channels and resnet blocks

enhances the model's ability to capture intricate features but also increases computational

complexity. Again, we kept the number of hidden channels and resnet blocks less for the

MNIST model as compared to the models. For MNIST, the model was trained for 300

epochs with a batch size of 128, CIFAR10 for 500 epochs with a batch size of 156, and

CELEBA for 100 epochs with a batch size of 68. The number of epochs and batch size were

determined considering the time and computational constraints available. Another crucial

parameter is the timesteps, which determine the number of steps used for adding noise in

the di�usion part of our proposed model. Increasing the number of timesteps allows the

di�usion process to more accurately model complex data distributions. The experiments

use 500 timesteps for all datasets. Mainly in the DDPM model [13], the experiments were

performed using 1000 timesteps. Thus, we wanted to demonstrate that our proposed model

can utilize a lesser number of timesteps and still generate comparable samples to the DDPM

model. Careful selection of these parameters, as shown in Table 5.1, is essential to achieve

optimal performance in the trained models. The choices made in the table consider dataset

characteristics, model complexity, and computational constraints. By appropriately tuning
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these parameters, the models can e�ectively learn from the data and generate high-quality

outputs.

5.4 Results

This section presents a thorough analysis of the experimental �ndings obtained from the

MNIST, CIFAR10, and CELEBA datasets. We provide a comprehensive evaluation of our

model's performance, focusing on key metrics such as the Negative Log-Likelihood (Nll)

and Fr�echet Inception Distance (FID). Furthermore, we conduct a comparative analysis,

benchmarking our model against established DDPM [13] and NSF [7] models. For model

comparison, we evaluated the models on MNIST and CELEBA datasets. We speci�cally

choose MNIST and CELEBA datasets because generative models can pose di�culties in

evaluating and comparing solely through quantitative results. Using MNIST and CELEBA

datasets, we can visually check the generated samples and give conclusions about the models.

This comparison allows us to identify the unique strengths and limitations of our proposed

approach, showcasing its potential contributions to the �eld of generative modeling. The

evaluation results on di�erent datasets are summarized in Table 5.2.

Table 5.2: Evaluation on Datasets

Datasets NLL FID
MNIST 0.93 1.85
CIFAR10 2.53 11.22
CELEBA 0.58 6.94

In relation to the MNIST dataset, our generative model demonstrates remarkable per-

formance with an NLL of 0.93 and an FID of 1.85. These values indicate the model's

capability to e�ectively capture the underlying distribution of MNIST data. A lower FID

score implies a noteworthy similarity between the generated samples and authentic images.

The generated samples can be observed in Figure 5.1, clearly exhibiting the model's precise
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